首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spatial variation of soil greenhouse gas fluxes (GHG; carbon dioxide—CO2, methane—CH4 and nitrous oxide—N2O) remains poorly understood in highly complex ecosystems such as tropical forests. We used 240 individual flux measurements of these three GHGs from different soil types, at three topographical positions and in two extreme hydric conditions in the tropical forests of the Guiana Shield (French Guiana, South America) to (1) test the effect of topographical positions on GHG fluxes and (2) identify the soil characteristics driving flux variation in these nutrient-poor tropical soils. Surprisingly, none of the three GHG flux rates differed with topographical position. CO2 effluxes covaried with soil pH, soil water content (SWC), available nitrogen and total phosphorus. The CH4 fluxes were best explained by variation in SWC, with soils acting as a sink under drier conditions and as a source under wetter conditions. Unexpectedly, our study areas were generally sinks for N2O and N2O fluxes were partly explained by total phosphorus and available nitrogen concentrations. This first study describing the spatial variation of soil fluxes of the three main GHGs measured simultaneously in forests of the Guiana Shield lays the foundation for specific studies of the processes underlying the observed patterns.  相似文献   

2.
The net balance of greenhouse gas (GHG) exchanges between terrestrial ecosystems and the atmosphere under elevated atmospheric carbon dioxide (CO2) remains poorly understood. Here, we synthesise 1655 measurements from 169 published studies to assess GHGs budget of terrestrial ecosystems under elevated CO2. We show that elevated CO2 significantly stimulates plant C pool (NPP) by 20%, soil CO2 fluxes by 24%, and methane (CH4) fluxes by 34% from rice paddies and by 12% from natural wetlands, while it slightly decreases CH4 uptake of upland soils by 3.8%. Elevated CO2 causes insignificant increases in soil nitrous oxide (N2O) fluxes (4.6%), soil organic C (4.3%) and N (3.6%) pools. The elevated CO2‐induced increase in GHG emissions may decline with CO2 enrichment levels. An elevated CO2‐induced rise in soil CH4 and N2O emissions (2.76 Pg CO2‐equivalent year?1) could negate soil C enrichment (2.42 Pg CO2 year?1) or reduce mitigation potential of terrestrial net ecosystem production by as much as 69% (NEP, 3.99 Pg CO2 year?1) under elevated CO2. Our analysis highlights that the capacity of terrestrial ecosystems to act as a sink to slow climate warming under elevated CO2 might have been largely offset by its induced increases in soil GHGs source strength.  相似文献   

3.
No‐tillage (NT) management has been promoted as a practice capable of offsetting greenhouse gas (GHG) emissions because of its ability to sequester carbon in soils. However, true mitigation is only possible if the overall impact of NT adoption reduces the net global warming potential (GWP) determined by fluxes of the three major biogenic GHGs (i.e. CO2, N2O, and CH4). We compiled all available data of soil‐derived GHG emission comparisons between conventional tilled (CT) and NT systems for humid and dry temperate climates. Newly converted NT systems increase GWP relative to CT practices, in both humid and dry climate regimes, and longer‐term adoption (>10 years) only significantly reduces GWP in humid climates. Mean cumulative GWP over a 20‐year period is also reduced under continuous NT in dry areas, but with a high degree of uncertainty. Emissions of N2O drive much of the trend in net GWP, suggesting improved nitrogen management is essential to realize the full benefit from carbon storage in the soil for purposes of global warming mitigation. Our results indicate a strong time dependency in the GHG mitigation potential of NT agriculture, demonstrating that GHG mitigation by adoption of NT is much more variable and complex than previously considered, and policy plans to reduce global warming through this land management practice need further scrutiny to ensure success.  相似文献   

4.
Canopy soils can significantly contribute to aboveground labile biomass, especially in tropical montane forests. Whether they also contribute to the exchange of greenhouse gases is unknown. To examine the importance of canopy soils to tropical forest‐soil greenhouse gas exchange, we quantified gas fluxes from canopy soil cores along an elevation gradient with 4 yr of nutrient addition to the forest floor. Canopy soil contributed 5–12 percent of combined (canopy + forest floor) soil CO2 emissions but CH4 and N2O fluxes were low. At 2000 m, phosphorus decreased CO2 emissions (>40%) and nitrogen slightly increased CH4 uptake and N2O emissions. Our results show that canopy soils may contribute significantly to combined soil greenhouse gas fluxes in montane regions with high accumulations of canopy soil. We also show that changes in fluxes could occur with chronic nutrient deposition.  相似文献   

5.
Biochar application to soils may increase carbon (C) sequestration due to the inputs of recalcitrant organic C. However, the effects of biochar application on the soil greenhouse gas (GHG) fluxes appear variable among many case studies; therefore, the efficacy of biochar as a carbon sequestration agent for climate change mitigation remains uncertain. We performed a meta‐analysis of 91 published papers with 552 paired comparisons to obtain a central tendency of three main GHG fluxes (i.e., CO2, CH4, and N2O) in response to biochar application. Our results showed that biochar application significantly increased soil CO2 fluxes by 22.14%, but decreased N2O fluxes by 30.92% and did not affect CH4 fluxes. As a consequence, biochar application may significantly contribute to an increased global warming potential (GWP) of total soil GHG fluxes due to the large stimulation of CO2 fluxes. However, soil CO2 fluxes were suppressed when biochar was added to fertilized soils, indicating that biochar application is unlikely to stimulate CO2 fluxes in the agriculture sector, in which N fertilizer inputs are common. Responses of soil GHG fluxes mainly varied with biochar feedstock source and soil texture and the pyrolysis temperature of biochar. Soil and biochar pH, biochar applied rate, and latitude also influence soil GHG fluxes, but to a more limited extent. Our findings provide a scientific basis for developing more rational strategies toward widespread adoption of biochar as a soil amendment for climate change mitigation.  相似文献   

6.
Rapid climate change and intensified human activities have resulted in water table lowering (WTL) and enhanced nitrogen (N) deposition in Tibetan alpine wetlands. These changes may alter the magnitude and direction of greenhouse gas (GHG) emissions, affecting the climate impact of these fragile ecosystems. We conducted a mesocosm experiment combined with a metagenomics approach (GeoChip 5.0) to elucidate the effects of WTL (?20 cm relative to control) and N deposition (30 kg N ha?1 yr?1) on carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes as well as the underlying mechanisms. Our results showed that WTL reduced CH4 emissions by 57.4% averaged over three growing seasons compared with no‐WTL plots, but had no significant effect on net CO2 uptake or N2O flux. N deposition increased net CO2 uptake by 25.2% in comparison with no‐N deposition plots and turned the mesocosms from N2O sinks to N2O sources, but had little influence on CH4 emissions. The interactions between WTL and N deposition were not detected in all GHG emissions. As a result, WTL and N deposition both reduced the global warming potential (GWP) of growing season GHG budgets on a 100‐year time horizon, but via different mechanisms. WTL reduced GWP from 337.3 to ?480.1 g CO2‐eq m?2 mostly because of decreased CH4 emissions, while N deposition reduced GWP from 21.0 to ?163.8 g CO2‐eq m?2, mainly owing to increased net CO2 uptake. GeoChip analysis revealed that decreased CH4 production potential, rather than increased CH4 oxidation potential, may lead to the reduction in net CH4 emissions, and decreased nitrification potential and increased denitrification potential affected N2O fluxes under WTL conditions. Our study highlights the importance of microbial mechanisms in regulating ecosystem‐scale GHG responses to environmental changes.  相似文献   

7.
Tropical forests on upland soils are assumed to be a methane (CH4) sink and a weak source of nitrous oxide (N2O), but studies of wetland forests have demonstrated that tree stems can be a substantial source of CH4, and recent evidence from temperate woodlands suggests that tree stems can also emit N2O. Here, we measured CH4 and N2O fluxes from the soil and from tree stems in a semi‐evergreen tropical forest on upland soil. To examine the influence of seasonality, soil abiotic conditions and substrate availability (litter inputs) on trace greenhouse gas (GHG) fluxes, we conducted our study during the transition from the dry to the wet season in a long‐term litter manipulation experiment in Panama, Central America. Trace GHG fluxes were measured from individual stem bases of two common tree species and from soils beneath the same trees. Soil CH4 fluxes varied from uptake in the dry season to minor emissions in the wet season. Soil N2O fluxes were negligible during the dry season but increased markedly after the start of the wet season. By contrast, tree stem bases emitted CH4 and N2O throughout the study. Although we observed no clear effect of litter manipulation on trace GHG fluxes, tree species and litter treatments interacted to influence CH4 fluxes from stems and N2O fluxes from stems and soil, indicating complex relationships between tree species traits and decomposition processes that can influence trace GHG dynamics. Collectively, our results show that tropical trees can act as conduits for trace GHGs that most likely originate from deeper soil horizons, even when they are growing on upland soils. Coupled with the finding that the soils may be a weaker sink for CH4 than previously thought, our research highlights the need to reappraise trace gas budgets in tropical forests.  相似文献   

8.
贾朋  高常军  李吉跃  周平  王丹  许小林 《生态学报》2018,38(19):6903-6911
为探索华南地区尾巨桉人工林和马占相思人工林地表温室气体的季节排放规律、排放通量和主控因子,采用静态箱-气相色谱法,对两种林型地表3种温室气体(CO_2、CH_4、N_2O)通量进行为期1年的逐月测定。结果表明:(1)尾巨桉人工林和马占相思人工林均为CO_2和N_2O的排放源,CH_4的吸收汇。马占相思林地表N_2O通量显著(P0.01)高于尾巨桉林,CO_2通量和CH_4通量无明显差异。(2)两种林型3种温室气体通量有着相似季节变化规律,地表CO_2通量均呈现雨季高旱季低的单峰规律;地表CH_4吸收通量表现为旱季高雨季低的单峰趋势;地表N_2O通量呈现雨季高旱季低且雨季内有两个峰值的排放规律。(3)地表CO_2、N_2O通量和土壤5 cm温度呈极显著(P0.01)正相关,3种温室气体地表通量同土壤含水量呈极显著(P0.01)或显著相关(P0.05)。(4)尾巨桉林和马占相思林温室气体年温室气体排放总量为31.014 t/hm~2和28.782 t/hm~2,均以CO_2排放占绝对优势(98.46%—99.15%),CH_4和N_2O处于次要地位。  相似文献   

9.
Agriculture is one of the largest contributors of the anthropogenic greenhouse gases (GHGs) responsible for global warming. Measurements of gas fluxes from dung pats suggest that dung is a source of GHGs, but whether these emissions are modified by arthropods has not been studied. A closed chamber system was used to measure the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from dung pats with and without dung beetles on a grass sward. The presence of dung beetles significantly affected the fluxes of GHGs from dung pats. Most importantly, fresh dung pats emitted higher amounts of CO2 and lower amounts of CH4 per day in the presence than absence of beetles. Emissions of N2O showed a distinct peak three weeks after the start of the experiment – a pattern detected only in the presence of beetles. When summed over the main grazing season (June–July), total emissions of CH4 proved significantly lower, and total emissions of N2O significantly higher in the presence than absence of beetles. While clearly conditional on the experimental conditions, the patterns observed here reveal a potential impact of dung beetles on gas fluxes realized at a small spatial scale, and thereby suggest that arthropods may have an overall effect on gas fluxes from agriculture. Dissecting the exact mechanisms behind these effects, mapping out the range of conditions under which they occur, and quantifying effect sizes under variable environmental conditions emerge as key priorities for further research.  相似文献   

10.
Sub-Saharan Africa (SSA) must undertake proper cropland intensification for higher crop yields while minimizing climate impacts. Unfortunately, no studies have simultaneously quantified greenhouse gas (GHG; CO2, CH4, and N2O) emissions and soil organic carbon (SOC) change in SSA croplands, leaving it a blind spot in the accounting of global warming potential (GWP). Here, based on 2-year field monitoring of soil emissions of CO2, CH4, and N2O, as well as SOC changes in two contrasting soil types (sandy vs. clayey), we provided the first, full accounting of GWP for maize systems in response to cropland intensifications (increasing nitrogen rates and in combination with crop residue return) in SSA. To corroborate our field observations on SOC change (i.e., 2-year, a short duration), we implemented a process-oriented model parameterized with field data to simulate SOC dynamic over time. We further tested the generality of our findings by including a literature synthesis of SOC change across maize-based systems in SSA. We found that nitrogen application reduced SOC loss, likely through increased biomass yield and consequently belowground carbon allocation. Residue return switched the direction of SOC change from loss to gain; such a benefit (SOC sequestration) was not compromised by CH4 emissions (negligible) nor outweighed by the amplified N2O emissions, and contributed to negative net GWP. Overall, we show encouraging results that, combining residue and fertilizer-nitrogen input allowed for sequestering 82–284 kg of CO2-eq per Mg of maize grain produced across two soils. All analyses pointed to an advantage of sandy over clayey soils in achieving higher SOC sequestration targets, and thus call for a re-evaluation on the potential of sandy soils in SOC sequestration across SSA croplands. Our findings carry important implications for developing viable intensification practices for SSA croplands in mitigating climate change while securing food production.  相似文献   

11.
The two non-CO2 greenhouse gases (GHGs) nitrous oxide (N2O) and methane (CH4) comprise 54.8% of total New Zealand emissions. Nitrous oxide is mainly generated from mineral N originating from animal dung and urine, applied fertiliser N, biologically fixed N2, and mineralisation of soil organic N. Even though about 96% of the anthropogenic CH4 emitted in New Zealand is from ruminant animals (methanogenesis), methane uptake by aerobic soils (methanotrophy) can significantly contribute to the removal of CH4 from the atmpsphere, as the global estimates confirm. Both the net uptake of CH4 by soils and N2O emissions from soils are strongly influenced by changes in land use and land management. Quantitative information on the fluxes of these two non-CO2 GHGs is required for a range of land-use and land-management ecosystems to determine their contribution to the national emissions inventory, and for assessing the potential of mitigation options. Here we report soil N2O fluxes and CH4 uptake for a range of land-use and land-management systems collated from published and unpublished New Zealand studies. Nitrous oxide emissions are highest in dairy-grazed pastures (10–12 kg N2O–N ha?1 year? 1), intermediate in sheep-grazed pastures, (4–6 kg N2O–N ha?1 year?1), and lowest in forest, shrubland and ungrazed pasture soils (1–2 kg N2O–N ha?1 year?1). N deposited in the form of animal urine and dung, and N applied as fertiliser, are the principal sources of N2O production. Generally, N2O emissions from grazed pasture soils are high when the soil water-filled pore-space is above field capacity, and net CH4 uptake is low or absent. Although nitrification inhibitors have shown some promise in reducing N2O emissions from grazed pasture systems, their efficacy as an integral part of farm management has yet to be tested. Methane uptake was highest for a New Zealand Beech forest soil (10–11 kg CH4 ha?1 year?1), intermediate in some pine forest soils (4–6 kg CH4 ha?1 year?1), and lowest in most pasture (<1 kg CH4 ha?1 year?1) and cropped soils (1.5 kg CH4 ha?1 year?1). Afforestation /reforestation of pastures results in increases in soil CH4 uptake, largely as a result of increases in soil aeration status and changes in the population and activities of methanotrophs. Soil CH4 uptake is also seasonally dependent, being about two to three times higher in a dry summer and autumn than in a wet winter. There are no practical ways yet available to reduce CH4 emissions from agricultural systems. The mitigation options to reduce gaseous emissions are discussed and future research needs identified.  相似文献   

12.
We investigated soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) exchanges in an age‐sequence (4, 17, 32, 67 years old) of eastern white pine (Pinus strobus L.) forests in southern Ontario, Canada, for the period of mid‐April to mid‐December in 2006 and 2007. For both CH4 and N2O, we observed uptake and emission ranging from ?160 to 245 μg CH4 m?2 h?1 and ?52 to 21 μg N2O m?2 h?1, respectively (negative values indicate uptake). Mean fluxes from mid‐April to mid‐December across the 4, 17, 32, 67 years old stands were similar for CO2 fluxes (259, 246, 220, and 250 mg CO2 m?2 h?1, respectively), without pattern for N2O fluxes (?3.7, 1.5, ?2.2, and ?7.6 μg N2O m?2 h?1, respectively), whereas the uptake rates of CH4 increased with stand age (6.4, ?7.9, ?10.8, and ?23.3 μg CH4 m?2 h?1, respectively). For the same period, the combined contribution of CH4 and N2O exchanges to the global warming potential (GWP) calculated from net ecosystem exchange of CO2 and aggregated soil exchanges of CH4 and N2O was on average 4%, <1%, <1%, and 2% for the 4, 17, 32, 67 years old stand, respectively. Soil CO2 fluxes correlated positively with soil temperature but had no relationship with soil moisture. We found no control of soil temperature or soil moisture on CH4 and N2O fluxes, but CH4 emission was observed following summer rainfall events. LFH layer removal reduced CO2 emissions by 43%, increased CH4 uptake during dry and warm soil conditions by more than twofold, but did not affect N2O flux. We suggest that significant alternating sink and source potentials for both CH4 and N2O may occur in N‐ and soil water‐limited forest ecosystems, which constitute a large portion of forest cover in temperate areas.  相似文献   

13.
To investigate the effects of multiple environmental conditions on greenhouse gas (CO2, N2O, CH4) fluxes, we transferred three soil monoliths from Masson pine forest (PF) or coniferous and broadleaved mixed forest (MF) at Jigongshan to corresponding forest type at Dinghushan. Greenhouse gas fluxes at the in situ (Jigongshan), transported and ambient (Dinghushan) soil monoliths were measured using static chambers. When the transported soil monoliths experienced the external environmental factors (temperature, precipitation and nitrogen deposition) at Dinghushan, its annual soil CO2 emissions were 54% in PF and 60% in MF higher than those from the respective in situ treatment. Annual soil N2O emissions were 45% in PF and 44% in MF higher than those from the respective in situ treatment. There were no significant differences in annual soil CO2 or N2O emissions between the transported and ambient treatments. However, annual CH4 uptake by the transported soil monoliths in PF or MF was not significantly different from that at the respective in situ treatment, and was significantly lower than that at the respective ambient treatment. Therefore, external environmental factors were the major drivers of soil CO2 and N2O emissions, while soil was the dominant controller of soil CH4 uptake. We further tested the results by developing simple empirical models using the observed fluxes of CO2 and N2O from the in situ treatment and found that the empirical models can explain about 90% for CO2 and 40% for N2O of the observed variations at the transported treatment. Results from this study suggest that the different responses of soil CO2, N2O, CH4 fluxes to changes in multiple environmental conditions need to be considered in global change study.  相似文献   

14.

Background and aims

Winter cover crop cultivation during the fallow season has been strongly recommended in mono-rice paddy soil to improve soil quality, but its impact in increasing the greenhouse gases (GHGs) emissions during rice cultivation when applied as green manure has not been extensively studied. In order to recommend a preferable cover crop which can increase soil productivity and suppress GHG emission impact in paddy soil, the effect of winter cover crop addition on rice yield and total global warming potential (GWP) was studied during rice cultivation.

Methods

Two cover crops (Chinese milk vetch, Astragalus sinicus L., hereafter vetch, and rye, Secale cerealis) having different carbon/nitrogen (C/N) ratios were cultivated during the rice fallow season. The fresh above-ground biomasses of vetch [25 Mg fresh weight (FW) ha?1, moisture content (MC) 86.9 %, C/N ratio 14.8] and rye (29 Mg rye FW ha?1, MC 78.0 %, C/N ratio 64.3) were incorporated as green manure 1 week before rice transplanting (NPK + vetch, and NPK + rye). The NPK treatment was installed for comparison as the control. During the rice cultivation, methane (CH4) and nitrous oxide (N2O) gases were collected simultaneously once a week using the closed-chamber method, and carbon dioxide (CO2) flux was estimated using the soil C balance analysis. Total GWP impact was calculated as CO2 equivalents by multiplying the seasonal CH4, CO2, and N2O fluxes by 25, 1, and 298, respectively.

Results

Methane mainly covered 79–81 % of the total GWP, followed by CO2 (14–17 %), but the N2O contribution was very small (2–5 %) regardless of the treatment. Seasonal CH4 fluxes significantly increased to 61 and 122 % by vetch and rye additions, respectively, compared to that of the NPK treatment. Similarly, the estimated seasonal CO2 fluxes increased at about 197 and 266 % in the vetch and rye treatments, respectively, compared with the NPK control plots. Based on these results, the total GWP increased to 163 and 221 % with vetch and rye applications, respectively, over the control treatment. Rice productivity was significantly increased with the application of green manure due to nutrient supply; however, vetch was more effective. Total GWP per grain yield was similar with the vetch (low C/N ratio) and NPK treatments, but significantly increased with the rye (high C/N ratio) application, mainly due to its higher CH4 emission characteristic and lower rice productivity increase.

Conclusions

A low C/N ratio cover crop, such as vetch, may be a more desirable green manure to reduce total GWP per grain yield and to improve rice productivity.  相似文献   

15.
马英  匡晓奎  刘杰  杨云锋 《微生物学通报》2021,48(10):3835-3846
高寒草地生态系统具有独特的地理环境和气候特征,对放牧干扰十分敏感,在全球温室气体通量中贡献突出,研究高寒草地放牧对土壤温室气体排放的影响机制具有重要意义。本文总结高寒草地温室气体源/汇特征、不同放牧方式对土壤微环境和微生物群落结构的影响,发现高寒草地主要是CO2源、CH4汇、N2O源。放牧通过家畜选择性采食、践踏和排泄物返还等多重机制作用于地上植物、土壤结构、温度、湿度和养分,进而影响地下微生物及温室气体通量。本文旨在为高寒草地生态系统健康发展和管理及缓解全球气候变化提供科学依据,并对未来研究方向进行展望。  相似文献   

16.
The magnitude of greenhouse gas (GHG) flux rates may be important in wet and intermediate wet forest soils, but published estimates are scarce. We studied the surface exchange of methane (CH4) and nitrous oxide (N2O) from soil along toposequences in two temperate deciduous forest catchments: Strødam and Vestskoven. The soil water regime ranged from fully saturated to aerated within the catchments. At Strødam the largest mean flux rates of N2O (15 μg N2O-N m?2 h?1) were measured at volumetric soil water contents (SWC) between 40 and 60% and associated with low soil pH compared to smaller mean flux rates of 0-5 μg N2O-N m?2 h?1 for drier (SWC < 40%) and wet conditions (SWC > 80%). At Vestskoven the same response of N2O to soil water content was observed. Average CH4 flux rates were highly variable along the toposequences (?17 to 536 μg CH4-C m?2 h?1) but emissions were only observed above soil water content of 45%. Scaled flux rates of both GHGs to catchment level resulted in emission of 322 and 211 kg CO2-equivalents ha?1 year?1 for Strødam and Vestskoven, respectively, with N2O contributing the most at both sites. Although the wet and intermediate wet forest soils occupied less than half the catchment area at both sites, the global warming potential (GWP) derived from N2O and CH4 was more than doubled when accounting for these wet areas in the catchments. The results stress the importance of wet soils in assessments of forest soil global warming potentials, as even small proportions of wet soils contributes substantially to the emissions of N2O and CH4.  相似文献   

17.
温带针阔混交林土壤碳氮气体通量的主控因子与耦合关系   总被引:3,自引:0,他引:3  
中高纬度森林地区由于气候条件变化剧烈,土壤温室气体排放量的估算存在很大的不确定性,并且不同碳氮气体通量的主控因子与耦合关系尚不明确。以长白山温带针阔混交林为研究对象,采用静态箱-气相色谱法连续4a(2005—2009年)测定土壤二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)净交换通量以及温度、水分等相关环境因子。研究结果表明:温带针阔混交林土壤整体上表现为CO2和N2O的排放源和CH4的吸收汇。土壤CH4、CO2和N2O通量的年均值分别为-1.3 kg CH4hm-2a-1、15102.2 kg CO2hm-2a-1和6.13 kg N2O hm-2a-1。土壤CO2通量呈现明显的季节性规律,主要受土壤温度的影响,水分次之;土壤CH4通量的季节变化不明显,与土壤水分显著正相关;土壤N2O通量季节变化与土壤CO2通量相似,与土壤水分、温度显著正相关。土壤CO2通量和CH4通量不存在任何类型的耦合关系,与N2O通量也不存在耦合关系;土壤CH4和N2O通量之间表现为消长型耦合关系。这项研究显示温带针阔混交林土壤碳氮气体通量主要受环境因子驱动,不同气体通量产生与消耗之间存在复杂的耦合关系,下一步研究需要深入探讨环境变化对其耦合关系的影响以及内在的生物驱动机制。  相似文献   

18.
Wetlands contribute considerably to the global greenhouse gas (GHG) balance. In these ecosystems, groundwater level (GWL) and temperature, two factors likely to be altered by climate change, exert important control over CO2, CH4 and N2O fluxes. However, little is known about the temperature sensitivity (Q10) of the combined GHG emissions from hydromorphic soils and how this Q10 varies with GWL. We performed a greenhouse experiment in which three different (plant‐free) hydromorphic soils from a temperate spruce forest were exposed to two GWLs (an intermediate GWL of ?20 cm and a high GWL of ?5 cm). Net CO2, CH4 and N2O fluxes were measured continuously. Here, we discuss how these fluxes responded to synoptic temperature fluctuations. Across all soils and GWLs, CO2 emissions responded similarly to temperature and Q10 was close to 2. The Q10 of the CH4 and N2O fluxes also was similar across soil types. GWL, on the other hand, significantly affected the Q10 of both CH4 and N2O emissions. The Q10 of the net CH4 fluxes increased from about 1 at GWL = ?20 cm to 3 at GWL = ?5 cm. For the N2O emissions, Q10 varied around 2 for GWL = ?20 cm and around 4 for GWL = ?5 cm. This substantial GWL‐effect on the Q10 of CH4 and N2O emissions was, however, hardly reflected in the Q10 of the total GHG emissions (which varied around 2), because the contribution of these gases was relatively small compared to that of CO2.  相似文献   

19.
The application of organic materials to soil can recycle nutrients and increase organic matter in agricultural lands. Digestate can be used as a nutrient source for crop production but it has also been shown to stimulate greenhouse gas (GHG) emissions from amended soils. While edaphic factors, such as soil texture and pH, have been shown to be strong determinants of soil GHG fluxes, the impact of the legacy of previous management practices is less well understood. Here we aim to investigate the impact of such legacy effects and to contrast them against soil properties to identify the key determinants of soil GHG fluxes following digestate application. Soil from an already established field experiment was used to set up a pot experiment, to evaluate N2O, CH4 and CO2 fluxes from cattle‐slurry‐digestate amended soils. The soil had been treated with farmyard manure, green manure or synthetic N‐fertilizer, 18 months before the pot experiment was set up. Following homogenization and a preincubation stage, digestate was added at a concentration of 250 kg total N/ha eq. Soil GHG fluxes were then sampled over a 64 day period. The digestate stimulated emissions of the three GHGs compared to controls. The legacy of previous soil management was found to be a key determinant of CO2 and N2O flux while edaphic variables did not have a significant effect across the range of variables included in this experiment. Conversely, edaphic variables, in particular texture, were the main determinant of CH4 flux from soil following digestate application. Results demonstrate that edaphic factors and current soil management regime alone are not effective predictors of soil GHG flux response following digestate application. Knowledge of the site management in terms of organic amendments is required to make robust predictions of the likely soil GHG flux response following digestate application to soil.  相似文献   

20.
We assessed the effect of biochar incorporation into the soil on the soil-atmosphere exchange of the greenhouse gases (GHG) from an intensive subtropical pasture. For this, we measured N2O, CH4 and CO2 emissions with high temporal resolution from April to June 2009 in an existing factorial experiment where cattle feedlot biochar had been applied at 10 t ha?1 in November 2006. Over the whole measurement period, significant emissions of N2O and CO2 were observed, whereas a net uptake of CH4 was measured. N2O emissions were found to be highly episodic with one major emission pulse (up to 502 ??g N2O-N m?2 h?1) following heavy rainfall. There was no significant difference in the net flux of GHGs from the biochar amended vs. the control plots. Our results demonstrate that intensively managed subtropical pastures on ferrosols in northern New South Wales of Australia can be a significant source of GHG. Our hypothesis that the application of biochar would lead to a reduction in emissions of GHG from soils was not supported in this field assessment. Additional studies with longer observation periods are needed to clarify the long term effect of biochar amendment on soil microbial processes and the emission of GHGs under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号