首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Current antagonists for the parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptor (PTHR) are N-terminally truncated or N-terminally modified analogs of PTH(1-34) or PTHrP(1-34) and are thought to bind predominantly to the N-terminal extracellular (N) domain of the receptor. We hypothesized that ligands that bind only to PTHR region comprised of the extracellular loops and seven transmembrane helices (the juxtamembrane or J domain) could also antagonize the PTHR. To test this, we started with the J domain-selective agonists [Gln(10),Ala(12),Har(11),Trp(14),Arg(19) (M)]PTH(1-21), [M]PTH(1-15), and [M]PTH(1-14), and introduced substitutions at positions 1-3 that were predicted to dissociate PTHR binding and cAMP signaling activities. Strong dissociation was observed with the tri-residue sequence diethylglycine (Deg)(1)-para-benzoyl-l-phenylalanine (Bpa)(2)-Deg(3). In HKRK-B7 cells, which express the cloned human PTHR, [Deg(1,3),Bpa(2),M]PTH(1-21), [Deg(1,3),Bpa(2),M]PTH(1-15), and [Deg(1,3),Bpa(2),M]PTH(1-14) fully inhibited (IC(50)s = 100-700 nm) the binding of (125)I-[alpha-aminoisobutyric acid(1,3),M]PTH(1-15) and were severely defective for stimulating cAMP accumulation. In ROS 17/2.8 cells, which express the native rat PTHR, [Deg(1,3),Bpa(2),M]PTH(1-21) and [Deg(1,3),Bpa(2),M]PTH(1-15) antagonized the cAMP-agonist action of PTH(1-34), as did PTHrP(5-36) (IC(50)s = 0.7 microm, 2.6 microm, and 36 nm, respectively). In COS-7 cells expressing PTHR-delNt, which lacks the N domain of the receptor, [Deg(1,3),Bpa(2), M]PTH(1-21) and [Deg(1,3),Bpa(2),M]PTH(1-15) inhibited the agonist actions of [alpha-aminoisobutyric acid(1,3)]PTH(1-34) and [M]PTH(1-14) (IC(50)s approximately 1 microm), whereas PTHrP(5-36) failed to inhibit. [Deg(1,3),Bpa(2),M]PTH(1-14) inhibited the constitutive cAMP-signaling activity of PTHR-tether-PTH(1-9), in which the PTH(1-9) sequence is covalently linked to the PTHR J domain, as well as that of PTHR(cam)H223R. Thus, the J-domain-selective N-terminal PTH fragment analogs can function as antagonists as well as inverse agonists for the PTHR. The new ligands described should be useful for further studies of the ligand binding and activation mechanisms that operate in the critical PTHR J domain.  相似文献   

2.
Mechanisms of ligand binding to the PTH/PTHrP receptor (PTHR) were explored using PTH fragment analogs as radioligands in binding assays. In particular, the modified amino-terminal fragment analog, (125)I-[Aib(1,3),Nle8,Gln10,homoarginine11,Ala12,Trp14,Tyr15]rPTH(1-15)NH2, (125)I-[Aib(1,3),M]PTH(1-15), was used as a radioligand that we hypothesized to bind solely to the juxtamembrane (J) portion of the PTHR containing the extracellular loops and transmembrane helices. We also employed (125)I-PTH(1-34) as a radioligand that binds to both the amino-terminal extracellular (N) and J domains of the PTHR. Binding was examined in membranes derived from cells expressing either wild-type or mutant PTHRs. We found that the binding of (125)I-[Aib(1,3),M]PTH(1-15) to the wild-type PTHR was strongly (approximately 90%) inhibited by guanosine 5'-O-(3-thio)triphosphate (GTPgammaS), whereas the binding of (125)I-PTH(1-34) was only mildly (approximately 25%) inhibited by GTPgammaS. Of these two radioligands, only (125)I-[Aib(1,3),M]PTH(1-15) bound to PTHR-delNt, which lacks most of the receptor's N domain, and again this binding was strongly inhibited by GTPgammaS. Binding of (125)I-[Aib(1,3),M]PTH(1-15) to the constitutively active receptor, PTHR-H223R, was only mildly (approximately 20%) inhibited by GTPgammaS, as was the binding of (125)I-PTH(1-34). In membranes prepared from cells lacking Galpha(S) via knockout mutation of Gnas, no binding of (125)I-[Aib(1,3),M]PTH(1-15) was observed, but binding of (125)I-[Aib(1,3),M]PTH(1-15) was recovered by virally transducing the cells to heterologously express Galpha(S). (125)I-PTH(1-34) bound to the membranes with or without Galpha(S). The overall findings confirm the hypothesis that (125)I-[Aib(1,3),M]PTH(1-15) binds solely to the J domain of the PTHR. They further show that this binding is strongly dependent on coupling of the receptor to Galpha(S)-containing heterotrimeric G proteins, whereas the binding of (125)I-PTH(1-34) can occur in the absence of such coupling. Thus, (125)I-[Aib(1,3),M]PTH(1-15) appears to function as a selective probe of Galpha(S)-coupled, active-state PTHR conformations.  相似文献   

3.
The principal receptor-binding domain (Ser(17)-Val(31)) of parathyroid hormone (PTH) is predicted to form an amphiphilic alpha-helix and to interact primarily with the N-terminal extracellular domain (N domain) of the PTH receptor (PTHR). We explored these hypotheses by introducing a variety of substitutions in region 17-31 of PTH-(1-31) and assessing, via competition assays, their effects on binding to the wild-type PTHR and to PTHR-delNt, which lacks most of the N domain. Substitutions at Arg(20) reduced affinity for the intact PTHR by 200-fold or more, but altered affinity for PTHR-delNt by 4-fold or less. Similar effects were observed for Glu substitutions at Trp(23), Leu(24), and Leu(28), which together form the hydrophobic face of the predicted amphiphilic alpha-helix. Glu substitutions at Arg(25), Lys(26), and Lys(27) (which forms the hydrophilic face of the helix) caused 4-10-fold reductions in affinity for both receptors. Thus, the side chains of Arg(20), together with those composing the hydrophobic face of the ligand's putative amphiphilic alpha-helix, contribute strongly to PTHR-binding affinity by interacting specifically with the N domain of the receptor. The side chains projecting from the opposite helical face contribute weakly to binding affinity by different mechanisms, possibly involving interactions with the extracellular loop/transmembrane domain region of the receptor. The data help define the roles that side chains in the binding domain of PTH play in the PTH-PTHR interaction process and provide new clues for understanding the overall topology of the bimolecular complex.  相似文献   

4.
5.
In rat enterocytes, signaling through the parathyroid hormone (PTH)/PTH-related peptide receptor type 1(PTHR1) includes stimulation of adenylyl cyclase, increases of intracellular calcium, activation of phospholipase C, and the MAP kinase pathway, mechanisms that suffer alterations with ageing. The purpose of this study was to evaluate whether an alteration at the level of the PTH receptor (PTHR1) is the basis for impaired PTH signaling in aged rat enterocytes. Western Blot analysis with a specific monoclonal anti-PTHR1 antibody revealed that a 85 kDa PTH binding component, the size expected for the mature PTH/PTHrP receptor, localizes in the basolateral (BLM) and brush border (BBM) membranes of the enterocyte, being the protein expression about 7-fold higher in the BLM. Two other bands of 105 kDa (corresponding to highly glycosylated, incompletely processed receptor form) and 65 kDa (proteolytic fragment) were also seen. BLM PTHR1 protein expression significantly decreases with ageing, while no substantial decrease was observed in the BBM from old rats. PTHR1 immunoreactivity was also present in the nucleus where PTHR1 protein levels were similar in enterocytes from young and aged rats. Immunohistochemical analysis of rat duodenal sections showed localization of PTHR1 in epithelial cells all along the villus with intense staining of BBM, BLM, and cytoplasm. The nuclei of these cells were reactive to the PTHR1 antiserum, but not all cells showed the same nuclear staining. The receptor was also detected in the mucosae lamina propria cells, but was absent in globets cells from epithelia. In aged rats, PTHR1 immunoreactivity was diffused in both membranes and cytoplasm and again, PTH receptor expression was lower than in young animals, while the cell nuclei showed a similar staining pattern than in young rats. Ligand binding to PTHR1 was performed in purified BLM. rPTH(1-34) displaced [I(125)]PTH(1-34) binding to PTHR1 in a concentration-dependent fashion. In both, aged (24 months) and young (3 months) rats, binding of [I(125)]PTH was characterized by a single class of high-affinity binding sites. The affinity of the receptor for PTH was not affected by age. The maximum number of specific PTHR1 binding sites was decreased by 30% in old animals. The results of this study suggest that age-related declines in PTH regulation of signal transduction pathways in rat enterocytes may be due, in part, to the loss of hormone receptors.  相似文献   

6.
PTH and PTHrP use the same G protein-coupled receptor, the PTH/PTHrP receptor (PTHR), to mediate their distinct biological actions. The extent to which the mechanisms by which the two ligands bind to the PTHR differ is unclear. We examined this question using several pharmacological and biophysical approaches. Kinetic dissociation and equilibrium binding assays revealed that the binding of [(125)I]PTHrP(1-36) to the PTHR was more sensitive to GTPgammaS (added to functionally uncouple PTHR-G protein complexes) than was the binding of [(125)I]PTH(1-34) ( approximately 75% maximal inhibition vs. approximately 20%). Fluorescence resonance energy transfer-based kinetic analyses revealed that PTHrP(1-36) bound to the PTHR more slowly and dissociated from it more rapidly than did PTH(1-34). The cAMP signaling response capacity of PTHrP(1-36) in cells decayed more rapidly than did that of PTH(1-34) (t(1/2) = approximately 1 vs. approximately 2 h). Divergent residue 5 in the ligand, Ile in PTH and His in PTHrP, was identified as a key determinant of the altered receptor-interaction responses exhibited by the two peptides. We conclude that whereas PTH and PTHrP bind similarly to the G protein-coupled PTHR conformation (RG), PTH has a greater capacity to bind to the G protein-uncoupled conformation (R(0)) and, hence, can produce cumulatively greater signaling responses (via R(0)-->RG isomerization) than can PTHrP. Such conformational selectivity may relate to the distinct modes by which PTH and PTHrP act biologically, endocrine vs. paracrine, and may help explain reported differences in the effects that the ligands have on calcium and bone metabolism when administered to humans.  相似文献   

7.
The octapeptide hormone angiotensin II (AngII) exerts a wide variety of cardiovascular effects through the activation of the AT1 receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein-coupled receptors, the AT1 receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. Here, we investigated the role of the first and fourth transmembrane domains (TMDs) in the formation of the binding pocket of the human AT1 receptor using the substituted-cysteine accessibility method. Each residue within the Phe-28(1.32)–Ile-53(1.57) fragment of TMD1 and Leu-143(4.40)–Phe-170(4.67) fragment of TMD4 was mutated, one at a time, to a cysteine. The resulting mutant receptors were expressed in COS-7 cells, which were subsequently treated with the charged sulfhydryl-specific alkylating agent methanethiosulfonate ethylammonium (MTSEA). This treatment led to a significant reduction in the binding affinity of TMD1 mutants M30C(1.34)-AT1 and T33C(1.37)-AT1 and TMD4 mutant V169C(4.66)-AT1. Although this reduction in binding of the TMD1 mutants was maintained when examined in a constitutively active receptor (N111G-AT1) background, we found that V169C(4.66)-AT1 remained unaffected when treated with MTSEA compared with untreated in this context. Moreover, the complete loss of binding observed for R167C(4.64)-AT1 was restored upon treatment with MTSEA. Our results suggest that the extracellular portion of TMD1, particularly residues Met-30(1.34) and Thr-33(1.37), as well as residues Arg-167(4.64) and Val-169(4.66) at the junction of TMD4 and the second extracellular loop, are important binding determinants within the AT1 receptor binding pocket but that these TMDs undergo very little movement, if at all, during the activation process.  相似文献   

8.
COOH-terminal cytoplasmic domains of G protein-coupled receptors (GPCRs) have been shown to carry determinants that control their cell surface localization, internalization, and recycling. In attempts to seek cellular proteins that mediate these processes of PTH/PTH-related protein receptor (PTHR), one of the class B GPCRs, we have found that Tctex-1, a 14kDa light chain of cytoplasmic dynein motor complex, interacts with the COOH-terminal tail of the receptor. A 34-amino-acid stretch of the receptor responsible for binding to Tctex-1 has a bipartite structure consisting of a motif previously implicated in binding of some proteins to Tctex-1 and a putative new consensus sequence. Site-directed mutations or a 20-amino-acid deletion in the bipartite consensus binding sequence abolished the association of the PTHR COOH terminus with Tctex-1 in vitro. A GFP-fused mutant PTHR impaired in binding to Tctex-1 expressed in MDCK cells showed a decreased rate of internalization in response to PTH compared to that of the wild type.  相似文献   

9.
Our goal is to elucidate the nature of the bimolecular interaction of parathyroid hormone (PTH) with its receptor, the parathyroid hormone receptor type-1 (PTHR1). In order to study this interaction, we are aiming to obtain a three-dimensional structure of the PTH-PTHR1 bimolecular complex. Due to the very low expression levels of endogenous PTHR1, a recombinant form is required for structural analysis. However, the extreme hydrophobicity of the transmembrane regions of PTHR1 makes heterologous expression of PTHR1 difficult. Therefore, we sought to express the N-terminal extracellular domain (N-ECD) of PTHR1, a region that plays a pivotal role in ligand interaction. We expressed the N-ECD in both bacterial (Escherichia coli) and insect (Sf9) cells. The form produced in E. coli, a fusion-protein with thioredoxin, is soluble. However, removal of the fusion partner from a partially purified preparation results in dramatic loss of yield of the N-ECD. Expression in Sf9 cells, however, facilitates purification of a soluble form of the N-ECD. Isothermal calorimetry demonstrates that this N-ECD binds PTH-(1-34), albeit with lower affinity than the full-length receptor. This report describes the expression and purification of milligram quantities of the isolated N-ECD of PTHR1. The receptor fragment retains the ability to bind its cognate peptide ligand, an important pre-requisite for subsequent structural studies.  相似文献   

10.
Ittner LM  Koller D  Muff R  Fischer JA  Born W 《Biochemistry》2005,44(15):5749-5754
The calcitonin receptor-like receptor (CLR) requires the associated receptor activity-modifying protein (RAMP)1 to reveal a calcitonin gene-related peptide (CGRP) receptor. Here, the subdomain of the CLR that associates with RAMP1 has been identified in chimeras between the CLR and the parathyroid hormone (PTH) receptor 1 (PTHR). The PTHR alone does not interact with RAMP1. RAMP1 requires the CLR for its transport to the cell surface. Thus, receptor-dependent RAMP1 delivery to the plasma membrane and coimmunoprecipitation from the cell surface were used as measures for receptor/RAMP1 interaction. Several chimeric CLR-PTHR included the N-terminal amino acids 23-60 of the CLR transported RAMP1 to the surface of COS-7 cells much like the intact CLR. Moreover, RAMP1 coimmunoprecipitated with these receptors from the cell surface. A CLR deletion mutant, consisting of the N-terminal extracellular domain, the first transmembrane domain, and the C-terminal intracellular region, revealed the same results. Cyclic AMP was stimulated by CGRP in CLR/RAMP1 expressing cells (58 +/- 19-fold, EC(50) = 0.12 +/- 0.03 nM) and by PTH-related protein in cells expressing the PTHR (50 +/- 10-fold, EC(50) = 0.25 +/- 0.03 nM) or a PTHR with the N-terminal amino acids 23-60 of the CLR (23 +/- 5-fold, EC(50) > 1000 nM). Other chimeric CLR-PTHR were inactive. In conclusion, structural elements in the extreme N-terminus of the CLR between amino acids 23-60 are required and sufficient for CLR/RAMP1 cotransport to the plasma membrane and heterodimerization.  相似文献   

11.
PTHR1 (type 1 parathyroid hormone receptors) mediate the effects of PTH (parathyroid hormone) on bone remodelling and plasma Ca2+ homoeostasis. PTH, via PTHR1, can stimulate both AC (adenylate cyclase) and increases in [Ca2+]i (cytosolic free Ca2+ concentration), although the relationship between the two responses differs between cell types. In the present paper, we review briefly the mechanisms that influence coupling of PTHR1 to different intracellular signalling proteins, including the G-proteins that stimulate AC or PLC (phospholipase C). Stimulus intensity, the ability of different PTH analogues to stabilize different receptor conformations ('stimulus trafficking'), and association of PTHR1 with scaffold proteins, notably NHERF1 and NHERF2 (Na+/H+ exchanger regulatory factor 1 and 2), contribute to defining the interactions between signalling proteins and PTHR1. In addition, cAMP itself can, via Epac (exchange protein directly activated by cAMP), PKA (protein kinase A) or by binding directly to IP3Rs [Ins(1,4,5)P3 receptors] regulate [Ca2+]i. Epac leads to activation of PLC?, PKA can phosphorylate and thereby increase the sensitivity of IP3Rs and L-type Ca2+ channels, and cAMP delivered at high concentrations to IP3R2 from AC6 increases the sensitivity of IP3Rs to InsP3. The diversity of these links between PTH and [Ca2+]i highlights the versatility of PTHR1. This versatility allows PTHR1 to evoke different responses when stimulated by each of its physiological ligands, PTH and PTH-related peptide, and it provides scope for development of ligands that selectively harness the anabolic effects of PTH for more effective treatment of osteoporosis.  相似文献   

12.
Parathyroid hormone (PTH) and PTH-related protein (PTHrP) are two related peptides that control calcium/phosphate homeostasis and bone development, respectively, through activation of the PTH/PTHrP receptor (PTH1R), a class B G protein-coupled receptor. Both peptides hold clinical interest for their capacities to stimulate bone formation. PTH and PTHrP display different selectivity for two distinct PTH1R conformations, but how their binding to the receptor differs is unclear. The high resolution crystal structure of PTHrP bound to the extracellular domain (ECD) of PTH1R reveals that PTHrP binds as an amphipathic α-helix to the same hydrophobic groove in the ECD as occupied by PTH, but in contrast to a straight, continuous PTH helix, the PTHrP helix is gently curved and C-terminally “unwound.” The receptor accommodates the altered binding modes by shifting the side chain conformations of two residues within the binding groove: Leu-41 and Ile-115, the former acting as a rotamer toggle switch to accommodate PTH/PTHrP sequence divergence, and the latter adapting to the PTHrP curvature. Binding studies performed with PTH/PTHrP hybrid ligands having reciprocal exchanges of residues involved in different contacts confirmed functional consequences for the altered interactions and enabled the design of altered PTH and PTHrP peptides that adopt the ECD-binding mode of the opposite peptide. Hybrid peptides that bound the ECD poorly were selective for the G protein-coupled PTH1R conformation. These results establish a molecular model for better understanding of how two biologically distinct ligands can act through a single receptor and provide a template for designing better PTH/PTHrP therapeutics.The parathyroid hormone receptor (PTH1R)3 is a class B G protein-coupled receptor (GPCR) that transduces signals from two related signaling molecules that have distinct functions in biology: parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) (Ref. 1; reviewed in Ref. 2). PTH is an 84-amino acid polypeptide endocrine hormone that is produced by the parathyroid glands and secreted into the circulation in response to low calcium levels (reviewed in Refs. 35), to act on bone and kidney cells and thus restore blood calcium to normal levels. In bone, PTH directly stimulates osteoblasts, resulting in bone formation (reviewed in Ref. 6), which in turn activate osteoclasts to induce bone resorption. In the kidney, PTH stimulates the reabsorption of filtered calcium, inhibits the reabsorption of phosphate, and stimulates the synthesis of 1,25-dihydroxyvitamin D3. The paradoxical anabolic/catabolic actions of PTH on bone can be modulated by exogenous PTH, and provide the molecular basis for the clinical use of PTH as an anabolic therapy for osteoporosis (7). Anabolic PTH therapy requires intermittent administration to minimize bone-resorptive effects, which predominate with sustained administration of PTH. PTHrP is a 141-amino acid polypeptide that was originally isolated as the factor responsible for humoral hypercalcemia of malignancy (811) and was subsequently shown to be a critical developmental paracrine factor that controls endochondral bone formation (Refs. 12, 13; reviewed in Ref. 14). PTHrP can also mediate bone-anabolic effects when administered to osteoporosis patients (15) and has been suggested to be more anabolic than PTH due to a differential effect on the coupled bone formation and resorptive responses (16).PTH and PTHrP are encoded by separate genes, each of which is found in vertebrate species ranging from fish to man. How PTH and PTHrP evolved to mediate distinct biological activities: calcium/phosphate homeostasis and tissue development, respectively, via actions upon a single receptor, remains unclear. Amino acid sequence homology is most apparent in the first 34-residue segments of the proteins, and N-terminal 34-residue peptide fragments of PTH and PTHrP are sufficient for high affinity binding to the PTH1R and are generally found to be equally potent for stimulating cAMP formation in PTH1R-expressing cells (1). The interaction of the (1–34)-length ligand with the PTH1R has been postulated to follow a “two-domain” model: residues within the approximate (1–14) segment interact with the 7-transmembrane (7-TM) helical domain embedded in the membrane, and residues within the approximate (15–34) segment interact with the N-terminal extracellular domain (ECD) of the receptor (17, 18). The 1–14 domains of PTH and PTHrP share eight amino acid sequence identities, reflecting a critical role in activating the receptor (18), while the 15–34 domains share only three amino acid identities, despite a critical role in imparting high affinity binding to the receptor.Recent studies suggest that PTH and PTHrP differ in their relative capacities to bind to two pharmacologically distinguishable high-affinity PTH1R conformations (1922). One conformation, termed R0, is stable in the presence of GTPγS, but presumably in the absence of G protein coupling, correlates with prolonged signaling responses in vitro and in vivo, and is bound preferentially by PTH-(1–34). The other conformation, termed RG, is sensitive to GTPγS addition, promoted by the overexpression of a high affinity variant of Gαs, and bound preferentially by PTHrP-(1–36). A mechanistic basis for the differing capacities of PTH and PTHrP ligands to bind to these altered PTH1R conformations is not clear at present, although, both the (1–14) and (15–34) portions of PTH contribute importantly to the capacity to bind stably to the proposed R0 conformation (19, 21, 22).We previously developed a method that allowed us to determine the high resolution crystal structure of recombinant PTH1R ECD in complex with the 15–34 synthetic fragment of PTH (23). The PTH1R ECD adopts a tertiary fold that is conserved among class B GPCR ECDs (2426), and the PTH(15–34)NH2 domain binds as a continuous and straight amphipathic α-helix to a hydrophobic groove in the ECD. Here we present the high resolution crystal structure of the PTHrP 12–34 fragment in complex with the PTH1R ECD, which reveals a distinct docking conformation toward the C terminus of the PTHrP peptide. Based on the structural differences, we designed hybrid PTH/PTHrP peptides exchanged for residues involved in altered ECD contacts; functional analyses of these peptides confirmed that the altered modes of binding indeed translate into functional consequences in terms of receptor affinity. These results provide critical insights into how PTH and PTHrP can act through a single receptor, and a structural model for designing better PTH/PTHrP analogs for treating osteoporosis.  相似文献   

13.
Accumulating evidence indicates that G protein-coupled receptors can assemble as dimers/oligomers but the role of this phenomenon in G protein coupling and signaling is not yet clear. We have used the purified leukotriene B4 receptor BLT2 as a model to investigate the capacity of receptor monomers and dimers to activate the adenylyl cyclase inhibitory Gi2 protein. For this, we overexpressed the recombinant receptor as inclusion bodies in the Escherichia coli prokaryotic system, using a human α5 integrin as a fusion partner. This strategy allowed the BLT2 as well as several other G protein-coupled receptors from different families to be produced and purified in large amounts. The BLT2 receptor was then successfully refolded to its native state, as measured by high-affinity LTB4 binding in the presence of the purified G protein Gαi2. The receptor dimer, in which the two protomers displayed a well defined parallel orientation as assessed by fluorescence resonance energy transfer, was then separated from the monomer. Using two methods of receptor-catalyzed guanosine 5′-3-O-(thio)triphosphate binding assay, we clearly demonstrated that monomeric BLT2 stimulates the purified Gαi2β1γ2 protein more efficiently than the dimer. These data suggest that assembly of two BLT2 protomers into a dimer results in the reduced ability to signal.  相似文献   

14.
The parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor (PTHR1) in cells of the renal proximal tubule mediates the reduction in membrane expression of the sodium-dependent P(i) co-transporters, NPT2a and NPT2c, and thus suppresses the re-uptake of P(i) from the filtrate. In most cell types, the liganded PTHR1 activates Gα(S)/adenylyl cyclase/cAMP/PKA (cAMP/PKA) and Gα(q/11)/phospholipase C/phosphatidylinositol 1,4,5-trisphosphate (IP(3))/Ca(2+)/PKC (IP(3)/PKC) signaling pathways, but the relative roles of each pathway in mediating renal regulation P(i) transport remain uncertain. We therefore explored the signaling mechanisms involved in PTH-dependent regulation of NPT2a function using potent, long-acting PTH analogs, M-PTH(1-28) (where M = Ala(1,12), Aib(3), Gln(10), Har(11), Trp(14), and Arg(19)) and its position 1-modified variant, Trp(1)-M-PTH(1-28), designed to be phospholipase C-deficient. In cell-based assays, both M-PTH(1-28) and Trp(1)-M-PTH(1-28) exhibited potent and prolonged cAMP responses, whereas only M-PTH(1-28) was effective in inducing IP(3) and intracellular calcium responses. In opossum kidney cells, a clonal cell line in which the PTHR1 and NPT2a are endogenously expressed, M-PTH(1-28) and Trp(1)-M-PTH(1-28) each induced reductions in (32)P uptake, and these responses persisted for more than 24 h after ligand wash-out, whereas that of PTH(1-34) was terminated by 4 h. When injected into wild-type mice, both M-modified PTH analogs induced prolonged reductions in blood P(i) levels and commensurate reductions in NPT2a expression in the renal brush border membrane. Our findings suggest that the acute down-regulation of NPT2a expression by PTH ligands involves mainly the cAMP/PKA signaling pathway and are thus consistent with the elevated blood P(i) levels seen in pseudohypoparathyroid patients, in whom Gα(s)-mediated signaling in renal proximal tubule cells is defective.  相似文献   

15.
The important roles of a nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) are widely accepted in various biological processes as well as metabolic diseases. Despite the worldwide quest for pharmaceutical manipulation of PPARγ activity through the ligand-binding domain, very little information about the activation mechanism of the N-terminal activation function-1 (AF-1) domain. Here, we demonstrate the molecular and structural basis of the phosphorylation-dependent regulation of PPARγ activity by a peptidyl-prolyl isomerase, Pin1. Pin1 interacts with the phosphorylated AF-1 domain, thereby inhibiting the polyubiquitination of PPARγ. The interaction and inhibition are dependent upon the WW domain of Pin1 but are independent of peptidyl-prolyl cis/trans-isomerase activity. Gene knockdown experiments revealed that Pin1 inhibits the PPARγ-dependent gene expression in THP-1 macrophage-like cells. Thus, our results suggest that Pin1 regulates macrophage function through the direct binding to the phosphorylated AF-1 domain of PPARγ.  相似文献   

16.
The recovery of PTH receptor (PTHR) function after acute homologous receptor desensitization and down-regulation in bone and kidney cells has been attributed to receptor recycling. To determine the role of receptor dephosphorylation in PTHR recycling, we performed morphological and functional assays on human embryonic kidney 293 cells stably expressing wild-type (wt) or mutant PTHRs. Confocal microscopy and ligand binding assays revealed that the wt PTHR is rapidly recycled back to the plasma membrane after removal of the agonist. Receptors that were engineered to either lack the sites of phosphorylation or to resemble constitutively phosphorylated receptors were able to recycle back to the plasma membrane with the same kinetics as the wt PTHR. The PTHR was found to be dephosphorylated by an enzyme apparently distinct from protein phosphatases 1 or 2A. The PTHR and beta-arrestin-2-green fluorescent protein (GFP) were found to stably colocalize during PTHR internalization, whereas after agonist removal and during receptor recycling, the colocalization slowly disappeared. Experiments using phosphorylation-deficient PTHRs and a dominant-negative form of beta-arrestin showed that beta-arrestin does not regulate the efficiency of PTHR recycling. These studies indicate that, unlike many G protein-coupled receptors, PTHR recycling does not require receptor dephosphorylation or its dissociation from beta-arrestin.  相似文献   

17.
Activation of G protein-coupled receptors by agonists leads to receptor phosphorylation, internalization of ligand receptor complexes, and desensitization of hormonal response. The role of parathyroid hormone (PTH) receptor 1, PTHR1, is well characterized and known to regulate cellular responsiveness in vitro. However, the role of PTHR1 phosphorylation in bone formation is yet to be investigated. We have previously demonstrated that impaired internalization and sustained cAMP stimulation of phosphorylation-deficient (PD) PTHR1 leads to exaggerated cAMP response to subcutaneous PTH infusion in a PD knockin mouse model. To understand the physiological role of receptor internalization on PTH bone anabolic action, we examined bone parameters of wild-type (WT) and PD knockin female and male mice following PTH treatment. We found a decrease in total and diaphyseal bone mineral density in female but not in male PD mice compared with WT controls at 3-6 mo of age. This effect was attenuated at older age groups. PTH administration displayed increased bone volume and trabecular thickness in the vertebrae and distal femora of both WT and PD animals. These results suggest that PTHR1 phosphorylation does not play a major role in the anabolic action of PTH.  相似文献   

18.
Parathyroid hormone (PTH) promotes osteoblast survival through a mechanism that depends on cAMP-mediated signaling downstream of the G protein-coupled receptor PTHR1. We present evidence herein that PTH-induced survival signaling is impaired in cells lacking connexin43 (Cx43). Thus, expression of functional Cx43 dominant negative proteins or Cx43 knock-down abolished the expression of cAMP-target genes and anti-apoptosis induced by PTH in osteoblastic cells. In contrast, cells lacking Cx43 were still responsive to the stable cAMP analog dibutyril-cAMP. PTH survival signaling was rescued by transfecting wild type Cx43 or a truncated dominant negative mutant of βarrestin, a PTHR1-interacting molecule that limits cAMP signaling. On the other hand, Cx43 mutants lacking the cytoplasmic domain (Cx43(Δ245)) or unable to be phosphorylated at serine 368 (Cx43(S368A)), a residue crucial for Cx43 trafficking and function, failed to restore the anti-apoptotic effect of PTH in Cx43-deficient cells. In addition, overexpression of wild type βarrestin abrogated PTH survival signaling in Cx43-expressing cells. Moreover, βarrestin physically associated in vivo to wild type Cx43 and to a lesser extent to Cx43(S368A) ; and this association and the phosphorylation of Cx43 in serine 368 were reduced by PTH. Furthermore, induction of Cx43(S368) phosphorylation or overexpression of wild type Cx43, but not Cx43(Δ245) or Cx43(S368A) , reduced the interaction between βarrestin and the PTHR1. These studies demonstrate that βarrestin is a novel Cx43-interacting protein and suggest that, by sequestering βarrestin, Cx43 facilitates cAMP signaling, thereby exerting a permissive role on osteoblast survival induced by PTH.  相似文献   

19.
Plants induce immune responses against fungal pathogens by recognition of chitin, which is a component of the fungal cell wall. Recent studies have revealed that LysM receptor-like kinase 1/chitin elicitor receptor kinase 1 (LysM RLK1/CERK1) is a critical component for the immune responses to chitin in Arabidopsis thaliana. However, the molecular mechanism of the chitin recognition by LysM RLK1 still remains unknown. Here, we present the first evidence for direct binding of LysM RLK1 to chitin. We expressed LysM RLK1 fused with yeast-enhanced green fluorescent protein (LysM RLK1-yEGFP) in yeast cells. Binding studies using the solubilized LysM RLK1-yEGFP and several insoluble polysaccharides having similar structures showed that LysM RLK1-yEGFP specifically binds to chitin. Subsequently, the fluorescence microscopic observation of the solubilized LysM RLK1-yEGFP binding to chitin beads revealed that the binding was saturable and had a high affinity, with a Kd of ∼82 nm. This binding was competed by the addition of soluble glycol chitin or high concentration of chitin oligosaccharides having 4–8 residues of N-acetyl glucosamine. However, the competition of these chitin oligosaccharides is weaker than that of glycol chitin. These data suggest that LysM RLK1 has a higher affinity for chitin having a longer residue of N-acetyl glucosamine. We also found that LysM RLK1-yEGFP was autophosphorylated in vitro and that chitin does not affect the phosphorylation of LysM RLK1-yEGFP. Our results provide a new dimension to chitin elicitor perception in plants.  相似文献   

20.
The sphingosine 1-phosphate receptor type 1 (S1P1) is important for the maintenance of lymphocyte circulation. S1P1 receptor surface expression on lymphocytes is critical for their egress from thymus and lymph nodes. Premature activation-induced internalization of the S1P1 receptor in lymphoid organs, mediated either by pharmacological agonists or by inhibition of the S1P degrading enzyme S1P-lyase, blocks lymphocyte egress and induces lymphopenia in blood and lymph. Regulation of S1P1 receptor surface expression is therefore a promising way to control adaptive immunity. Hence, we analyzed potential cellular targets for their ability to alter S1P1 receptor surface expression without stimulation. The initial observation that preincubation of mouse splenocytes with its natural analog sphingosine was sufficient to block TranswellTM chemotaxis to S1P directed subsequent investigations to the underlying mechanism. Sphingosine is known to inhibit protein kinase C (PKC), and PKC inhibition with nanomolar concentrations of staurosporine, calphostin C, and GF109203X down-regulated surface expression of S1P1 but not S1P4 in transfected rat hepatoma HTC4 cells. The PKC activator phorbol 12-myristate 13-acetate partially rescued FTY720-induced down-regulation of the S1P1 receptor, linking PKC activation with S1P1 receptor surface expression. FTY720, but not FTY720 phosphate, efficiently inhibited PKC. Cell-based efficacy was obvious with 10 nm FTY720, and in vivo treatment of mice with 0.3–3 mg/kg/day FTY720 showed increasing concentration-dependent effectiveness. PKC inhibition therefore may contribute to lymphopenia by down-regulating S1P1 receptor cell surface expression independently from its activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号