首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1996篇
  免费   16篇
  2023年   3篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   4篇
  2018年   10篇
  2017年   4篇
  2016年   7篇
  2015年   3篇
  2014年   11篇
  2013年   52篇
  2012年   253篇
  2011年   812篇
  2010年   336篇
  2009年   414篇
  2008年   35篇
  2007年   17篇
  2006年   10篇
  2005年   10篇
  2004年   2篇
  2003年   5篇
  2002年   4篇
  1999年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1950年   1篇
排序方式: 共有2012条查询结果,搜索用时 0 毫秒
1.
2.
Alternative splicing of 3′-terminal exons plays a critical role in gene expression by producing mRNA with distinct 3′-untranslated regions that regulate their fate and their expression. The Xenopus α-tropomyosin pre-mRNA possesses a composite internal/3′-terminal exon (exon 9A9′) that is differentially processed depending on the embryonic tissue. Exon 9A9′ is repressed in non-muscle tissue by the polypyrimidine tract binding protein, whereas it is selected as a 3′-terminal or internal exon in myotomal cells and adult striated muscles, respectively. We report here the identification of an intronic regulatory element, designated the upstream terminal exon enhancer (UTE), that is required for the specific usage of exon 9A9′ as a 3′-terminal exon in the myotome. We demonstrate that polypyrimidine tract binding protein prevents the activity of UTE in non-muscle cells, whereas a subclass of serine/arginine rich (SR) proteins promotes the selection of exon 9A9′ in a UTE-dependent way. Morpholino-targeted blocking of UTE in the embryo strongly reduced the inclusion of exon 9A9′ as a 3′-terminal exon in the endogenous mRNA, demonstrating the function of UTE under physiological circumstances. This strategy allowed us to reveal a splicing pathway that generates a mRNA with no in frame stop codon and whose steady-state level is translation-dependent. This result suggests that a non-stop decay mechanism participates in the strict control of the 3′-end processing of the α-tropomyosin pre-mRNA.  相似文献   
3.
The 10-subunit RNA exosome is involved in a large number of diverse RNA processing and degradation events in eukaryotes. These reactions are carried out by the single catalytic subunit, Rrp44p/Dis3p, which is composed of three parts that are conserved throughout eukaryotes. The exosome is named for the 3′ to 5′ exoribonuclease activity provided by a large C-terminal region of the Rrp44p subunit that resembles other exoribonucleases. Rrp44p also contains an endoribonuclease domain. Finally, the very N-terminus of Rrp44p contains three Cys residues (CR3 motif) that are conserved in many eukaryotes but have no known function. These three conserved Cys residues cluster with a previously unrecognized conserved His residue in what resembles a metal-ion-binding site. Genetic and biochemical data show that this CR3 motif affects both endo- and exonuclease activity in vivo and both the nuclear and cytoplasmic exosome, as well as the ability of Rrp44p to associate with the other exosome subunits. These data provide the first direct evidence that the exosome-Rrp44p interaction is functionally important and also provides a molecular explanation for the functional defects when the conserved Cys residues are mutated.  相似文献   
4.
5.
6.
7.
Zampieri, Antonio (Palo Alto Medical Research Foundation, Palo Alto, Calif.), and Joseph Greenberg. Cross-resistance relationships in Escherichia coli between ultraviolet radiation and nitrous acid. J. Bacteriol. 87:1094-1099. 1964.-A number of radiosensitive and radioresistant strains of Escherichia coli were tested for sensitivity to injury by nitrous acid. All the radioresistant strains, including 13 radioresistant mutants of strain S, B/r, Bpr5, and K-12, were found to be significantly more resistant to nitrous acid than were the radiosensitive strains S and B. The radioresistant mutants of strain S, Bpr5, and K-12 displayed similar responses to nitrous acid and were less resistant than was strain B/r. Strains B and S were indistinguishable on the basis of nitrous acid sensitivity. The survival curves of all strains examined were similar in shape to corresponding survival curves after ultraviolet radiation. The sensitivity to nitrous acid of the radiosensitive strains S and B, but not that of the radioresistant strains, was found to be greater on Tryptone medium than on Penassay medium, and greater on Penassay medium than on glucose-salts medium. Between 2 and 3% of the strain S survivors of nitrous acid treatment were radioresistant; 46 such radioresistant mutants were isolated and found to be identical in cross-resistance pattern with radioresistant types (R(3), R(4), or R(6)) previously described. The proportions in which these radioresistant types were found to occur were similar to those observed after selection by other radiomimetic agents.  相似文献   
8.
9.
Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, 1-aminocyclopropane-1-carboxylate deaminase activity and production of siderophores and phytohormones, can be assessed as plant growth promotion traits. Our aim was to evaluate the effects of nitrogen fixing and indole-3-acetic acid (IAA) producing endophytes in two Oryza sativa cultivars (Baldo and Vialone Nano). Three bacteria, Herbaspirillum huttiense RCA24, Enterobacter asburiae RCA23 and Staphylococcus sp. 377, producing different IAA levels, were tested for their ability to enhance nifH gene expression and nitrogenase activity in Enterobacter cloacae RCA25. Results showed that H. huttiense RCA24 performed best. Improvement in nitrogen fixation and changes in physiological parameters such as chlorophyll, nitrogen content and shoot dry weight were observed for plants co-inoculated with strains RCA25 and RCA24 in a 10:1 ratio. Based on confocal laser scanning microscopy analysis, strain RCA24 was the best colonizer of the root interior and the only IAA producer located in the same root niche occupied by RCA25 cells. This work shows that the choice of a bio-inoculum having the right composition is one of the key aspects to be considered for the inoculation of a specific host plant cultivar with microbial consortia.  相似文献   
10.
Terpenes are a diverse group of plant secondary metabolites that mediate a plethora of ecological interactions in many plant species. Despite increasing research into the genetic control of important adaptive traits in some plant species, the genetic control of terpenes in forest tree species is still relatively poorly studied. In this study, we use quantitative genetic and quantitative trait loci (QTL) analysis to investigate the genetic control of foliar terpenes in an ecologically and commercially important eucalypt species, Eucalyptus globulus. We show a moderate to high within-family broad-sense heritability and significant genetic basis to the variation in 14 of the 16 terpenes assayed. This is the first report of QTL for terpenes in this species. Eleven QTL influenced the terpenes overall. One QTL on linkage group 6 affected six of the seven different sesquiterpenes assayed (plus one monoterpene), which, in combination with highly significant correlations between these compounds, argues that their variation is influenced by a QTL with pleiotropic effect early in the biosynthetic pathway. We examine the homology of these QTL to those found in a closely related eucalypt, Eucalyptus nitens, and provide evidence that both common and unique QTL influence terpene levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号