首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To better understand genetic events that accompany allopolyploid formation, we studied the rate and time of elimination of eight DNA sequences in F1 hybrids and newly formed allopolyploids of Aegilops and Triticum. In total, 35 interspecific and intergeneric F1 hybrids and 22 derived allopolyploids were analyzed and compared with their direct parental plants. The studied sequences exist in all the diploid species of the Triticeae but occur in only one genome, either in one homologous pair (chromosome-specific sequences [CSSs]) or in several pairs of the same genome (genome-specific sequences [GSSs]), in the polyploid wheats. It was found that rapid elimination of CSSs and GSSs is a general phenomenon in newly synthesized allopolyploids. Elimination of GSSs was already initiated in F1 plants and was completed in the second or third allopolyploid generation, whereas elimination of CSSs started in the first allopolyploid generation and was completed in the second or third generation. Sequence elimination started earlier in allopolyploids whose genome constitution was analogous to natural polyploids compared with allopolyploids that do not occur in nature. Elimination is a nonrandom and reproducible event whose direction was determined by the genomic combination of the hybrid or the allopolyploid. It was not affected by the genotype of the parental plants, by their cytoplasm, or by the ploidy level, and it did not result from intergenomic recombination. Allopolyploidy-induced sequence elimination occurred in a sizable fraction of the genome and in sequences that were apparently noncoding. This finding suggests a role in augmenting the differentiation of homoeologous chromosomes at the polyploid level, thereby providing the physical basis for the diploid-like meiotic behavior of newly formed allopolyploids. In our view, this rapid genome adjustment may have contributed to the successful establishment of newly formed allopolyploids as new species.  相似文献   

2.
Recent molecular studies in the genera Aegilops and Triticum showed that allopolyploidization (interspecific or intergeneric hybridization followed by chromosome doubling) generated rapid elimination of low-copy or high-copy, non-coding and coding DNA sequences. The aims of this work were to determine the amount of nuclear DNA in allopolyploid species of the group and to see to what extent elimination of DNA sequences affected genome size. Nuclear DNA amount was determined by the flow cytometry method in 27 natural allopolyploid species (most of which were represented by several lines and each line by several plants) as well as 14 newly synthesized allopolyploids (each represented by several plants) and their parental plants. Very small intraspecific variation in DNA amount was found between lines of allopolyploid species collected from different habitats or between wild and domesticated forms of allopolyploid wheat. In contrast to the constancy in nuclear DNA amount at the intraspecific level, there are significant differences in genome size between the various allopolyploid species, at both the tetraploid and hexaploid levels. In most allopolyploids nuclear DNA amount was significantly less than the sum of DNA amounts of the parental species. Newly synthesized allopolyploids exhibited a similar decrease in nuclear DNA amount in the first generation, indicating that genome downsizing occurs during and (or) immediately after the formation of the allopolyploids and that there are no further changes in genome size during the life of the allopolyploids. Phylogenetic considerations of the origin of the B genome of allopolyploid wheat, based on nuclear DNA amount, are discussed.  相似文献   

3.
Allopolyploidy--a shaping force in the evolution of wheat genomes   总被引:2,自引:0,他引:2  
  相似文献   

4.
5.
Interspecific or intergeneric hybridization, followed by chromosome doubling, can lead to the formation of new allopolyploid species. Recent studies indicate that allopolyploid formation is associated with genetic and epigenetic changes. Despite these studies, it is not yet clear whether the C value of an allopolyploid is the sum of its diploid parents. To address this question, six newly synthesized wheat allopolyploids and their parental plants were investigated. It was found that allopolyploids have a genome size significantly smaller than the expected value. The reduction of the nuclear genome size in the synthetic allotetraploids and allohexaploids was 2 pg DNA at 2C. It was also found that changes in the genome size already existed in the first generation amphiploids, indicating that the change was a rapid event. There was no difference in the reduction of nuclear genome size between the allotetraploid and the allohexaploid. These data clearly show that genome differentiation in allopolyploids was not related to the ploidy level. The data obtained clearly suggested that the nonadditive change in genome size that occurred during allopolyploidization may represent a preprogrammed adaptive response to genomic stress caused by hybridization and allopolyploidy, which serves to stabilize polyploid genomes.  相似文献   

6.
不同分类群的异源多倍体在二倍化过程中, 正反交序列消除往往表现出不同特征, 暗示了在不同物种中, 核质互作在多倍体进化过程的作用不同。利用13对EcoRI-NN/MseI-NNN选择性引物, 对野黄瓜Cucumis hystrix (2n=24)与栽培黄瓜C. sativus (2n=14)的正反交F1、异源四倍体及二倍体亲本DNA进行AFLP分析。结果表明: 杂交后代基因组的杂合性诱发了F1与异源四倍体广泛的序列消除; 细胞质可能会影响部分亲本序列消除的频率, 但是正反交在序列消除频率上差异不显著, 并且在序列消除时间(均始于F1代)及消除类型上也表现出一致性, 表明核质互作并不是影响序列消除的主要因素; 实验还发现, 正反交不能影响序列的倾向性丢失, 染色体数少的黄瓜条带易发生丢失。  相似文献   

7.
Bento M  Gustafson JP  Viegas W  Silva M 《Génome》2011,54(3):175-183
Polyploidization is one of the major driving forces in plant evolution and is extremely relevant to speciation and diversity creation. Polyploidization leads to a myriad of genetic and epigenetic alterations that ultimately generate plants and species with increased genome plasticity. Polyploids are the result of the fusion of two or more genomes into the same nucleus and can be classified as allopolyploids (different genomes) or autopolyploids (same genome). Triticeae synthetic allopolyploid species are excellent models to study polyploids evolution, particularly the wheat-rye hybrid triticale, which includes various ploidy levels and genome combinations. In this review, we reanalyze data concerning genomic analysis of octoploid and hexaploid triticale and different synthetic wheat hybrids, in comparison with other polyploid species. This analysis reveals high levels of genomic restructuring events in triticale and wheat hybrids, namely major parental band disappearance and the appearance of novel bands. Furthermore, the data shows that restructuring depends on parental genomes, ploidy level, and sequence type (repetitive, low copy, and (or) coding); is markedly different after wide hybridization or genome doubling; and affects preferentially the larger parental genome. The shared role of genetic and epigenetic modifications in parental genome size homogenization, diploidization establishment, and stabilization of polyploid species is discussed.  相似文献   

8.
F P Han  G Fedak  T Ouellet  B Liu 《Génome》2003,46(4):716-723
Allopolyploidy is preponderant in plants, which often leads to speciation. Some recent studies indicate that the process of wide hybridization and (or) genome doubling may induce rapid and extensive genetic and epigenetic changes in some plant species and genomic stasis in others. To further study this phenomenon, we analyzed three sets of synthetic allopolyploids in the Triticeae by restriction fragment length polymorphism (RFLP) using a set of expressed sequence tags (ESTs) and retrotransposons as probes. It was found that 40-64.7% of the ESTs detected genomic changes in the three sets of allopolyploids. Changes included disappearance of parental hybridization fragment(s), simultaneous appearance of novel fragment(s) and loss of parental fragment(s), and appearance of novel fragment(s). Some of the changes occurred as early as in the F1 hybrid, whereas others occurred only after allopolyploid formation. Probing with retrotransposons revealed numerous examples of disappearance of sequences. No gross chromosome structural changes or physical elimination of sequences were found. It is suggested that DNA methylation and localized recombination at the DNA level were probably the main causes for the genomic changes. Possible implications of the genomic changes for allopolyploid genome evolution are discussed.  相似文献   

9.
Allopolyploidy is a prominent mode of speciation in higher plants. Due to the coexistence of closely related genomes, a successful allopolyploid must have the ability to invoke and maintain diploid-like behavior, both cytologically and genetically. Recent studies on natural and synthetic allopolyploids have raised many discrepancies. Most species have displayed non-Mendelian behavior in the allopolyploids, but others have not. Some species have demonstrated rapid genome changes following allopolyploid formation, while others have conserved progenitor genomes. Some have displayed directed, non-random genome changes, whereas others have shown random changes. Some of the genomic changes have appeared in the F1 hybrids, which have been attributed to the union of gametes from different progenitors, while other changes have occurred during or after genome doubling. Although these observations provide significant novel insights into the evolution of allopolyploids, the overall mechanisms of the event are still elusive. It appears that both genetic and epigenetic operations are involved in the diploidization process of allopolyploids. Overall, genetic and epigenetic variations are often associated with the activities of repetitive sequences and transposon elements. Specifically, genomic sequence elimination and chromosome rearrangement are probably the major forces guiding cytological diploidization. Gene non-functionalization, sub-functionalization, neo-functionalization, as well as other kinds of epigenetic modifications, are likely the leading factors promoting genetic diploidization.  相似文献   

10.
The genomic content of the subtelomeric repeated sequences Spelt1 and Spelt52 was studied by dot, Southern, and in situ hybridization in 11 newly synthesized amphiploids of Aegilops and Triticum, and data were compared with the parental plants. Spelt1 had reduced copy numbers in the first generation of three synthetic amphiploids, but two others did not change; Spelt52 was amplified in nine amphiploids and did not change in two. In the second allopolyploid generation, Spelt1 copy number did not change, whereas there was amplification of Spelt52 in some allopolyploids and decreases in others. Neither allopolyploidy level nor the direction of the cross affected the patterns of change in the newly synthesized amphiploids. Changes did not result from intergenomic recombination because similar alterations were noticed in allopolyploids with and without Ph1, a gene that suppresses homoeologous pairing. No differences in Spelt1 and Spelt52 tandem organization were found by Southern hybridization. The significance of these data are discussed in relation to the establishment of newly formed allopolyploids.  相似文献   

11.
Polyploid formation in cotton is not accompanied by rapid genomic changes.   总被引:32,自引:0,他引:32  
Recent work has demonstrated that allopolyploid speciation in plants may be associated with non-Mendelian genomic changes in the early generations following polyploid synthesis. To address the question of whether rapid genomic changes also occur in allopolyploid cotton (Gossypium) species, amplified fragment length polymorphism (AFLP) analysis was performed to evaluate nine sets of newly synthesized allotetraploid and allohexaploid plants, their parents, and the selfed progeny from colchicine-doubled synthetics. Using both methylation-sensitive and methylation-insensitive enzymes, the extent of fragment additivity in newly combined genomes was ascertained for a total of approximately 22,000 genomic loci. Fragment additivity was observed in nearly all cases, with the few exceptions most likely reflecting parental heterozygosity or experimental error. In addition, genomic Southern analysis on six sets of synthetic allopolyploids probed with five retrotransposons also revealed complete additivity. Because no alterations were observed using methylation-sensitive isoschizomers, epigenetic changes following polyploid synthesis were also minimal. These indications of genomic additivity and epigenetic stasis during allopolyploid formation provide a contrast to recent evidence from several model plant allopolyploids, most notably wheat and Brassica, where rapid and unexplained genomic changes have been reported. In addition, the data contrast with evidence from repetitive DNAs in Gossypium, some of which are subject to non-Mendelian molecular evolutionary phenomena in extant polyploids. These contrasts indicate polyploid speciation in plants is accompanied by a diverse array of molecular evolutionary phenomena, which will vary among both genomic constituents and taxa.  相似文献   

12.
13.
14.
The Dactylorhiza incarnata/maculata complex (Orchidaceae) was used as a model system to understand genetic differentiation processes in a naturally occurring polyploid complex with much of ongoing diversification and wide distribution in recently glaciated areas in northern Europe. Data were obtained for 12 hypervariable regions in the plastid DNA genome. A total of 166 haplotypes were found in a sample of 1099 plants. Allopolyploid taxa have inherited their plastid genomes from D. maculata s.l. Overall haplotype diversity of the combined group of allopolyploid taxa was comparable to that of maternal D. maculata s.l., but populations of allopolyploids were also more strongly differentiated from each other and contained lower numbers of haplotypes than populations of D. maculata s.l. In addition to haplotypes found in extant D. maculata s.l., the allopolyploids also contained several distinct and widespread haplotypes that were not found in any of the parental lineages. Some of these haplotypes were shared between widespread allopolyploids. Divergent allopolyploids with small distributions did not seem to originate from local polyploidization events, but rather as segregates of already existing allopolyploids. Genetic diversification of allopolyploid Dactylorhiza is the result of repeated polyploid formation, secondary hybridization and introgression between already existing polyploids and extant representatives of parental lineages, hybridization between independently derived polyploid lineages, and phyletic diversification in the group of allopolyploids. Although some polyploid taxa must have evolved after the last glaciation, genetic material from the parental lineages has been transferred continuously for longer periods of time. This combination of processes may explain the taxonomic complexity encountered in Dactylorhiza and other polyploid complexes distributed in previously glaciated parts of Europe.  相似文献   

15.
The merger of two or more divergent genomes within an allopolyploid nucleus can facilitate speciation and adaptive evolution in flowering plants. Widespread changes to gene expression have been shown to result from interspecific hybridisation and polyploidy in a number of plant species, and attention has now shifted to determining the epigenetic processes that drive these changes. We present here an analysis of cytosine methylation patterns in triploid F(1) Senecio (ragwort) hybrids and their allohexaploid derivatives. We observe that, in common with similar studies in Arabidopsis, Spartina and Triticum, a small but significant proportion of loci display nonadditive methylation in the hybrids, largely resulting from interspecific hybridisation. Despite this, genome duplication results in a secondary effect on methylation, with reversion to additivity at some loci and novel methylation status at others. We also observe differences in methylation state between different allopolyploid generations, predominantly in cases of additive methylation with regard to which parental methylation state is dominant. These changes to methylation state in both F(1) triploids and their allohexaploid derivatives largely mirror the overall patterns of nonadditive gene expression observed in our previous microarray analyses and may play a causative role in generating those expression changes. These similar global changes to DNA methylation resulting from hybridisation and genome duplication may serve as a source of epigenetic variation in natural populations, facilitating adaptive evolution. Our observations that methylation state can also vary between different generations of polyploid hybrids suggests that newly formed allopolyploid species may display a high degree of epigenetic diversity upon which natural selection can act.  相似文献   

16.
Polyploidy has been found to be very common inplants. Comparative genome studies have revealed thateven species that were considered as typical diploidsincluding maize[1], soybean[2], Arabidopsis[3] have un-dergone polyploidization during their evolution. Ge-nome polyploidization is a major force of evolutionthat affects genome size and gene copy number[4,5]. Polyploids can be formed via the duplication ofgenomes, either of the same genomes (autopolyploid)or of diverged genomes with homoe…  相似文献   

17.
Genetic and epigenetic interactions in allopolyploid plants   总被引:34,自引:0,他引:34  
Allopolyploid plants are hybrids that contain two copies of the genome from each parent. Whereas wild and cultivated allopolyploids are well adapted, man-made allopolyploids are typically unstable, displaying homeotic transformation and lethality as well as chromosomal rearrangements and changes in the number and distribution of repeated DNA sequences within heterochromatin. Large increases in the length of some chromosomes has been documented in allopolyploid hybrids and could be caused by the activation of dormant retrotransposons, as shown to be the case in marsupial hybrids. Synthetic (man-made) allotetraploids of Arabidopsis exhibit rapid changes in gene regulation, including gene silencing. These regulatory abnormalities could derive from ploidy changes and/or incompatible interactions between parental genomes, although comparison of auto- and allopolyploids suggests that intergenomic incompatibilities play the major role. Models to explain intergenomic incompatibilities incorporate both genetic and epigenetic mechanisms. In one model, the activation of heterochromatic transposons (McClintock's genomic shock) may lead to widespread perturbation of gene expression, perhaps by a silencing interaction between activated transposons and euchromatic genes. Qualitatively similar responses, of lesser intensity, may occur in intraspecific hybrids. Therefore, insight into genome function gained from the study of allopolyploidy may be applicable to hybrids of any type and may even elucidate positive interactions, such as those responsible for hybrid vigor.  相似文献   

18.
To study the consequences of hybridization and genome duplication on polyploid genome evolution and adaptation, we used independently formed hybrids (Spartina x townsendii and Spartina x neyrautii) that originated from natural crosses between Spartina alterniflora, an American introduced species, and the European native Spartina maritima. The hybrid from England, S. x townsendii, gave rise to the invasive allopolyploid, salt-marsh species, Spartina anglica. Recent studies indicated that allopolyploid speciation may be associated with rapid genetic and epigenetic changes. To assess this in Spartina, we performed AFLP (amplified fragment length polymorphism) and MSAP (methylation sensitive amplification polymorphism) on young hybrids and the allopolyploid. By comparing the subgenomes in the hybrids and the allopolyploid to the parental species, we inferred structural changes that arose repeatedly in the two independently formed hybrids. Surprisingly, 30% of the parental methylation patterns are altered in the hybrids and the allopolyploid. This high level of epigenetic regulation might explain the morphological plasticity of Spartina anglica and its larger ecological amplitude. Hybridization rather than genome doubling seems to have triggered most of the methylation changes observed in Spartina anglica.  相似文献   

19.
20.
Wang JB  Wang C  Shi SH  Zhong Y 《Hereditas》2000,133(1):1-7
The genus Aegilops comprises approximately 25 diploid, tetraploid and hexaploid species, in which the genome types of all allopolyploids involve either U or D genome, or both of them. The internal transcribed spacer (ITS) region of 18S-26S nuclear ribosomal DNA (rDNA) from 11 allopolyploid species and 7 related diploid species in the genus were directly sequenced by pooled PCR products. Phylogenetic analyses for tracing evolutionary patterns of parental rDNA in allopolyploid species were performed using the neighbor-joining method. The D genome involved tree included three clades (CC-DDCC, DDMM-DDMMSS-DDMMUU, and MM-MhMh-DDNN), but did not include Ae. squarrosa (DD). It indicated that the rDNA of ancestral D genome had been somewhat differentiated in allopolyploids. The U genome involved tree showed that the allopolyploids and their common ancestor, Ae. umbellulata, formed a clade, suggesting that rDNA in UUMM and UUSS genomes has been homogenizing toward that of ancestral U genome. The phylogenetic pattern of U genome based on ITS sequences also supported the "pivotal-differential" hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号