首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《Cell calcium》2010,47(5-6):313-322
In vascular smooth muscle cells, Ca2+ release via IP3 receptors (IP3R) and ryanodine receptors (RyR) on the sarcoplasmic reticulum (SR) Ca2+ store contributes significantly to the regulation of cellular events such as gene regulation, growth and contraction. Ca2+ release from various regions of a structurally compartmentalized SR, it is proposed, may selectively activate different cellular functions. Multiple SR compartments with various receptor arrangements are proposed also to exist at different stages of smooth muscle development and in proliferative vascular diseases such as atherosclerosis. The conclusions on SR organization have been derived largely from the outcome of functional studies. This study addresses whether the SR Ca2+ store is a single continuous interconnected network or multiple separate Ca2+ pools in single vascular myocytes. To do this, the consequences of depletion of the SR in small restricted regions on the Ca2+ available throughout the store was examined using localized photolysis of caged-IP3 and focal application of ryanodine in guinea-pig voltage-clamped single portal vein myocytes. From one small site on the cell, the entire SR could be depleted via either RyR or IP3R. The entire SR could also be refilled from one small site on the cell. The results suggest a single luminally continuous SR exists. However, the opening of IP3R and RyR was regulated by the Ca2+ concentration within the SR (luminal [Ca2+]). As the luminal [Ca2+] declines, the opening of the receptors decline and stop, and there may appear to be stores with either only RyR or only IP3R. The SR Ca2+ store is a single luminally continuous entity which contains both IP3R and RyR and within which Ca2+ is accessed freely by each receptor. While the SR is a single continuous entity, regulation of IP3R and RyR by luminal [Ca2+] explains the appearance of multiple stores in some functional studies.  相似文献   

2.
The rate of Ca2+ release from the sarcoplasmic reticulum in response to the activation of ryanodine receptors with 4-chlorom-cresol in the cardiomyocytes of three rat strains—spontaneously hypertensive (SHR), normotensive (WKY), and Wistar rats—during 5 weeks of their growth and development was studied aiming to detect the functional differences in the operation of these receptors at various stages of arterial hypertension. In response to 4-chlorom-cresol, a drastic increase in the rates of [Ca2+]i accumulation in SHR myocytes after 17 days of development is recorded versus a decrease in the rates of Ca2+ efflux from the sarcoplasmic reticulum of Wistar and WKY rat cardiomyocytes. A correlation between this phenomenon and a genetic defect of ryanodine receptors in SHR rats seems rather unlikely, as the newborn WKY and SHR rats exposed to 4-chlorom-cresol at a concentration range of 0.5–2.0 mM did not display any differences in the rate of sarcoplasmic reticulum Ca2+ release. On the other hand, it is possible that the pathological changes in the function of ryanodine receptors manifest themselves later in the ontogenesis. The connection of this phenomenon with an increase in the role of ryanodine receptors in the excitation-contraction coupling in muscle cells and an increase in the calpain expression in SHR rats (absent in the WKY rats) by the age of 3 weeks is discussed. It is assumed that the cleavage of ryanodine receptor subunits by calpain can noticeably intensify the sarcoplasmic reticulum Ca2+ release after activation of these receptors without influencing the receptor binding characteristics.  相似文献   

3.
Mitochondria modulate cellular Ca2+ signals by accumulating the ion via a uniporter and releasing it via Na+- or H+-exchange. In smooth muscle, inhibition of mitochondrial Ca2+ uptake inhibits Ca2+ release from the sarcoplasmic reticulum (SR) via inositol-1,4,5-trisphosphate-sensitive receptors (IP3R). At least two mechanisms may explain this effect. First, localised uptake of Ca2+ by mitochondria may prevent negative feedback by cytosolic Ca2+ on IP3R activity, or secondly localised provision of Ca2+ by mitochondrial efflux may maintain IP3R function or SR Ca2+ content. To distinguish between these possibilities the role of mitochondrial Ca2+ efflux on IP3R function was examined. IP3 was liberated in freshly isolated single colonic smooth muscle cells and mitochondrial Na+–Ca2+ exchanger inhibited with CGP-37157 (10 μM). Mitochondria accumulated Ca2+ during IP3-evoked [Ca2+]c rises and released the ion back to the cytosol (within 15 s) when mitochondrial Ca2+ efflux was active. When mitochondrial Ca2+ efflux was inhibited by CGP-37157, an extensive and sustained loading of mitochondria with Ca2+ occurred after IP3-evoked Ca2+ release. IP3-evoked [Ca2+]c rises were initially unaffected, then only slowly inhibited by CGP-37157. IP3R activity was required for inhibition to occur; incubation with CGP-37157 for the same duration without IP3 release did not inhibit IP3R. CGP-37157 directly inhibited voltage-gated Ca2+ channel activity, however SR Ca2+ content was unaltered by the drug. Thus, the gradual decline of IP3R function that followed mitochondrial Na+–Ca2+ exchanger inhibition resulted from a gradual overload of mitochondria with Ca2+, leading to a reduced capacity for Ca2+ uptake. Localised uptake of Ca2+ by mitochondria, rather than mitochondrial Ca2+ efflux, appears critical for maintaining IP3R activity.  相似文献   

4.
In atrial myocytes lacking t-tubules, action potential triggers junctional Ca2+ releases in the cell periphery, which propagates into the cell interior. The present article describes growing evidence on atrial local Ca2+ signaling and on the functions of inositol 1,4,5-trisphosphate receptors (IP3Rs) in atrial myocytes, and show our new findings on the role of IP3R subtype in the regulation of spontaneous focal Ca2+ releases in the compartmentalized areas of atrial myocytes. The Ca2+ sparks, representing focal Ca2+ releases from the sarcoplasmic reticulum (SR) through the ryanodine receptor (RyR) clusters, occur most frequently at the peripheral junctions in isolated resting atrial cells. The Ca2+ sparks that were darker and longer lasting than peripheral and non-junctional (central) sparks, were found at peri-nuclear sites in rat atrial myocytes. Peri-nuclear sparks occurred more frequently than central sparks. Atrial cells express larger amounts of IP3Rs compared with ventricular cells and possess significant levels of type 1 IP3R (IP3R1) and type 2 IP3R (IP3R2). Over the last decade the roles of atrial IP3R on the enhancement of Ca2+-induced Ca2+ release and arrhythmic Ca2+ releases under hormonal stimulations have been well documented. Using protein knock-down method and confocal Ca2+ imaging in conjunction with immunocytochemistry in the adult atrial cell line HL-1, we could demonstrate a role of IP3R1 in the maintenance of peri-nuclear and non-junctional Ca2+ sparks via stimulating a posttranslational organization of RyR clusters.  相似文献   

5.
This comparative study investigates the relationship between sarcoplasmic reticulum (SR) calcium(Ca2+)-ATPase transport activity and phospholamban (PLB) phosphorylation in whole cardiac homogenates of spo`ntaneously hypertensive rats (SHR) and their parent, normotensive Wistar Kyoto (WKY) strain during early postnatal development at days 1, 3, 6, 12 and at day 40 to ascertain any difference in SR Ca2+ handling before the onset of hypertension. At day 1, the rate of homogenate oxalate-supported Ca2+ uptake was significantly higher in SHR than in WKY (0.25 ± 0.02 vs 0.12 ± 0.01 nmoles Ca2+/mg wet ventricular weight/min, respectively; p < 0.001). This interstrain difference disappeared with further developmental increase in SR Ca2+ transport. Western Blot analysis and a semiquantitative ELISA did not reveal any difference in the amount of immunoreactive PLB (per mg of total tissue protein) between strains at any of the ages studied. In addition, levels of phosphorylated PLB formed in vitro in the presence of radiolabelled ATP and catalytic (C) subunit of protein kinase A did not differ between SHR and WKY at days 1, 3, 6 and 12. At day 40, C subunit-catalyzed formation of 32P-PLB was reduced by 66% (p < 0.001) in SHR when compared to age-matched WKY In the early postnatal period between day 1 and 12 SR Ca2+-transport values were linearly related to the respective 32P-PLB levels of both SHR and WKY rats. The results indicate that cardiac SR of SHR can sequester Ca2+ at a much higher rate immediately after birth compared to WKY rats. The disappearance of this interstrain difference with further development suggests that some endogenous neuroendocrine or nutritional factor(s) from the hypertensive mother may exert an influence upon the developing heart in utero resulting in a transiently advanced maturation of the SR Ca2+ transport function in SHR pups at the time of birth.  相似文献   

6.
The Bcl-2 protein, best known for its ability to inhibit apoptosis, interacts with the inositol 1,4,5-trisphosphate receptor (IP3R) Ca2+ channel to regulate IP3-mediated Ca2+ release from the endoplasmic reticulum. This review summarizes the current state of knowledge regarding the interaction of Bcl-2, and also its homologue Bcl-xl, with the IP3R and how these interactions regulate Ca2+ signaling. The dual role of these interactions in promoting prosurvival Ca2+ signals, while at the same time inhibiting proapoptotic Ca2+ signals, is discussed. Moreover, this review will elucidate the recently recognized importance of the Bcl-2-IP3R interaction in human disease.  相似文献   

7.
Inositol 1,4,5-trisphosphate (IP3) was found to release Ca2+ from presynaptic nerve endings (synaptosomes) made permeable with saponin. ATP-dependent Ca2+ uptake was carried out until equilibrium was reached. Addition of IP3 produced a rapid release of Ca2+, which was complete within 60 sec, followed by Ca2+ reaccumulation to the original level in 5–7 min. Cholinergic receptor stimulation with muscarine also produced a similar Ca2+ release from synaptic endoplasmic reticulum. Ca2+ release by IP3 was not detectable in the absence of the mitochondrial inhibitors oligomycin or sodium azide. Reaccumulation of Ca2+ was prevented by the presence of vanadate, a potent inhibitor of Ca2+/Mg2+ ATPase. Half maximal and near complete release of Ca2+ took place at 0.4 M and 3 M IP3 concentrations, respectively. These studies demonstrate for the first time IP3 mobilization of Ca2+ from endoplasmic reticulum within synaptic plasma membranes.  相似文献   

8.
Summary Previous studies have shown the existence of functionally distinguishable inositol 1,4,5-trisphosphate- (IP3) sensitive and IP3-insensitive nonmitochondrial intracellular Ca2+ pools in acinar cells of the exocrine pancreas. For further characterization of Ca2+ pools, endoplasmic reticulum (ER) membrane vesicles were separated by Percoll gradient centrifugation which allowed us to distinguish five discrete fractions designatedP 1 toP 5 from the top to the bottom of the gradient. Measuring Ca2+ uptake and Ca2+ release with a Ca2+ electrode, we could differentiate three nonmitochondrial intracellular Ca2+ pools; (i) an IP3-sensitive Ca2+ pool (IsCaP), vanadate- and caffeine-insensitive, (ii) a caffeine-sensitive Ca2+ pool (CasCaP), vanadate- and IP3-insensitive, and (iii) a vanadate-sensitive Ca2+ pool (VasCaP), neither IP3- nor caffeine-sensitive, into which Ca2+ uptake is mediated via a Ca2+ ATPase sensitive to vanadate at 10–4 mol/liter. A fourth Ca2+ pool is neither IP3- nor caffeine- or vanadate-sensitive. Percoll fractionP 1 contained essentially the IsCaP, CasCaP and VasCaP and was mainly used for studies on Ca2+ uptake and Ca2+ release.When membrane vesicles were incubated in the presence of caffeine (2×10–2 mol/liter), Ca2+ uptake up to the steady state [Ca2+] did not appear to be altered as compared to the control Ca2+ uptake. However, in control vesicles spontaneous Ca2+ release occurred after the steady state had been reached, whereas cfffeine-pretreated vesicles did not spontaneously release Ca2+. Addition of IP3 at steady state [Ca2+] induced similar Ca2+ release followed by Ca2+ reuptake in both caffeine-pretreated and control vesicles. However, when caffeine was acutely added at steady state, Ca2+ was released from all Ca2+ pools including the IsCaP. Following Ca2+ reuptake after IP3 had been added, a second addition of IP3 to control vesicles induced further but smaller Ca2+ release, and a third addition resulted in a steady Ca2+ efflux by which all Ca2+ that had been taken up was released. This steady Ca2+ release started at a Ca2+ concentration between 5.5–8 ×10–7 mol/liter and could also be induced by the IP3 analogue inositol 1,4,5-trisphosphorothioate (IPS3) or by addition of Ca2+ itself. Ruthenium red (10–5 mol/liter) inhibited both caffeine-induced as well as Ca2+-induced but not IP3-induced Ca2+ release. Heparin (100 g/m) inhibited IP3-but not caffeine-induced Ca2+ release. The data indicate the presence of at least three separate Ca2+ pools in pancreatic acinar cells: the IsCaP, CasCaP and VasCaP. During Ca2+ uptake these Ca2+ pools appear to be separate. However, when steady state is reached, we assume that these Ca2+ pools come into contact and total Ca2+ release from all three pools can occur. The mechanism of this contact of Ca2+ pools is not clear but seems to be different from that induced by GTP in the presence of polyethylene glycol, which probably involves fusion of membranes.  相似文献   

9.
Hypertension-induced cardiac hypertrophy alters the amplitude and time course of the systolic Ca2+ transient of subepicardial and subendocardial ventricular myocytes. The present study was designed to elucidate the mechanisms underlying these changes. Myocytes were isolated from the left ventricular subepicardium and subendocardium of 20-wk-old spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto rats (WKY; control). We monitored intracellular Ca2+ using fluo 3 or fura 2; caffeine (20 mmol/l) was used to release Ca2+ from the sarcoplasmic reticulum (SR), and Ni2+ (10 mM) was used to inhibit Na+/Ca2+ exchange (NCX) function. SHR myocytes were significantly larger than those from WKY hearts, consistent with cellular hypertrophy. Subepicardial myocytes from SHR hearts showed larger Ca2+ transient amplitude and SR Ca2+ content and less Ca2+ extrusion via NCX compared with subepicardial WKY myocytes. These parameters did not change in subendocardial myocytes. The time course of decline of the Ca2+ transient was the same in all groups of cells, but its time to peak was shorter in subepicardial cells than in subendocardial cells in WKY and SHR and was slightly prolonged in subendocardial SHR cells compared with WKY subendocardial myocytes. It is concluded that the major change in Ca2+ cycling during compensated hypertrophy in SHR is a decrease in NCX activity in subepicardial cells; this increases SR Ca2+ content and hence Ca2+ transient amplitude, thus helping to maintain the strength of contraction in the face of an increased afterload.  相似文献   

10.
MiR-204 is expressed in vascular smooth muscle cells (VSMC). However, its role in VSMC contraction is not known. We determined if miR-204 controls VSMC contractility and blood pressure through regulation of sarcoplasmic reticulum (SR) calcium (Ca2+) release. Systolic blood pressure (SBP) and vasoreactivity to VSMC contractile agonists (phenylephrine (PE), thromboxane analogue (U46619), endothelin-1 (ET-1), angiotensin-II (Ang II) and norepinephrine (NE) were compared in aortas and mesenteric resistance arteries (MRA) from miR-204−/− mice and wildtype mice (WT). There was no difference in basal systolic blood pressure (SBP) between the two genotypes; however, hypertensive response to Ang II was significantly greater in miR-204−/− mice compared to WT mice. Aortas and MRA of miR-204−/− mice had heightened contractility to all VSMC agonists. In silico algorithms predicted the type 1 Inositol 1, 4, 5-trisphosphate receptor (IP3R1) as a target of miR-204. Aortas and MRA of miR-204−/− mice had higher expression of IP3R1 compared to WT mice. Difference in agonist-induced vasoconstriction between miR-204−/− and WT mice was abolished with pharmacologic inhibition of IP3R1. Furthermore, Ang II-induced aortic IP3R1 was greater in miR-204−/− mice compared to WT mice. In addition, difference in aortic vasoconstriction to VSMC agonists between miR-204−/− and WT mice persisted after Ang II infusion. Inhibition of miR-204 in VSMC in vitro increased IP3R1, and boosted SR Ca2+ release in response to PE, while overexpression of miR-204 downregulated IP3R1. Finally, a sequence-specific nucleotide blocker that targets the miR-204-IP3R1 interaction rescued miR-204-induced downregulation of IP3R1. We conclude that miR-204 controls VSMC contractility and blood pressure through IP3R1-dependent regulation of SR calcium release.  相似文献   

11.
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is an intracellular IP3-gated calcium (Ca2+) release channel and plays important roles in regulation of numerous Ca2+-dependent cellular responses. Many intracellular modulators and IP3R-binding proteins regulate the IP3R channel function. Here we identified G-protein-coupled receptor kinase-interacting proteins (GIT), GIT1 and GIT2, as novel IP3R-binding proteins. We found that both GIT1 and GIT2 directly bind to all three subtypes of IP3R. The interaction was favored by the cytosolic Ca2+ concentration and it functionally inhibited IP3R activity. Knockdown of GIT induced and accelerated caspase-dependent apoptosis in both unstimulated and staurosporine-treated cells, which was attenuated by wild-type GIT1 overexpression or pharmacological inhibitors of IP3R, but not by a mutant form of GIT1 that abrogates the interaction. Thus, we conclude that GIT inhibits apoptosis by modulating the IP3R-mediated Ca2+ signal through a direct interaction with IP3R in a cytosolic Ca2+-dependent manner.The inositol 1,4,5-trisphosphate (IP3)3 receptor (IP3R) consisting of three subtypes, IP3R1, IP3R2, and IP3R3, is a tetrameric intracellular IP3-gated calcium (Ca2+) release channel localized at the endoplasmic reticulum (ER) with its NH2 terminus and COOH-terminal tail (CTT) exposed to the cytoplasm (1, 2; see Fig. 1A). IP3Rs are composed of five functional domains. The long NH2-terminal cytoplasmic region contains three domains, a coupling/suppressor domain, an IP3-binding core domain, and an internal coupling domain. The COOH-terminal region has a six-membrane spanning channel domain and a short cytoplasmic CTT “gatekeeper domain” that is critical for IP3R channel opening (2, 3). Ca2+ release activity of the IP3R channel is regulated by many intracellular modulators (ATP, calmodulin, and Ca2+), protein kinases, and IP3R-binding proteins (2, 4), and the tight regulation of IP3R channel activity by these factors generates various spatial and temporal intracellular Ca2+ patterns such as Ca2+ spikes and Ca2+ oscillations, leading to numerous cellular responses (1, 2, 5, 6).Open in a separate windowFIGURE 1.GIT1 and GIT2 bind to all three subtypes of IP3R. A, schematic of ER residential IP3R. The CTT of IP3R1 is used as bait in a yeast two-hybrid screen. B, schematic representation of GIT1, GIT2, and two GIT1 fragments identified from the yeast two-hybrid screen. Functional domains are indicated. ARF-GAP, ARF-specific GTPase-activating protein domain; ANK-REP, ankyrin repeats; CC, coiled-coil domains; SHD, the Spa2-homology domain; EF, EF-hand; IQ, IQ-like motifs; aa, amino acid. C, GIT1 binds to IP3R1 in vitro. GST and GST-IP3R1/CTT were incubated with mouse brain lysate for a pull-down assay. The input and pulled-down samples were probed with α-GIT1. D and E, GIT1 binds to IP3R1 in vivo. Mouse brain lysates were processed to control IgG and α-IP3R1 (D) or α-GIT1 (E) for IP. The input and IP samples were probed with α-GIT1 and α-IP3R1. F and G, both GIT1 and GIT2 bind to all three IP3R subtypes. HeLa cells coexpressing GFP-fused IP3R1, IP3R2, or IP3R3 and mRFP-fused GIT1 (F) or GIT2 (G) were processed for IP using α-RFP. The input and IP samples were blotted with α-GFP (top) and α-RFP (bottom).One of the physiological roles of IP3R-mediated Ca2+ signaling is a pro-apoptotic regulator during apoptosis. Ca2+ released from ER can stimulate several key enzymes activated during apoptosis such as endonucleases (7) and calpain (8). In addition, the close proximity of ER to mitochondria may facilitate the mitochondrial overload of Ca2+ released from the IP3Rs with certain apoptotic stimuli, triggering the opening of the mitochondrial permeability transition pore and the release of apoptotic signaling molecules, such as cytochrome c and apoptosis-inducing factor, which leads to the activation of caspases (5, 6). Moreover, several key components of apoptotic cascades, such as cytochrome c (9) and anti-apoptosis proteins Bcl-2 (10, 11) and Bcl-XL (12), have been reported to interact with the internal coupling domain and/or the CTT of IP3R and enhance the Ca2+-release activity of IP3Rs during apoptosis. In this study, we identified the ubiquitously expressed G-protein-coupled receptor kinase-interacting proteins (GIT) (13), GIT1 and GIT2, as novel IP3R-binding proteins that bind to the CTT of IP3R and inhibit apoptosis by regulation of IP3R-mediated Ca2+ signal.  相似文献   

12.
A rise in the intracellular concentration of ionized calcium ([Ca2+]i) is a primary signal for contraction in all types of muscles. Recent progress in the development of imaging techniques, with special accent on fluorescence confocal microscopy, and new achievements in the synthesis of organelle- and ion-specific fluorochromes provide an experimental basis for studying the relationship between the structural organization of living smooth muscle cells (SMCs) and features of calcium signaling at the subcellular level. Applying fluorescent confocal imaging, patch-clamp recording, immunostaining, and flash photolysis techniques to freshly isolated SMCs, we have demonstrated that: (i) Ca2+ sparks are mediated by spontaneous clustered opening of ryanodine receptors (RyRs) and occur at the highest rate at preferred sites (frequent discharge sites, FDSs), the number of which depends on SMC type; (ii) FDSs are associated with sub-plasmalemmal sarcoplasmic reticulum (SR) elements, but not with polarized mitochondria; (iii) Ca2+ spark frequency increases with membrane depolarization in voltage-clamped SMCs or following neurotransmitter application to SMCs, in which the membrane potential was not controlled, leading to spark summation and resulting in a cell-wide increase in [Ca2+]i and myocyte contraction; (iv) cross-talk between RyRs and inositol trisphosphate receptors (IP3Rs) is an important determinant of the [Ca2+]i dynamics and recruits neighboring Ca2+-release sites to generate [Ca2+]i waves; (v) [Ca2+]i waves induced by depolarization of the plasma membrane or by noradrenaline or caffeine, but not by carbachol (CCh), originate at FDSs; (vi) Ca2+-dependent K+ and Cl- channels sense the local changes in [Ca2+]i during a Ca2+ spark and thereby may couple changes in [Ca2+]i within a microdomain to changes in the membrane potential, thus affecting the cell excitability; (vii) the muscarinic cation current (mI cat) does not mirror changes in [Ca2+]i, thus reflecting the complexity of [Ca2+]i — muscarinic cationic channel coupling; (viii) RyR-mediated Ca2+ release, either spontaneous or caffeine-induced, does not augment mI cat; (ix) intracellular flash release of Ca2+ is less effective in augmentation of mI cat than flash release of IP3, suggesting that IP3 may sensitize muscarinic cationic channels to Ca2+; (x) intracellular flash release of IP3 fails to augment mI cat in SMCs, in which [Ca2+]i was strongly buffered, suggesting that IP3 exerts no direct effect on muscarinic cationic channel gating, and that these channels sense an increase in [Ca2+]i rather than depletion of the IP3-dependent Ca2+ store; and (xi) predominant expression of IP3R type 1 in the peripheral SR provides a structural basis for a tight functional coupling between IP3R-mediated Ca2+ release and muscarinic cationic channel opening.Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 455–465, September–December, 2004.This revised version was published online in April 2005 with a corrected cover date and copyright year.  相似文献   

13.
Bcl-2 inhibits cell death by at least two different mechanisms. On the one hand, its BH3 domain binds to pro-apoptotic proteins such as Bim and prevents apoptosis induction. On the other hand, the BH4 domain of Bcl-2 binds to the inositol 1,4,5-trisphosphate receptor (IP3R), preventing Ca2+ signals that mediate cell death. In normal T-cells, Bcl-2 levels increase during the immune response, protecting against cell death, and then decline as apoptosis ensues and the immune response dissipates. But in many cancers Bcl-2 is aberrantly expressed and exploited to prevent cell death by inhibiting IP3R-mediated Ca2+ elevation. This review summarizes what is known about the mechanism of Bcl-2's control over IP3R-mediated Ca2+ release and cell death induction. Early insights into the role of Ca2+ elevation in corticosteroid-mediated cell death serves as a model for how targeting IP3R-mediated Ca2+ elevation can be a highly effective therapeutic approach for different types of cancer. Moreover, the successful development of ABT-199 (Venetoclax), a small molecule targeting the BH3 domain of Bcl-2 but without effects on Ca2+, serves as proof of principle that targeting Bcl-2 can be an effective therapeutic approach. BIRD-2, a synthetic peptide that inhibits Bcl-2-IP3R interaction, induces cell death induction in ABT-199 (Venetoclax)-resistant cancer models, attesting to the value of developing therapeutic agents that selectively target Bcl-2-IP3R interaction, inducing Ca2+-mediated cell death.  相似文献   

14.

Background

Inositol 1,4,5-trisphosphate receptors (IP3R1, 2, and 3) are intracellular Ca2+ release channels that regulate various vital processes. Although the ryanodine receptor type 2, another type of intracellular Ca2+ release channel, has been shown to play a role in embryonic cardiomyocytes, the functions of the IP3Rs in cardiogenesis remain unclear.

Methodology/Principal Findings

We found that IP3R1−/−-IP3R2−/− double-mutant mice died in utero with developmental defects of the ventricular myocardium and atrioventricular (AV) canal of the heart by embryonic day (E) 11.5, even though no cardiac defect was detectable in IP3R1−/− or IP3R2−/− single-mutant mice at this developmental stage. The double-mutant phenotype resembled that of mice deficient for calcineurin/NFATc signaling, and NFATc was inactive in embryonic hearts from the double knockout-mutant mice. The double mutation of IP3R1/R2 and pharmacologic inhibition of IP3Rs mimicked the phenotype of the AV valve defect that result from the inhibition of calcineurin, and it could be rescued by constitutively active calcineurin.

Conclusions/Significance

Our results suggest an essential role for IP3Rs in cardiogenesis in part through the regulation of calcineurin-NFAT signaling.  相似文献   

15.
Li C  Meng Q  Yu X  Jing X  Xu P  Luo D 《PloS one》2012,7(4):e36165

Background

It has been found that gap junction-associated intracellular Ca2+ [Ca2+]i disturbance contributes to the arrhythmogenesis and hyperconstriction in diseased heart. However, whether functional gaps are also involved in the regulation of normal Ca2+ signaling, in particular the basal [Ca2+]i activities, is unclear.

Methods and Results

Global and local Ca2+ signaling and gap permeability were monitored in cultured neonatal rat ventricular myocytes (NRVMs) and freshly isolated mouse ventricular myocytes by Fluo4/AM and Lucifer yellow (LY), respectively. The results showed that inhibition of gap communication by heptanol, Gap 27 and flufenamic acid or interference of connexin 43 (Cx43) with siRNA led to a significant suppression of LY uptake and, importantly, attenuations of global Ca2+ transients and local Ca2+ sparks in monolayer NRVMs and Ca2+ sparks in adult ventricular myocytes. In contrast, overexpression of rat-Cx43 in NRVMs induced enhancements in the above measurements, and so did in HEK293 cells expressing rat Cx43. Additionally, membrane-permeable inositol 1,4,5-trisphosphate (IP3 butyryloxymethyl ester) and phenylephrine, an agonist of adrenergic receptor, could relieve the inhibited Ca2+ signal and LY uptake by gap uncouplers, whereas blockade of IP3 receptor with xestospongin C or 2-aminoethoxydiphenylborate mimicked the effects of gap inhibitors. More importantly, all these gap-associated effects on Ca2+ signaling were also found in single NRVMs that only have hemichannels instead of gap junctions. Further immunostaining/immunoblotting single myocytes with antibody against Cx43 demonstrated apparent increases in membrane labeling of Cx43 and non-junctional Cx43 in overexpressed cells, suggesting functional hemichannels exist and also contribute to the Ca2+ signaling regulation in cardiomyocytes.

Conclusions

These data demonstrate that Cx43-associated gap coupling plays a role in the regulation of resting Ca2+ signaling in normal ventricular myocytes, in which IP3/IP3 receptor coupling is involved. This finding may provide a novel regulatory pathway for mediation of spontaneous global and local Ca2+ activities in cardiomyocytes.  相似文献   

16.
We recently reported key physiologic roles for Ca2+-activated transient receptor potential melastatin 4 (TRPM4) channels in detrusor smooth muscle (DSM). However, the Ca2+-signaling mechanisms governing TRPM4 channel activity in human DSM cells are unexplored. As the TRPM4 channels are activated by Ca2+, inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release from the sarcoplasmic reticulum represents a potential Ca2+ source for TRPM4 channel activation. We used clinically-characterized human DSM tissues to investigate the molecular and functional interactions of the IP3Rs and TRPM4 channels. With in situ proximity ligation assay (PLA) and perforated patch-clamp electrophysiology, we tested the hypothesis that TRPM4 channels are tightly associated with the IP3Rs and are activated by IP3R-mediated Ca2+ release in human DSM. With in situ PLA, we demonstrated co-localization of the TRPM4 channels and IP3Rs in human DSM cells. As the TRPM4 channels and IP3Rs must be located within close apposition to functionally interact, these findings support the concept of a potential Ca2+-mediated TRPM4-IP3R regulatory mechanism. To investigate IP3R regulation of TRPM4 channel activity, we sought to determine the consequences of IP3R pharmacological inhibition on TRPM4 channel-mediated transient inward cation currents (TICCs). In freshly-isolated human DSM cells, blocking the IP3Rs with the selective IP3R inhibitor xestospongin-C significantly decreased TICCs. The data suggest that IP3Rs have a key role in mediating the Ca2+-dependent activation of TRPM4 channels in human DSM. The study provides novel insight into the molecular and cellular mechanisms regulating TRPM4 channels by revealing that TRPM4 channels and IP3Rs are spatially and functionally coupled in human DSM.  相似文献   

17.
The expression of protein kinase C (PKC) isoforms and the modulation of Ca2+ mobilization by PKC were investigated in the human submandibular duct cell line A253. Three new PKC (nPKC) isoforms (, , and ) and one atypical PKC (aPKC) isoform () are expressed in this cell line. No classical PKC (cPKC) isoforms were present. The effects of the PKC activator phorbol 12-myristate-13-acetate (PMA) and of the PKC inhibitors calphostin C (CC) and bisindolymaleimide I (BSM) on inositol 1,4,5-trisphosphate (IP3) and Ca2+ responses to ATP and to thapsigargin (TG) were investigated. Pre-exposure to PMA inhibited IP3 formation, Ca2+ release and Ca2+ influx in response to ATP. Pre-exposure to CC or BSM slightly enhanced IP3 formation but inhibited the Ca2+ release and the Ca2+ influx induced by ATP. In contrast, pre-exposure to PMA did not modify the Ca2+ release induced by TG, but reduced the influx of Ca2+ seen in the presence of this Ca2+-ATPase inhibitor. These results suggest that PKC modulates elements of the IP3/Ca2+ signal transduction pathway in A253 cells by (1) inhibiting phosphatidylinositol turnover and altering the sensitivity of the Ca2+ channels to IP3, (2) altering the activity, the sensitivity to inhibitors, or the distribution of the TG-sensitive Ca2+ ATPase, and (3) modulating Ca2+ entry pathways.  相似文献   

18.
Sarcoplasmic reticulum contains the internal Ca2+ store in smooth muscle cells and its lumen appears to be a continuum that lacks diffusion barriers. Accordingly, the free luminal Ca2+ level is the same all throughout the SR; however, whether the Ca2+ buffer capacity is the same in all the SR is unknown. We have estimated indirectly the luminal Ca2+ buffer capacity of the SR by comparing the reduction in SR Ca2+ levels with the corresponding increase in [Ca2+]i during activation of either IP3Rs with carbachol or RyRs with caffeine, in smooth muscle cells from guinea pig urinary bladder. We have determined that carbachol-sensitive SR has a 2.4 times larger Ca2+ buffer capacity than caffeine-sensitive SR. Rapid inhibition of SERCA pumps with thapsigargin revealed that this pump activity accounts for 80% and 60% of the Ca2+ buffer capacities of carbachol- and caffeine-sensitive SR, respectively. Moreover, the Ca2+ buffer capacity of carbachol-sensitive SR was similar to caffeine-sensitive SR when SERCA pumps were inhibited. Similar rates of Ca2+ replenishments suggest similar levels of SERCA pump activities for either carbachol- or caffeine-sensitive SR. Paired pulses of caffeine, in conditions of low Ca2+ influx, indicate the relevance of luminal SR Ca2+ buffer capacity in the [Ca2+]i response. To further study the importance of luminal SR Ca2+ buffer capacity in the release process we used low levels of heparin to partially inhibit IP3Rs. This condition revealed carbachol-induced transient increase of luminal SR Ca2+ levels provided that SERCA pumps were active. It thus appears that SERCA pump activity keeps the luminal SR Ca2+-binding proteins in the high-capacity, low-affinity conformation, particularly for IP3R-mediated Ca2+ release.  相似文献   

19.
Communication between the SR (sarcoplasmic reticulum, SR) and mitochondria is important for cell survival and apoptosis. The SR supplies Ca2+ directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs) at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM). Although it has been demonstrated that CaR (calcium sensing receptor) activation is involved in intracellular calcium overload during hypoxia/reoxygenation (H/Re), the role of CaR activation in the cardiomyocyte apoptotic pathway remains unclear. We postulated that CaR activation plays a role in the regulation of SR-mitochondrial inter-organelle Ca2+ signaling, causing apoptosis during H/Re. To investigate the above hypothesis, cultured cardiomyocytes were subjected to H/Re. We examined the distribution of IP3Rs in cardiomyocytes via immunofluorescence and Western blotting and found that type 3 IP3Rs were located in the SR. [Ca2+]i, [Ca2+]m and [Ca2+]SR were determined using Fluo-4, x-rhod-1 and Fluo 5N, respectively, and the mitochondrial membrane potential was detected with JC-1 during reoxygenation using laser confocal microscopy. We found that activation of CaR reduced [Ca2+]SR, increased [Ca2+]i and [Ca2+]m and decreased the mitochondrial membrane potential during reoxygenation. We found that the activation of CaR caused the cleavage of BAP31, thus generating the pro-apoptotic p20 fragment, which induced the release of cytochrome c from mitochondria and the translocation of bak/bax to mitochondria. Taken together, these results reveal that CaR activation causes Ca2+ release from the SR into the mitochondria through IP3Rs and induces cardiomyocyte apoptosis during hypoxia/reoxygenation.  相似文献   

20.
Yoo SH 《Cell calcium》2011,50(2):175-183
The majority of secretory cell calcium is stored in secretory granules that serve as the major IP3-dependent intracellular Ca2+ store. Even in unicellular phytoplankton secretory granules are responsible for the IP3-induced Ca2+ release that triggers exocytosis. The number of secretory granules in the cell is directly related not only to the magnitude of IP3-induced Ca2+ release, which accounts for the majority of the IP3-induced cytoplasmic Ca2+ release in neuroendocrine cells, but also to the IP3 sensitivity of the cytoplasmic IP3 receptor (IP3R)/Ca2+ channels. Moreover, secretory granules contain the highest IP3R concentrations and the largest amounts of IP3Rs in any subcellular organelles in neuroendocrine cells. Secretory granules from phytoplankton to mammals contain large amounts of polyanionic molecules, chromogranins being the major molecules in mammals, in addition to acidic intragranular pH and high Ca2+ concentrations. The polyanionic molecules undergo pH- and Ca2+-dependent conformational changes that serve as a molecular basis for condensation-decondensation phase transitions of the intragranular matrix. Likewise, chromogranins undergo pH- and Ca2+-dependent conformational changes with increased exposure of the structure and increased interactions with Ca2+ and other granule components at acidic pH. The unique physico-chemical properties of polyanionic molecules appear to be at the center of biogenesis, and physiological functions of secretory granules in living organisms from primitive to advanced species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号