首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
【目的】本研究皆在了解虾养殖底泥中氨氧化细菌与氨氧化古菌群落多态性。【方法】以功能基因为基础,构建氨氧化细菌(AOB)与氨氧化古菌(AOA)的氨单加氧酶α亚基基因(amoA)克隆文库。利用限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP)技术将克隆文库阳性克隆子进行归类分析分成若干个可操作分类单元(Operational Taxa Units,OTUs)。【结果】通过序列多态性分析,表明AOB amoA基因克隆文库中所有序列都属于变形杆菌门β亚纲(β-Proteobacteria)中的亚硝化单细胞菌属(Nitrosomonas)及Nitrosomonas-like,未发现亚硝化螺旋菌属(Nitrosospira)。AOA amoA基因克隆文库中只有一个OTU序列属于未分类的古菌(Unclassified-Archaea),其余序列都属于泉古菌门(Crenarchaeote)。AOA群落结构单一且存在一个绝对优势类群OTU3,其克隆子数目占克隆文库的57.45%。AOB和AOA amoA基因克隆文库分别包括13个OTUs和9个OTUs,其文库覆盖率分别为73.47%和90.43%。AOB amoA基因克隆文库的Shannon-Wiener指数、Evenness指数、Simpson指数、Richness指数均高于AOA。【结论】虾养殖塘底泥中存在氨氧化古菌的amoA基因,且多态性低于氨氧化细菌,表明氨氧化古菌在虾养殖塘底泥的氮循环中可能具有重要的作用。  相似文献   

2.
风干土壤中氨氧化微生物的恢复   总被引:3,自引:0,他引:3  
周雪  黄蓉  宋歌  潘贤章  贾仲君 《微生物学报》2014,54(11):1311-1322
【目的】比较历史风干土壤与加水恢复培养土壤中氨氧化古菌AOA和细菌AOB的组成与数量差异,探究风干土壤用于后续微生物生理生态学研究的可能性;明确我国典型酸性森林土壤中,海洋类Group 1.1a是否为数量上占据优势的古菌AOA生态型。【方法】针对中国生态系统研究网络10个台站的典型森林土壤样品,围绕风干保存和加水培养两种处理,通过高通量测序土壤氨氧化古菌及细菌amoA标靶基因,分析氨氧化微生物群落组成的变化规律;利用实时荧光定量PCR和DGGE指纹图谱技术,研究森林土壤微生物群落16S rRNA基因的数量变化规律,以及氨氧化细菌和古菌群落结构的差异。【结果】10个历史风干土壤加水培养28天后,土壤细菌和古菌数量均急剧增加,最高可达3230倍和568倍;其中8个土壤中氨氧化古菌AOA明显增加,5个土壤中氨氧化细菌AOB表现出明显的增加趋势。然而,高通量测序和系统发育分析表明,历史风干土壤与加水恢复培养土壤中AOA和AOB的群落组成无明显变化。Group 1.1b是氨氧化古菌的优势类群,而氨氧化细菌的主要类群是Nitrosospira螺菌属。氨氧化古菌和细菌的比例与总氮浓度呈显著正相关(r2=0.54,P0.05),表明酸性条件下土壤矿化并提供铵态氮底物可能是古菌氨氧化的驱动机制。【结论】风干土壤加水恢复培养后,AOA和AOB的种群数量大多出现增加的趋势,但其物种组成未发生显著变化,表明风干保存的土壤样品可用于后续室内培养,开展微生物生理生态学研究。与已有的海洋AOA生态型主导酸性土壤氨氧化类群的报道不同,土壤Group 1.1b是本研究森林土壤中的优势类群。  相似文献   

3.
若尔盖高原湿地土壤氨氧化古菌的多样性   总被引:3,自引:0,他引:3       下载免费PDF全文
【目的】研究自然界中氨氧化古菌(ammonia-oxidizing archaea,AOA)对于理解全球氮循环起着至关重要的作用,但人们对高原湿地AOA种群生态还知之甚少。本研究旨在了解若尔盖高原湿地土壤AOA群落组成及多样性。【方法】从若尔盖高原阿西(A'xi)、麦西(Maixi)和分区(Fenqu)3个典型牧区采集土壤样品,提取土壤总DNA,利用AOA氨单加氧酶(ammonia monooxygenase,amoA)基因通用引物扩增amoA基因,构建amoA基因克隆文库。从每个克隆文库中随机挑选80个阳性克隆子用于后续限制性酶切片段长度多态性(restriction fragment length polymorphism,RFLP)分析,挑选不同酶切类型的克隆子进行测序、比对,利用MEGA 5.0软件构建amoA基因系统发育树。【结果】从3个克隆文库共240个AOA amoA基因阳性克隆中得到15条代表序列,通过Mothur软件进行OTUs(operational taxonomic units)分类得到7个不同的分类单元。其中OTU 6为优势类群,在3个克隆文库均有发现,约占所有特异性克隆子的27%。15条amoA基因序列分属于Zoige Wetland Clade 1(4 OTUs)、Zoige Wetland Clade 2(2 OTUs)和Zoige Wetland Clade 3(1OTU)3个系统发育分支。BLAST分析显示所有OTUs均归于泉古菌门(Crenarchaeota)。相关性分析表明,若尔盖高原湿地AOA多样性指数与土壤铵态氮和硝态氮含量存在显著的相关性(P0.05)。【结论】若尔盖高原湿地中AOA多样性较低,均属于泉古菌,且与土壤中氨态氮和硝态氮密切相关。  相似文献   

4.
白洋淀湖滨湿地岸边带氨氧化古菌与氨氧化细菌的分布特性   总被引:12,自引:0,他引:12  
摘要:本研究通过分子生物学分析方法,以amoA基因为标记,考察了氨氧化古菌(Ammonia-Oxidizing Archaea, AOA)和氨氧化细菌(Ammonia-Oxidizing Bacteria,AOB)在华北平原的白洋淀这一典型湖泊的湖滨湿地岸边带系统中的生物多样性和丰度分布。在前人的研究中,氨氧化古菌在海洋、原生态土壤和人为干扰土壤等环境中主导氨氧化过程的完成。但本研究发现,在湿地岸边带系统中氨氧化过程并不是完全由氨氧化古菌主导完成,即氨氧化古菌和氨氧化细菌在不同区域分别占据主导地位。根据主导微生物的不同,可以将湿地岸边带区域划分为陆相区、中间区和湖相区。在湿地岸边带陆相区,氨氧化古菌主导氨氧化过程,氨氧化古菌的amoA基因丰度是氨氧化细菌的526倍(AOA:1.23?108每克干土;AOB:2.34?105每克干土);在岸边带湖相区,氨氧化细菌主导氨氧化过程,氨氧化古菌的amoA基因丰度只有氨氧化细菌的1/50倍(AOA:3.17?106每克干土;AOB:1.39?108每克干土);在岸边带中间区,两种微生物对氨氧化过程的贡献相当,二者的amoA基因丰度也相当 (AOA:9.83?106, AOB:4.08?106)。研究还发现,湿地中间区的微生物生物多样性高于陆相区和湖相区。在湿地中间区,氨氧化古菌和氨氧化细菌的生物多样性都最高,分别有5和7个操作分类单元(OTUs);相比之下,岸边带陆相区和湖相区的多样性依次降低,陆相区的氨氧化古菌和氨氧化细菌分别有3和6个操作分类单元,湖相区的氨氧化古菌和氨氧化细菌分别有2和6个分类单元。本研究的两个结论进一步反映了湿地岸边带极强的空间异质性。  相似文献   

5.
由氨氧化微生物驱动的氨氧化过程是硝化作用的限速步骤,在土壤氮素循环过程中扮演着重要角色.以湖南省宁乡县长达30 a定位试验水稻土壤为研究对象,采用荧光定量PCR和Illumina MiSeq高通量测序分析方法,以amoA基因为靶标,研究了4种施肥制度[不施肥(CK)、化肥(CF)、70%化肥+30%有机肥(CFM1)和40%化肥+60%有机肥(CFM2)]水稻土壤氨氧化微生物的数量和群落结构变化.结果表明: 不同施肥处理氨氧化古菌(AOA)和氨氧化细菌(AOB) amoA基因拷贝数分别为3.09×107~8.37×107和1.04×107~7.03×107 copies·g-1干土.施肥显著提高了AOA和AOB数量,但处理CFM2中AOB数量与CK差异不显著.有机肥配施比例对AOB群落α多样性指数的影响强于AOA,处理CFM1中AOA群落的多样性指数(Shannon)和AOB群落的丰富度指数(ACE和Chao1)均显著高于CK.奇古菌门和泉古菌门是AOA群落的优势门类群,占AOA amoA基因总序列的83.4%;亚硝化螺菌属、environmental_samples_norank、Bacteria_unclassified和Nitrosomonadales_unclassified是AOB群落的优势属类群,占AOB amoA基因总序列的97.8%.维恩分析结果显示,有机肥配施比例对AOB群落操作分类单元(OTU)数量的影响强于AOA,但对各处理共有AOA和AOB amoA基因序列条数的影响均较小.冗余分析结果显示,不同施肥处理AOB群落结构差异强于AOA,且所有土壤理化性质均与AOA和AOB群落结构存在显著相关关系.综上可知:有机肥配施比例显著改变了AOA和AOB数量、多样性和群落结构,配施30%有机肥时,AOA群落的Shannon指数最高,AOB群落数量、ACE和Chao1指数均最高.研究结果可为进一步探讨农业系统中氨氧化微生物对不同施肥制度的响应机制及其在氮素转化中的作用提供科学依据.  相似文献   

6.
【目的】系统评估全程氨氧化细菌(complete ammonia oxidizing bacteria, Comammox bacteria)、半程氨氧化细菌(AOB)和古菌(AOA)在典型水稻土剖面的垂直分异规律。2015年发现的"全程"氨氧化细菌(Comammox Nitrospira)可将氨分子一步氧化为硝酸盐,实现硝化作用。而经典的"半程"氨氧化细菌(AOB)或古菌(AOA)将氨分子氧化为亚硝酸盐后,再由系统发育完全不同的硝化细菌将其氧化为硝酸盐。全程氨氧化细菌实现了一步硝化全过程,根本改变了学术界对2类微生物分步硝化的经典认知,但相关研究仍处于初步阶段。【方法】选择重庆北碚地区2017年典型水稻土并采集5、10、20和40 cm不同深度土壤(剖面采样点的上下误差不超过1cm),提取水稻土总DNA后,利用标靶功能基因amoA,通过实时荧光定量PCR技术分析全程氨氧化细菌(Comammox)、半程氨氧化细菌(AOB)和古菌(AOA)在水稻土不同深度的数量变异规律。【结果】半程氨氧化细菌AOB和古菌AOA均随土壤深度增加呈显著下降趋势。然而,全程氨氧化细菌的两大类微生物则表现出相反的规律,Comammox Clade A的丰度随着土壤剖面的加深而显著增加(P0.05),但Clade B并未有类似规律。Clade A在水稻土不同层次的土层中均比Clade B高出1个数量级,在5 cm和40 cm处的最低和最高值分别为3.42×10~7、8.46×10~7 copies/g。AOA与AOB的丰度大致相当,5cm剖面处数量最高分别为1.23×10~7、1.83×10~5copies/g,但其平均丰度远低于全程氨氧化细菌,Comammox与AOA、AOB amoA功能基因拷贝数之比为10–2000。【结论】全程氨氧化细菌(Comammox bacteria)广泛分布于水稻土不同土层中,且数量远高于"半程"氨氧化细菌和古菌,意味着Comammox可能在水稻土硝化作用中起重要作用。  相似文献   

7.
不同利用方式对红壤坡地微生物多样性和硝化势的影响   总被引:6,自引:0,他引:6  
采集了中国科学院桃源农业生态试验站红壤坡地农田、自然恢复林和茶园土壤样品,采用末端限制性酶切片段长度多态性分析(T.RFLP)技术分析土壤细菌、古菌、氨氧化细菌(AOB)和氨氧化古菌(AOA)的多样性,采用好气培养法测定不同土壤的硝化势,研究不同土地利用方式对微生物多样性和硝化势的影响.结果表明:土壤AOB和AOA多样性指数差异不显著,且在3种不同土地利用方式中呈现相同的趋势,均为农田=茶园>自然恢复林;通过RDA分析发现,不同利用方式造成土壤理化性状的改变是影响土壤AOA和AOB群落结构的主要原因;好气培养法测得不同土壤硝化势农田最高,茶园次之而自然恢复林最低;相关性分析显示,硝化势与细菌16S rRNA、AOA和AOB amoA基因多样性指数呈显著正相关,其中与AOA amoA基因关系最为密切;总体来说,红壤坡地不同利用方式改变了土壤细菌、古菌、AOA和AOB的多样性,土壤AOB和AOA积极参与了土壤的硝化过程,且AOA在氨氧化微生物群落生态功能中占有重要地位,AOA比AOB与硝化势的关系更为密切.  相似文献   

8.
【背景】对于环境样品中氨氧化古菌(Ammonia-oxidizing archaea,AOA)多样性的研究,利用amoA功能基因作为分子标记会比16SrRNA基因有更强的特异性和更高的分辨率,能更准确地反映环境样品中氨氧化古菌的种群结构和分布特征。然而,目前对amoA基因扩增子高通量测序的分析存在两大限制因素:一是缺乏相应的amoA基因参考数据库;二是AOA amoA基因在种水平上的相似性阈值未知,分析过程中没有明确的划分种水平操作分类单元(Operational taxonomic unit,OTU)的阈值。【目的】构建基于amoA功能基因序列分析氨氧化古菌多样性的方法,为基于高通量测序的功能微生物多样性分析提供参考。【方法】基于目前已通过分离纯化或富集培养获得的34株氨氧化古菌及功能基因数据库中收录的环境样品amoA基因序列,构建氨氧化古菌amoA基因参考数据库。通过菌株间两两比对获得的amoA基因相似度与16SrRNA基因相似度的相关性分析,确定amoA基因在种水平上的相似性阈值。基于MOTHUR软件平台,利用建立的参考数据库和确定的阈值对南海一个垂直水体剖面样品的amoA基因序列进行多样性分析。【结果】构建了含有26 091条序列信息的古菌amoA基因参考数据库,确定了89%作为分析过程中古菌amoA基因划分种水平OTU的阈值,对南海水体样品氨氧化古菌的多样性分析结果很好地显示了南海不同深度水层水体中氨氧化古菌的种群结构和系统发育关系,有效揭示了南海氨氧化古菌的垂直分布差异。【结论】建立了基于amoA基因高通量测序的氨氧化古菌多样性分析方法,此方法可以有效分析环境样品中氨氧化古菌的多样性。  相似文献   

9.
太湖竺山湾沉积物中氨氧化原核生物的垂直分布与多样性   总被引:8,自引:0,他引:8  
原核生物驱动的氨氧化过程对于富营养化湖泊的氮循环具有重要意义。为了解太湖藻型湖区沉积物中氨氧化原核生物的垂直分布和多样性特征,采用分子生态学方法,对竺山湾沉积物剖面中氨单加氧酶基因(amoA)或16S rRNA基因等特征分子标记的变化和序列特征进行了分析。结果表明,氨氧化细菌(ammonia-oxidizing bacteria,AOB)和氨氧化古菌(ammonia-oxidizing archaea,AOA)共存于沉积物各层。AOB的优势种在5cm深度以下发生明显改变,这可能与沉积物氧化还原电位及铵态氮的变化有关;所有细菌amoA序列均属亚硝化单胞菌(Nitrosomonas)。AOA群落结构自表层至7cm深度变化不大,所有古菌amoA序列分属泉古菌CG1.1b和CG1.1a两大类群,这可能与太湖形成历史上的海陆交替过程有关。此外,沉积物各层均未发现典型厌氧氨氧化(anaerobic ammonium oxidation,anammox)细菌16S rRNA基因序列。这些发现丰富了对太湖藻型湖区氨氧化原核生物分布、多样性及环境调控原理的认识,对理解富营养化湖泊氨氧化规律、认识湖泊生态系统氮循环功能具有借鉴意义。  相似文献   

10.
王智慧  蒋先军 《微生物学报》2021,61(7):1933-1944
【目的】揭示典型农田旱地紫色土硝化微生物的群落组成及其对pH的响应规律。【方法】针对同一母质发育但pH差异显著的3种紫色土,利用宏基因组技术深度测序研究土壤中硝化微生物丰度和群落,包括氨氧化古菌(ammonia-oxidizing archaea,AOA),氨氧化细菌(ammonia-oxidizing bacteria,AOB),亚硝酸盐氧化细菌(nitrite-oxidizingbacteria,NOB)和全程氨氧化细菌(completeammoniaoxidizer,Comammox)。【结果】土壤中硝化微生物的丰度占总微生物的2.130%–6.082%。3种紫色土中AOA、AOB和NOB的相对丰度有显著差异:酸性紫色土中AOA的相对丰度显著大于碱性紫色土,而AOB则相反;NOB的相对丰度在中性紫色土中最高。所有土样中均发现了1种全程氨氧化细菌Candidatus Nitrospira inopinata (Ca. N. inopinata),其在中性紫色土中相对丰度最高,占总微生物的0.203%。3种不同pH紫色土中AOA均以Nitrososphaera为主,NOB均以Nitrospira为主;酸性紫色土中AOB以Nitroscoccus为主,而中性和石灰性紫色土中则以Nitrosospira为主。Pearson相关性分析发现,土壤pH和铵态氮是影响硝化微生物丰度最大的两个因子。【结论】Comammox存在于3种不同pH紫色土中,且偏好中性环境;AOA、AOB和NOB群落结构和相对丰度都存在显著差异,结合相关性分析发现土壤pH和铵态氮是导致差异最重要的两个因子。  相似文献   

11.
Nitrogen accumulation in soil is increasing in Inner Mongolia which is resulted mainly from fertilization accompanied by conversion of large area of grasslands to croplands. Ammonia-oxidation is the key step of nitrification which is driven by ammonia-oxidizing microorganisms, and study on the response of ammonia-oxidizing microorganisms is necessary for understanding the effects of nitrogen fertilization on ecosystem functions. In this study, the abundance and community structure of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) under long-term N addition of different rates (0, 1.75, 5.25, 10.5, 17.5, and 28 g N m?2 yr?1) in a typical steppe of the Inner Mongolia Grassland were investigated using quantitative real-time PCR, cloning and sequencing based on amoA gene. In addition, soil potential ammonia oxidation rate was analyzed. Our results demonstrated that, with the increase of nitrogen addition rate, soil pH declined gradually from 6.6 to 4.9, and potential ammonia oxidation rate also declined which was positively correlated with soil pH (P < 0.01), while the copy number of bacterial amoA gene increased and positively (P < 0.01) correlated with ammonia concentration in soil. The archaeal amoA gene copy number did not change a lot with N nitrogen addition rate below 10.5 g N/m2, but significantly decreased with addition of 17.5 and 28 g N m?2 yr?1. Sequencing of clone libraries of treatments revealed that in the treatment without N addition, AOB was dominated by Cluster 3a1 of Nitrosospira with a proportion of 87%, while in the treatment with N addition of 28 g N m?2 yr?1, proportion of Cluster 2 increased significantly to 41%. All archaeal amoA sequences were affiliated with the soil/sediment clade, and no significant variation of community structure was found between the treatments without N addition and with 28 g N m?2 yr?1 addition rate. In conclusion, this study demonstrated significant effects of nitrogen addition on potential ammonia oxidation rate and compositions of ammonia-oxidation microorganisms, which may have important implications for evaluating the impacts of N accumulation on ecosystem functioning. Further, the effects of pH and ammonia concentration on the ammonia oxidation rate and compositions of ammonia-oxidation microorganisms were discussed.  相似文献   

12.
Li X X  Ying J Y  Chen Y  Zhang L M  Gao Y S  Bai Y F 《农业工程》2011,31(3):174-178
Nitrogen accumulation in soil is increasing in Inner Mongolia which is resulted mainly from fertilization accompanied by conversion of large area of grasslands to croplands. Ammonia-oxidation is the key step of nitrification which is driven by ammonia-oxidizing microorganisms, and study on the response of ammonia-oxidizing microorganisms is necessary for understanding the effects of nitrogen fertilization on ecosystem functions. In this study, the abundance and community structure of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) under long-term N addition of different rates (0, 1.75, 5.25, 10.5, 17.5, and 28 g N m?2 yr?1) in a typical steppe of the Inner Mongolia Grassland were investigated using quantitative real-time PCR, cloning and sequencing based on amoA gene. In addition, soil potential ammonia oxidation rate was analyzed. Our results demonstrated that, with the increase of nitrogen addition rate, soil pH declined gradually from 6.6 to 4.9, and potential ammonia oxidation rate also declined which was positively correlated with soil pH (P < 0.01), while the copy number of bacterial amoA gene increased and positively (P < 0.01) correlated with ammonia concentration in soil. The archaeal amoA gene copy number did not change a lot with N nitrogen addition rate below 10.5 g N/m2, but significantly decreased with addition of 17.5 and 28 g N m?2 yr?1. Sequencing of clone libraries of treatments revealed that in the treatment without N addition, AOB was dominated by Cluster 3a1 of Nitrosospira with a proportion of 87%, while in the treatment with N addition of 28 g N m?2 yr?1, proportion of Cluster 2 increased significantly to 41%. All archaeal amoA sequences were affiliated with the soil/sediment clade, and no significant variation of community structure was found between the treatments without N addition and with 28 g N m?2 yr?1 addition rate. In conclusion, this study demonstrated significant effects of nitrogen addition on potential ammonia oxidation rate and compositions of ammonia-oxidation microorganisms, which may have important implications for evaluating the impacts of N accumulation on ecosystem functioning. Further, the effects of pH and ammonia concentration on the ammonia oxidation rate and compositions of ammonia-oxidation microorganisms were discussed.  相似文献   

13.
Mao Y  Yannarell AC  Mackie RI 《PloS one》2011,6(9):e24750
Widespread adaptation of biomass production for bioenergy may influence important biogeochemical functions in the landscape, which are mainly carried out by soil microbes. Here we explore the impact of four potential bioenergy feedstock crops (maize, switchgrass, Miscanthus X giganteus, and mixed tallgrass prairie) on nitrogen cycling microorganisms in the soil by monitoring the changes in the quantity (real-time PCR) and diversity (barcoded pyrosequencing) of key functional genes (nifH, bacterial/archaeal amoA and nosZ) and 16S rRNA genes over two years after bioenergy crop establishment. The quantities of these N-cycling genes were relatively stable in all four crops, except maize (the only fertilized crop), in which the population size of AOB doubled in less than 3 months. The nitrification rate was significantly correlated with the quantity of ammonia-oxidizing archaea (AOA) not bacteria (AOB), indicating that archaea were the major ammonia oxidizers. Deep sequencing revealed high diversity of nifH, archaeal amoA, bacterial amoA, nosZ and 16S rRNA genes, with 229, 309, 330, 331 and 8989 OTUs observed, respectively. Rarefaction analysis revealed the diversity of archaeal amoA in maize markedly decreased in the second year. Ordination analysis of T-RFLP and pyrosequencing results showed that the N-transforming microbial community structures in the soil under these crops gradually differentiated. Thus far, our two-year study has shown that specific N-transforming microbial communities develop in the soil in response to planting different bioenergy crops, and each functional group responded in a different way. Our results also suggest that cultivation of maize with N-fertilization increases the abundance of AOB and denitrifiers, reduces the diversity of AOA, and results in significant changes in the structure of denitrification community.  相似文献   

14.
Ammonia oxidation is the first and rate-limiting step of nitrification and is performed by both ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the environmental drivers controlling the abundance, composition, and activity of AOA and AOB communities are not well characterized, and the relative importance of these two groups in soil nitrification is still debated. Chinese tea orchard soils provide an excellent system for investigating the long-term effects of low pH and nitrogen fertilization strategies. AOA and AOB abundance and community composition were therefore investigated in tea soils and adjacent pine forest soils, using quantitative PCR (qPCR), terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of respective ammonia monooxygenase (amoA) genes. There was strong evidence that soil pH was an important factor controlling AOB but not AOA abundance, and the ratio of AOA to AOB amoA gene abundance increased with decreasing soil pH in the tea orchard soils. In contrast, T-RFLP analysis suggested that soil pH was a key explanatory variable for both AOA and AOB community structure, but a significant relationship between community abundance and nitrification potential was observed only for AOA. High potential nitrification rates indicated that nitrification was mainly driven by AOA in these acidic soils. Dominant AOA amoA sequences in the highly acidic tea soils were all placed within a specific clade, and one AOA genotype appears to be well adapted to growth in highly acidic soils. Specific AOA and AOB populations dominated in soils at particular pH values and N content, suggesting adaptation to specific niches.  相似文献   

15.
氨氧化古菌及其对氮循环贡献的研究进展   总被引:6,自引:0,他引:6  
硝化作用先将氨氮氧化为亚硝酸盐氮并进一步氧化为硝酸盐氮,这一过程是氮进行全球生物化学循环的重要环节。随着氨氧化古菌(Ammonia-oxidizing archaea,AOA)基因组序列中氨单加氧酶编码基因(amoA)的发现以及AOA在实验室条件下的成功培养(包括分离纯化和富集培养),基于分子生物学的研究表明AOA在各种环境广泛存在,且多数生境中它的数量远远超过氨氧化细菌(Ammonia-oxidizing bacteria,AOB)。AOA相对于AOB在氮循环中的贡献也引起了多方面的论证和争论。本文就氨氧化古菌的生态分布、系统进化、生境存在丰度及参与硝化作用等进行综述,指出不同生境AOA的活性及其对氮循环的重要性仍需做进一步的研究。  相似文献   

16.
This study determined nitrification activity and nitrifier community composition in soils under stands of red alder (Alnus rubra) and Douglas fir (Pseudotsuga menziesii) at two sites in Oregon. The H.J. Andrews Experimental Forest, located in the Cascade Mountains of Oregon, has low net N mineralization and gross nitrification rates. Cascade Head Experimental Forest, in the Coast Range, has higher net N mineralization and nitrification rates and soil pH is lower. Communities of putative bacterial [ammonia-oxidizing bacteria (AOB)] and archaeal [ammonia-oxidizing archaea (AOA)] ammonia oxidizers were examined by targeting the gene amoA, which codes for subunit A of ammonia monooxygenase. Nitrification potential was significantly higher in red alder compared with Douglas-fir soil and greater at Cascade Head than H.J. Andrews. Ammonia-oxidizing bacteria amoA genes were amplified from all soils, but AOA amoA genes could only be amplified at Cascade Head. Gene copy numbers of AOB and AOA amoA were similar at Cascade Head regardless of tree type (2.3-6.0 x 10(6)amoA gene copies g(-1) of soil). DNA sequences of amoA revealed that AOB were members of Nitrosospira clusters 1, 2 and 4. Ammonia-oxidizing bacteria community composition, determined by terminal restriction fragment length polymorphism (T-RFLP) profiles, varied among sites and between tree types. Many of the AOA amoA sequences clustered with environmental clones previously obtained from soil; however, several sequences were more similar to clones previously recovered from marine and estuarine sediments. As with AOB, the AOA community composition differed between red alder and Douglas-fir soils.  相似文献   

17.
Yang  Anjing  Zhang  Xiaoli  Agogué  Hélène  Dupuy  Christine  Gong  Jun 《Annals of microbiology》2015,65(2):879-890
The spatial and temporal patterns of diversity, community structure, and their drivers are fundamental issues in microbial ecology. This study aimed to investigate the relative importance of spatial and seasonal controls on the distribution of nitrogen cycling microbes in sediments of estuarine tidal flats, and to test the hypothesis that metals impact the distribution of nitrogen-cycling microbes in the coastal system. Two layers of sediment samples were collected from three estuarine tidal flats of Laizhou Bay in 2010 winter and 2011 summer. The alpha diversities (Shannon and Simpson indices) and community structure of ammonia oxidizing bacteria (AOB) and archaea (AOA), denitrifier and anammox bacteria (AMB) were revealed using denaturing gradient gel electrophoresis and clone library analysis of amoA, nosZ and 16S rRNA gene markers. We found that both AOB and AMB exhibited distinct seasonal patterns in either alpha diversity or community turnover; AOA had different alpha diversities in two layers, but neither spatial nor seasonal patterns were found for their community turnover. However, no distinct spatiotemporal pattern was observed for either diversity or community composition of nosZ-type denitrifiers. For correlations between alpha diversities and environmental factors, significant correlations were found between AOB and ammonium, temperature and As, between denitrifiers and nitrite, salinity and Pb, and between AMB and Pb, ratio of organic carbon to nitrogen, ammonium, pH and dissolved oxygen. Salinity and sediment grain size were the most important factors shaping AOB and AOA communities, respectively; whereas AMB community structure was mostly determined by temperature, dissolved oxygen, pH and heavy metals As and Cd. These results stress that ammonia oxidizers, denitrifiers and anammox bacteria have generally different distributional patterns across time and space, and heavy metals might have contributed to their differentiated distributions in coastal sediments.  相似文献   

18.
s-Triazine herbicides are widely used for weed control, and are persistent in soils. Nitrification is an essential process in the global nitrogen cycle in soil, and involves ammonia-oxidizing Bacteria (AOB) and ammonia-oxidizing Archaea (AOA). In this study, we evaluated the effect of the s-triazine herbicide simazine on the nitrification and on the structure of ammonia-oxidizing microbial communities in a fertilized agricultural soil. The effect of simazine on AOB and AOA were studied by PCR-amplification of amoA genes of nitrifying Bacteria and Archaea in soil microcosms and denaturing gradient gel electrophoresis (DGGE) analyses. Simazine [50?μg g(-1) dry weight soil (d.w.s)] completely inhibited the nitrification processes in the fertilized agricultural soil. The inhibition by simazine of ammonia oxidation observed was similar to the reduction of ammonia oxidation by the nitrification inhibitor acetylene. The application of simazine-affected AOB community DGGE patterns in the agricultural soil amended with ammonium, whereas no significant changes in the AOA community were observed. The DGGE analyses strongly suggest that simazine inhibited Nitrosobacteria and specifically Nitrosospira species. In conclusion, our results suggest that the s-triazine herbicide not only inhibits the target susceptible plants but also inhibits the ammonia oxidation and the AOB in fertilized soils.  相似文献   

19.
The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H(2)O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira-like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号