首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 595 毫秒
1.
研究了烃的跨膜传输过程以及该过程的选择性对细菌降解偏好性的影响。以乳化烷烃实施跨膜传输试验,发现在18h内细胞中的烃含量持续增加。对于各单组分烃,跨膜传输效率没有很大差异;但是,在混合烃的竞争性传输试验中,膜表现出显著的选择性。以分离度衡量膜对4种链长不等烷烃的选择性,发现十六烷,十七烷,二十烷和二十一烷的分离系数分别为1.468,1.121,0.886和0.466,该选择性次序与菌株1.766对混合烃的降解次序相符,说明烃的跨膜传输是决定菌株底物偏好性的重要因素。  相似文献   

2.
【目的】挖掘高效烷烃降解菌,为后续石油烃污染修复工程提供优良菌种资源。【方法】以正十六烷为唯一碳源,将大庆石油污染土样中分离筛选到的高效烷烃降解菌经形态观察、生理生化试验、细胞化学组分及16SrRNA基因序列分析等方法进行初步鉴定与系统分类;同时通过单因素试验研究环境因素(温度、pH、接种量和转速)以及不同初始浓度的正十六烷(0.1%、0.3%、0.5%、1.0%、1.5%、2.0%,体积比)对菌株降解效率的影响。【结果】筛选到一株高效烷烃降解菌LAM1007,经初步鉴定该菌株为不动杆菌属(Acinetobacter)。该菌株在添加正十六烷的无机盐培养基中的最适降解条件为:30°C,pH 7.0,接种量1%(体积比),转速180 r/min,在该条件下浓度为0.3%(体积比)的正十六烷60 h内降解率高达90%。【结论】菌株LAM1007是一株在石油烃污染修复方面极具应用潜力的高效烷烃降解菌。  相似文献   

3.
从加油站附近土壤取样,以不同的柴油高级烃为碳源、菌体生物量(OD600)为指示,分离筛选柴油高级烃降解菌株,同时应用高效液相色谱(HPLC)、气相色谱-质谱(GC-MS)分析其降解率以及降解产物。结果筛选到一株对二苯并噻吩、芳香烃类都具有一定降解效果的菌株B5,它对二苯并噻吩的降解率为63.0%,芳香烃类降解率为83.4%。该菌株能将直链烷烃(如正十二烷)的末端羧基化形成羧酸类物质,在实际应用中具有提高油品润滑性质的潜力。经16S rRNA基因鉴定,该菌株为一株红平红球菌(Rhodococcus erythropolis),并被命名为R.erythropolis B5。  相似文献   

4.
摘要:【目的】石油污染严重威胁生态系统和生物圈,微生物修复被认为是一种安全有效可代替物化方法来治理石油污染的办法。本文对我们从石油污染土壤中分离获得的一株可分解正烷烃和原油的革兰氏阴性菌SJTD-2的理化性质和降解效能进行了研究。【方法】利用菌株表型和生理性质、16S rRNA序列比较分析与进化树绘制,确定新分离菌株SJTD-2的种属;测定菌株SJTD-2的生长曲线,确定其利用不同长度烷烃和原油为单一碳源的效能;利用GC-MS检测烷烃类物质的残留量,确定菌株SJTD-2降解烷烃和原油SJTD-2的降解效率和降解周期。【结果】菌株表型与16S rRNA序列比较及进化树比对分析结果显示,菌株SJTD-2与假单胞菌属的亲缘关系十分接近,为铜绿假单胞菌。菌株SJTD-2 可有效分解C10到C26的中链和长链烷烃及原油,利用它们作为其单一碳源生长;该菌株对长链烷烃(C18-C22)的利用效果较中链烷烃好,其中正二十二烷被认为是其最佳碳源。48 h内,该菌株可完全降解500 mg/L正二十二烷;72h 后,2 g/L的正二十二烷可几乎被菌株全部分解利用。此外,菌株SJTD-2在7 d内可将2 g/L的原油分解88%以上。【结论】与现有其它烷烃降解菌相比,铜绿假单胞菌SJTD-2具有突出的长链烷烃与原油降解效能及耐受能力,该菌株的发现与研究将有助于烷烃降解机制的研究和环境修复的进程。  相似文献   

5.
本研究旨在从土壤中筛选高效石油烃降解菌株,并对其系统分类和降解特性进行研究,为石油污染的原位修复奠定基础.该研究从滨州油井溢油污染土壤样品中分离得到一株高效石油烃降解菌株BZ-15,对菌株BZ-15进行形态观察、16S r RNA基因序列分析及系统发育树分析;对该菌株的生长特性进行研究;通过GC-MS分析其对原油组分中不同碳原子饱和烃的降解特性;同时研究吐温-20对其生长及降解特性的影响;对该菌株中的烷烃羟化酶基因alk M进行了克隆.结果表明,菌株BZ-15为不动杆菌属(Acinetobacter sp.)细菌,在LB培养基中其代时为3.25 h,添加吐温-20代时为2.67 h,吐温-20可促进菌株BZ-15生长;该菌株可降解C13~C28碳链长度饱和烃,饱和烃降解率为61.0%,添加吐温-20饱和烃降解效率为52.2%,吐温-20可抑制菌株BZ-15降解饱和烃;菌株BZ-15存在烷烃羟化酶基因alk M,通过末端氧化途径对饱和烃进行降解.  相似文献   

6.
以正十六烷为唯一碳源,从长期受石油污染的土壤中筛选到一株高效降解正十六烷的菌株LAM0048。通过形态学观察、生理生化试验、细胞化学组分分析、16S rRNA基因序列分析、细胞脂肪酸和极性脂试验,确定其属于棒杆菌亚目(Corynebacterineae)、诺卡菌科(Nocardiaceae)、戈登氏属(Gordonia),且可能为戈登氏属的一株新种。采用单因素实验对菌株LAM0048在无机盐培养基中降解正十六烷的降解率进行初步探讨,发现该菌株能在以正十六烷为唯一碳源的培养基中生长,菌株LAM0048能够在36 h内完全降解0.05%(V/V)的正十六烷,当烷烃浓度达到1.0%(V/V)时,降解率达46.4%。结果表明LAM0048是一株具有耐受高浓度烷烃的石油降解菌,在石油污染环境的微生物修复中具有一定的应用潜力。  相似文献   

7.
红树林湿地烷烃降解菌的分离筛选   总被引:1,自引:0,他引:1  
李玫  廖宝文 《生态科学》2013,32(1):40-43
从受石油污染的红树林湿地土样中分离筛选对烷烃具较高降解能力的细菌菌株, 以期应用于被石油污染滨海湿地的生物修复。采用富集培养方法, 富集、分离和筛选烷烃降解菌;观察各菌落及菌体形态特征;测试菌株Z2的生理生化特征, 并用16S rDNA序列分析方法进行该菌种鉴定。分离筛选得到Z1、Z2和Z3这3个能以正十六烷为唯一碳源生长的菌株, 其降解率依次为63.4%、82.5%和78.3%, 其中菌株Z2的降解率最高。经过形态学观察、生理生化特性实验和16S rDNA序列分析鉴定, 菌株Z2为不动杆菌(Acinetobacter sp.)。  相似文献   

8.
【背景】石油被称为“液体黄金”,人类的工业生产活动在利用其创造巨大社会价值的同时,也对自然环境造成了严重的污染。微生物修复技术是现阶段治理石油类污染有效的手段之一,具有经济、高效、无二次污染等优点。【目的】从受石油污染的土壤中分离高效降解长链烷烃正二十四烷的菌株,探究其降解特性及在微生物修复中的应用前景。【方法】通过形态学及16S rRNA基因测序进行菌株鉴定,采用气相色谱法检测菌株对正二十四烷的降解效果,并结合气相色谱-质谱(gas chromatography-mass spectrometer, GC-MS)分析降解中间产物以推测其潜在代谢途径。【结果】筛选到一株可高效降解正二十四烷的菌株C24MT1,经鉴定为不动杆菌属(Acinetobacter)。该菌株最适降解条件为30 °C、pH 9.0、盐度2 g/L,该条件下生长7 d对9 g/L正二十四烷的降解率高达86.63%;与此同时,菌株在强碱性环境(pH 11.0)中生长良好(OD600为0.39)并保持较高烷烃降解率(75.38%),对极端环境具备较强的耐受能力;对降解中间产物进行分析,推断菌株代谢长链烷烃正二十四烷的途径可能包括末端氧化及次末端氧化。【结论】不动杆菌C24MT1具有良好的环境适应能力及烷烃降解能力,在后续微生物菌剂开发和石油类污染土壤的环境修复领域具有巨大的应用前景。本研究可为盐碱地区高浓度石油类污染土壤的修复提供优良菌种,并进一步丰富石油烃类生物降解的菌种资源库。  相似文献   

9.
从中原油田高温采出液中分离到一株能在55℃高温条件下利用石油烃类生长的耐高温菌株P98-18A1.基于表型、生理生化特性和16S rDNA序列分析,初步鉴定该菌株为芽孢杆菌属(Bacillus sp.).通过菌株对原油及部分烷烃降解试验得出,该菌株在适宜条件下,能有效地利用C6-C16的正构烷烃生长,对链长大于C16的烷烃在某种程度上具有一定的选择性利用能力.  相似文献   

10.
北极表层海水中氯代十六烷降解菌的多样性   总被引:1,自引:0,他引:1  
[目的]为了研究北极地区表层海水中氯代十六烷(C16H33Cl)降解菌的多样性,并获得新的卤代烃降解菌资源.[方法]以C16H33Cl为唯一碳源和能源在4℃和250℃下对表层海水样品进行富集,通过平板分离鉴定可培养菌株,并验证其降解能力;同时利用变性梯度凝胶电泳(DGGE)分析降解菌群结构.[结果]从12个北极表层海水样品中富集分离得到112株可培养菌株.经过降解实验验证,发现19株菌株能够降解氯代十六烷,其中食烷菌(Alcanivorax)、红球菌(Rhodococcus)表现出很好的乳化和降解现象,海杆菌(Marinobacter)也有较好的降解效果.DGGE分析显示,富集驯化的降解菌群中主要优势菌为Alcanivorax,Parvibaculum和Thioclava属的菌株.[结论]北极海水中卤代烃降解菌主要是α-proteobacteria,γ-proteobacteria,Actinobacteria和Bacteroidetes.文章首次报道了北极海水卤代烷烃降解菌多样性,研究结果对于认识北极环境中的降解菌资源与生物多样性有参考价值.  相似文献   

11.
Selective transport and accumulation of n-alkanes by Rhodococcus erythropolis S+14He was studied by growing cells on n-hexadecane, n-octadecane or the branched alkane pristane, and on mixtures of hydrocarbons. Ultrastructural analysis by transmission electron microscopy (TEM) revealed hydrocarbon inclusion bodies present in cells grown on the three alkanes, but not in cells grown on soluble media or exposed to nonmetabolized 2,2,4,4,6,8,8-heptamethylnonane (HMN). n-Hexadecane had the highest rates of accumulation within the cells and higher overall consumption rates relative to the other alkanes. These rates decreased when the molar concentration of n-hexadecane was decreased in hydrocarbon mixtures, but at the same time the accumulation of n-hexadecane in intracellular inclusions became increasingly selective. Sodium azide significantly inhibited the accumulation of n-hexadecane, consistent with an active transport mechanism for accumulation. These results indicate that R. erythropolis S+14He is able to selectively discriminate and preferentially transport n-hexadecane from mixtures of structurally similar alkanes into intracellular inclusions by an energy-driven transport system. This selective membrane transport of hydrocarbon isomers has potential application for separations, bioprocessing, and the development of novel biosensors.  相似文献   

12.
An alkane-biodegrading bacterium identified as Rhodococcus erythropolis (NTU-1 strain) was isolated from petroleum contaminated soil. The major purpose of the current research was to study the issues regarding biofloccules formation and cell surface hydrophobicity of NTU-1. When long-chain alkanes are supplied as the carbon source, NTU-1 tends to form biofloccules and remove significant amount of alkanes by biodegradation and physical trapping. Approximately, more than 95% of each alkane could be efficiently removed within 40–68 h. The bioremediation process was accompanied by formation of biofloccules with size ranging from 0.1 to 2 cm in diameter. The MATH test and the hydrophobic slide experiment suggested that NTU-1 might possess a hydrophobic cell surface which is one of the important factors in the formation of biofloccules. It provides the interaction of cells with hydrocarbon droplets effectively and further aggregate into larger clumps. Besides, when grown on n-hexadecane, experimental results revealed that there were at least 11 different growth-associated fatty acids produced, with carbon chain length ranging from 12 to 24, and cell surface hydrophobicity was enhanced via accumulation at the cell surface.  相似文献   

13.
The effect of the phorbol diester 12-0-tetradecanoylphorbol-13-acetate (TPA) on hexose transport in undifferentiated and differentiated BALB/c 3T3 preadipose cells was studied. Additon of TPA to undifferentiated or fully differentiated cultures resulted in an increased rate of both 2-deoxyglucose uptake and 3-0-methylglucose transport; the time course and maximal stimulation differed for each type of culture and for each hexose. In confluent, undifferentiated cells, half-maximal stimulation of 2-deoxyglucose uptake occurred at 3 nM TPA, while the half-maximal stimulation of 3–0-methylglucose occurred at 30 nM. Epidermal growth factor and fetal bovine serum increased 2-deoxyglucose uptake in undifferentiated cells, while insulin did not. Insulin did, however, stimulate 3–0-methylglucose transport in differentiated cells. From dose-response curves in differentiated cells, halfmaximally effective concentrations were 0.17 nM for insulin and 30 nM for TPA. At optimal concentrations and incubation times for each, TPA was significantly more effective than insulin in stimulating hexose transport in differentiated cells. It was also shown that insulin could further increase hexose transport in maximally stimulated TPA-treated cells. Cycloheximide inhibited by 75% the increase in hexose transport by TPA in differentiated cells, while having no effect on the response of these cells to insulin. In differentiated cells, chronic exposure to insulin abolished the ability of these cells to respond acutely to insulin addition but they could still respond to TPA. On the other hand, differentiated cells exposed continuously to TPA for 5 days retained the ability to activate 3–0-methylglucose transport after either TPA or insulin addition. These results demonstrate that TPA can stimulate hexose transport directly in both undifferentiated and differentiated 3T3 cells and suggest that TPA and insulin affect transport by different mechanisms.  相似文献   

14.
The effect of salt and pH titration on the selectivity of spin-labeled analogues of phosphatidic acid, phosphatidylserine, phosphatidylcholine, and stearic acid for the nicotinic acetylcholine receptor (nAcChoR) reconstituted into dioleoylphosphatidylcholine was examined at 0 degrees C using electron spin resonance spectroscopy. The order of selectivity at pH 7.4 and 0 mM NaCl was phosphatidylserine > stearic acid > phosphatidic acid > phosphatidylcholine. The addition up to 2 M NaCl or titration of pH from 5.0 to > 9.0 did not alter the selectivity of the phospholipids for the nAcChoR. For stearic acid, conversely, titration of pH from 5.0 to 9.0 at 0 mM NaCl and titration of NaCl from 0 to 2 M at pH 9.0 both increased selectivity for the nAcChoR. It is concluded that electrostatic interactions do not account for the selectivity of the negatively charged phospholipids, phosphatidylserine, and phosphatidic acid for the nAcChoR. This is consistent with the known orientation of the transmembrane sequences M1 and M4, which predicts a balance in the number of negative and positive charges in the lipid-protein interface and suggests that the two positive charges on each M3 helix are not exposed to the lipid-protein interface.  相似文献   

15.
The selectivity of electrodes of solar cells is a critical factor that can limit the overall efficiency. If the selectivity of an electrode is not sufficient both electrons and holes recombine at its surface. In materials with poor transport properties such as in organic solar cells, these surface recombination currents are accompanied by large gradients of the quasi‐Fermi energies as the driving force. Experimental results from current–voltage characteristics, advanced photo‐ and electroluminescence as well as charge extraction of three different photoactive materials are shown and compared to drift‐diffusion simulations. It can be concluded that in cases of electrodes with reduced selectivity the decrease of the open‐circuit voltage can be divided into two distinct contributions, the reduction of the overall steady‐state charge carrier density and the gradients of the quasi‐Fermi energies. The results clearly show that for photoactive layers with poor transport properties, the gradient of the quasi‐Fermi energy in the vicinity of the contact is the main contribution to the loss in open‐circuit voltage. For imbalanced mobilities, this gives rise to the phenomenon that it is more challenging to realize a selective contact for the less mobile charge carrier, i.e., the hole contact in most organic solar cells.  相似文献   

16.
Mammalian phosphatidylinositol transfer protein alpha (PITP) is an intracellular lipid transporter with a binding site that can accommodate a single molecule of phosphatidylinositol (PI) or phosphatidylcholine (PC). Phospholipids are a heterogeneous population of molecular species that can be distinguished by their characteristic headgroups as well as their acyl chains at the sn-1 and sn-2 position. In this study, we have defined the acyl chain preference for PITPalpha when presented with a total population of cellular lipids. Recombinant PITPalpha loaded with bacterial lipid, phosphatidylglycerol (PG), was incubated with permeabilised HL60 cells, followed by recovery of PITPalpha by affinity chromatography. Lipids extracted from the PITPalpha were analysed by tandem electrospray ionisation mass spectrometry (ESI-MS) and showed total exchange of acquired bacterial lipids for HL60 cellular PI and PC. Detailed comparison of the molecular species composition of bound phospholipids with those in whole cells permitted the assessment of selectivity of acyl chain binding. For both phospholipid classes, progressive fractional enrichments in bound species possessing shorter acyl chains were apparent with a preference order: 16:1>16:0>18:1>18:0>20:4. A recapitulation of this specificity order was also seen from a dramatically altered range of molecular species present in HL60 cells enriched with arachidonate over many weeks of culture. We speculate that short-chain, saturate-binding preferences under both conditions may reflect properties in vivo. This is consistent with target cell membranes actively remodelling newly delivered phospholipids after transport rather than relying on the transport of the specific molecular species conventionally found in mammalian membranes.  相似文献   

17.
Siddiqui MS  Bhaumik B 《PloS one》2011,6(10):e24997
Decades of experimental studies are available on disparity selective cells in visual cortex of macaque and cat. Recently, local disparity map for iso-orientation sites for near-vertical edge preference is reported in area 18 of cat visual cortex. No experiment is yet reported on complete disparity map in V1. Disparity map for layer IV in V1 can provide insight into how disparity selective complex cell receptive field is organized from simple cell subunits. Though substantial amounts of experimental data on disparity selective cells is available, no model on receptive field development of such cells or disparity map development exists in literature. We model disparity selectivity in layer IV of cat V1 using a reaction-diffusion two-eye paradigm. In this model, the wiring between LGN and cortical layer IV is determined by resource an LGN cell has for supporting connections to cortical cells and competition for target space in layer IV. While competing for target space, the same type of LGN cells, irrespective of whether it belongs to left-eye-specific or right-eye-specific LGN layer, cooperate with each other while trying to push off the other type. Our model captures realistic 2D disparity selective simple cell receptive fields, their response properties and disparity map along with orientation and ocular dominance maps. There is lack of correlation between ocular dominance and disparity selectivity at the cell population level. At the map level, disparity selectivity topography is not random but weakly clustered for similar preferred disparities. This is similar to the experimental result reported for macaque. The details of weakly clustered disparity selectivity map in V1 indicate two types of complex cell receptive field organization.  相似文献   

18.
The molecular heterogeneity of platelet-activating factor (PAF) synthesized by unstimulated and Ca2+ ionophore (A23187)-stimulated PMN from rat, mouse, and guinea pig and by rat basophilic leukemia (RBL) cells was investigated by gas chromatography-negative ion chemical ionization mass spectrometry. Several molecular species of PAF ranging from C14:0 to C19:0 were detected in all of the cells studied. PAF produced by each cell type exhibited a unique pattern of molecular species distribution. Although C16:0 was the major PAF molecular species of rat PMN and RBL cells representing 96% and 85% of the total PAF, respectively, PAF from mice PMN contained 81% of C16:0, 10% of C18:1, and 6% of C18:0. Alternatively, A23187-stimulated guinea pig PMN yielded PAF molecular species 35% in C16:0, 35% in C17:0, 8% in C18:1, and 3% in C18:0. Small but significant differences in the PAF molecular species distribution of resting and ionophore stimulated cells were also observed. In contrast to the PAF molecular species composition, the precursor 1-O-alkyl-2-acyl-glycero-3-phosphocholine of all the cell types was predominantly hexadecyl (C16:0) alkyl chain in the sn-1 position, representing 60 to 80% of the total 1-O-alkyl-2-acyl-glycero-3-phosphocholine. Thus, these results not only indicate a high degree of selectivity for utilization of precursor substrates for PAF biosynthesis, but also demonstrate that the selectivity is species specific.  相似文献   

19.
Function of the transport complex TAP in cellular immune recognition   总被引:9,自引:0,他引:9  
The transporter associated with antigen processing (TAP) is essential for peptide loading onto major histocompatibility complex (MHC) class I molecules by translocating peptides into the endoplasmic reticulum. The MHC-encoded ABC transporter works in concert with the proteasome and MHC class I molecules for the antigen presentation on the cell surface for T cell recognition. TAP forms a heterodimer where each subunit consists of a hydrophilic nucleotide binding domain and a hydrophobic transmembrane domain. The transport mechanism is a multistep process composed of an ATP-independent peptide association step which induces a structural reorganization of the transport complex that may trigger the ATP-driven transport of the peptide into the endoplasmic reticulum lumen. By using combinatorial peptide libraries, the substrate selectivity and the recognition principle of TAP have been elucidated. TAP maximizes the degree of substrate diversity in combination with high substrate affinity. This ABC transporter is also unique as it is closely associated with chaperone-like proteins involved in bonding of the substrate onto MHC molecules. Most interestingly, virus-infected and malignant cells have developed strategies to escape immune surveillance by affecting TAP expression or function.  相似文献   

20.
The accumulation of chromium in Spirodela polyrhiza was investigated in the presence and absence of exogenously applied sulphate. Precultivation (10 d) at minimum sulphate concentration (0.013 m m versus 1 m m in controls) enhanced the rate of chromium accumulation. This effect was caused by the increased number of sulphate transporters which transport chromate into cells. Chromate and sulphate compete for the available sulphate transporters. The kinetics of reduction Cr(VI)→Cr(V) was investigated by l -band electron paramagnetic resonance (EPR) spectroscopy. The kinetic model developed previously (Appenroth et al., Journal of Inorganic Biochemistry 78, 235–242, 2000) was refined and extended to include chromate transport and reduction in the presence of competing ions. The following conclusions were drawn from the fitting procedure: without simultaneously applied sulphate, the rate constant of Cr(VI) transport from apoplast into plant cells and the rate constant of Cr(VI) to Cr(V) reduction within the apoplast are comparable (7.0 versus 5.7 h−1) demonstrating that these two processes are competing. Moreover, the rate constant of reduction Cr(V)→Cr(III) is much lower within cells than in apoplast (0.39 versus 7.0 h−1) showing that Cr(V) is stabilized in the symplast. The rate of transport of Cr(VI) into plant cells is at least one order of magnitude higher than that of Cr(V) or Cr(III). The treatment with sulphate (10 m m ) decreases the rate constant of the transport of Cr(VI) into cells (2.0 h−1) confirming the competition of chromate and sulphate for the same transporters. Simultaneously, the rate constant of Cr(V)→Cr(III) reduction is increased in the apoplast (by the factor of 3) and decreased in the symplast (by the factor of 5). Treatment with higher sulphate concentrations (100 m m ) increases the accumulation of chromium by enhancing the rate constant of Cr(VI) transport into cells leaving other processes essentially unchanged. We suggest that 100 m m sulphate opens a new pathway for chromate transport into cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号