首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, designated GalNAc-T3, exhibits unique functions. Specific acceptor substrates are used by GalNAc-T3 and not by other GalNAc-transferases. The expression pattern of GalNAc-T3 is restricted, and loss of expression is a characteristic feature of poorly differentiated pancreatic tumors. In the present study, a sixth human UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, designated GalNAc-T6, with high similarity to GalNAc-T3, was characterized. GalNAc-T6 exhibited high sequence similarity to GalNAc-T3 throughout the coding region, in contrast to the limited similarity that exists between homologous glycosyltransferase genes, which is usually restricted to the putative catalytic domain. The genomic organizations of GALNT3 and GALNT6 are identical with the coding regions placed in 10 exons, but the genes are localized differently at 2q31 and 12q13, respectively. Acceptor substrate specificities of GalNAc-T3 and -T6 were similar and different from other GalNAc-transferases. Northern analysis revealed distinct expression patterns, which were confirmed by immunocytology using monoclonal antibodies. In contrast to GalNAc-T3, GalNAc-T6 was expressed in WI38 fibroblast cells, indicating that GalNAc-T6 represents a candidate for synthesis of oncofetal fibronectin. The results demonstrate the existence of genetic redundancy of a polypeptide GalNAc-transferase that does not provide full functional redundancy.  相似文献   

2.
3.
In humans, the poly(A)-binding proteins (PABPs) comprise a small nuclear isoform and a conserved gene family that displays at least three functional proteins: PABP1, inducible PABP (iPABP), and PABP3, plus four pseudogenes (1, 2, 3, and PABP4). In situ hybridization of PABP3 cDNA as the probe on metaphasic chromosomes have revealed five possible loci for this gene family at 2q21-q22, 13q11-q12, 12q13.3-q15, 8q22, and 3q24-q25. Amplifications of specific DNA fragments from a human-rodent somatic cell hybrid panel have allowed us to associate PABP1 and PABP3 with 8q22 and 13q11-q12, respectively. The iPABP gene has been assigned to chromosome 1. This result, compared with radiation hybrid database information, strengthens the location of this gene to 1p32-p36. The pseudogenes PABP4, 1, and 2 have been assigned to chromosomes 15, 4, and 14, respectively. Three loci detected on chromosome spreads are not associated with any amplified fragment. They might represent other related PABP genes not yet identified.  相似文献   

4.
Human genomic DNAs for the eosinophil granule proteins, eosinophil-derived neurotoxin (EDN) and eosinophil cationic protein (ECP), were isolated from genomic libraries. Alignment of EDN (RNS2) and ECP (RNS3) gene sequences demonstrated remarkable nucleotide similarities in noncoding sequences, introns, and flanking regions, as well as in the previously known coding regions. Detailed examination of the 5'-noncoding regions yielded putative TATA and CAAT boxes, as well as similarities to promoter motifs from unrelated genes. A single intron of 230 bases was found in the 5' untranslated region and we suggest that a single intron in this region and an intronless coding region are features common to many members of the RNase gene superfamily. The RNS2 and RNS3 genes were localized to the q24-q31 region of human chromosome 14. It is likely that these two genes arose as a consequence of a gene duplication event that took place approximately 25-40 million years ago and that a subset of anthropoid primates possess both of these genes or closely related genes.  相似文献   

5.
A novel family of bromodomain genes   总被引:8,自引:0,他引:8  
Jones MH  Hamana N  Nezu Ji  Shimane M 《Genomics》2000,63(1):40-45
  相似文献   

6.
7.
The Drosophila l(2)35Aa gene encodes a UDP-N-acetylgalactosamine: Polypeptide N-acetylgalactosaminyltransferase, essential for embryogenesis and development (J. Biol. Chem. 277, 22623–22638; J. Biol. Chem. 277, 22616–22). l(2)35Aa, also known as pgant35A, is a member of a large evolutionarily conserved family of genes encoding polypeptide GalNAc-transferases. Phylogenetic and functional analyses have proposed that subfamilies of orthologous GalNAc-transferase genes are conserved in species, suggesting that they serve distinct functions in vivo. Based on sequence alignments, pgant35A and human GALNT11 are thought to belong to a distinct subfamily. Recent in vitro studies have shown that pgant35A and pgant7, encoding enzymes from different subfamilies, prefer different acceptor substrates, whereas the orthologous pgant35A and human GALNT11 gene products possess, 1) conserved substrate preferences and 2) similar acceptor site preferences in vitro. In line with the in vitro pgant7 studies, we show that l(2)35Aa lethality is not rescued by ectopic pgant7 expression. Remarkably and in contrast to this observation, the human pgant35A ortholog, GALNT11, was shown not to support rescue of the l(2)35Aa lethality. By use of genetic “domain swapping” experiments we demonstrate, that lack of rescue was not caused by inappropriate sub-cellular targeting of functionally active GalNAc-T11. Collectively our results show, that fly embryogenesis specifically requires functional pgant35A, and that the presence of this gene product during fly embryogenesis is functionally distinct from other Drosophila GalNAc-transferase isoforms and from the proposed human ortholog GALNT11.  相似文献   

8.
The completed fruit fly genome was found to contain up to 15 putative UDP-N-acetyl-alpha-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase (GalNAc-transferase) genes. Phylogenetic analysis of the putative catalytic domains of the large GalNAc-transferase enzyme families of Drosophila melanogaster (13 available), Caenorhabditis elegans (9 genes), and mammals (12 genes) indicated that distinct subfamilies of orthologous genes are conserved in each species. In support of this hypothesis, we provide evidence that distinctive functional properties of Drosophila and human GalNAc-transferase isoforms were exhibited by evolutionarily conserved members of two subfamilies (dGalNAc-T1 (l(2)35Aa) and GalNAc-T11; dGalNAc-T2 (CG6394) and GalNAc-T7). dGalNAc-T1 and novel human GalNAc-T11 were shown to encode functional GalNAc-transferases with the same polypeptide acceptor substrate specificity, and dGalNAc-T2 was shown to encode a GalNAc-transferase with similar GalNAc glycopeptide substrate specificity as GalNAc-T7. Previous data suggested that the putative GalNAc-transferase encoded by l(2)35Aa had a lethal phenotype (Flores, C., and Engels, W. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 2964-2969), and this was substantiated by sequencing of three lethal alleles l(2)35Aa(HG8), l(2)35Aa(SF12), and l(2)35Aa(SF32). The finding that subfamilies of GalNAc-transferases with distinct catalytic functions are evolutionarily conserved stresses that GalNAc-transferase isoforms may serve unique biological functions rather than providing functional redundancy, and this is further supported by the lethal phenotype of l(2)35Aa.  相似文献   

9.
Subtractive hybridisation was used to select for genes which are differentially expressed between a highly metastatic human colon carcinoma cell line, KM12SM, and the isogenetic non-metastatic cell line, KM12C. This led to the isolation of cDNA clones for a novel human adenosine 5'-phosphosulphate kinase/ATP sulphurylase (PAPS synthetase). Northern hybridisation revealed a single 4.2 kb mRNA species which showed an approximately 20-fold higher level of expression in the non-metastatic cell line than in the metastatic cell line. The overlapping cDNA clones together covered 3,774 bp including the entire coding region of 1,842 bp encoding a protein of 614 amino acids (calculated molecular mass of 69,496 Da). The protein contains consensus sequences for APS kinase and ATP sulphurylase, in its amino- and carboxy-terminal regions, respectively, as well as other sequences that are highly conserved amongst ATP sulphurylases and APS kinases. Interestingly, consensus sequences for GTPase activity were also identified, indicating that enzyme activity may be regulated by an intrinsic GTPase mechanism. Overall the new protein is 78% homologous with a previously described human PAPS synthetase (PAPSS1) indicating that we have identified the second member of a gene family which we have provisionally named PAPSS2. The gene locus for PAPSS2 was identified on chromosome 10 at 10q23.1-q23.2. This locus has synteny with the mouse brachymorphic gene recently identified as a PAPS synthetase (SK2). PAPSS2 appears to be the human homologue of this gene and thus PAPSS2 is likely to be important in human skeletogenesis.  相似文献   

10.
In ethnic Russians, MHC (HLA) was shown to be the major locus determining the predisposition to type 1 diabetes mellitus (T1DM). To map the regions linked to T1DM, families with concordant or discordant sib pairs were selected from the Russian population of Moscow. With these families, linkage to T1DM was demonstrated for CTLA4 (IDDM12, 2q32.1-q33), which codes for a T-cell surface antigen, and PDCD2 (IDDM8, 6q25-q27), which is homologous to the mouse programmed cell death activator gene. With polymorphic microsatellites, regions 3q21-q25 (IDDM9) and 10p12.2 (IDDM10) were also linked to T1DM. Case/control and family studies of the polymorphic markers from region 11p13 revealed a new T1DM-associated locus in the vicinity of the catalase gene (CAT); linkage to this locus was not reported earlier for other populations. Diabetic polyneuropathy (DPN) proved to be associated with single-nucleotide polymorphisms Ala(-9)Val (SOD2), Arg213Gly (SOD3), and T(-262)C (CAT) and with a polymorphic microsatellite of the NOS2 promoter. Hence oxidative stress, which results from hyperglycemia, increased mitochondrial production of superoxide radicals, and insufficient activities of antioxidative enzymes, was assumed to play an important part in DPN development in T1DM. Diabetic nephropathy (DN) showed no association with the antioxidative enzyme genes. However, the association was observed for the insertion/deletion (I/D) polymorphism of ACE and the ecNOS34a/4b polymorphism of NOS3, two genes involved in controlling vascular tonicity, and for the I/D polymorphism of APOB and the epsilon 2/epsilon 3/epsilon 4 polymorphism of APOE, two genes involved in lipid transport. In addition, polymorphic microsatellites of chromosome 3q21-q25 proved to be closely associated with DN. The tightest association was established for D3S1550, carriers of allele 12 or genotype 12/14 having high risk of DN (OR = 4.85 and 6.25, respectively). Region 3q21-q25 was assumed to contain a major gene determining DN development, while the other DN-associated genes mostly affect the progression of DN.  相似文献   

11.
Seven genes were assigned by molecular cytogenetic methods to bovine chromosome 5. To accomplish this, specific primers were either publicly available or were designed from highly conserved regions of the publicly available mammalian gene sequences. The identity of the amplified segments was verified by sequencing and alignment with the published sequences. The optimized primers that amplified the desired bovine genes were used for screening a bovine bacterial artificial chromosome library. The positive clones were localized to a specific band of bovine chromosome 5 by fluorescence in situ hybridization. The genes HOXC4, SP1 and IGFBP6 were localized to band q21, COL2A1 was localized to bands q21-q23, IGF1 was localized to band q26, MB to band q31 and the gene CYP2D6 was localized to band q35. The cytogenetic assignment of SP1, IGFBP6, COL2A1, IGF1, MB and CYP2D6 is first reported here and the assignment of HOXC4 refines the previous assignment of this gene. The identification and localization of these genes further support the development of the human to bovine comparative map through characterizing the homologous segments conserved in the evolution of these species. This information will be useful for the future localization of genes that affect economically important traits in bovines.  相似文献   

12.
13.
14.
A repressor element in the 5'-untranslated region of human Pax5 exon 1A   总被引:4,自引:0,他引:4  
Five members of the RecQ helicase family, RECQL, WRN, BLM, RTS and RECQL5, have been found in human and three of them (WRN, BLM and RTS) were disclosed to be the genes responsible for Werner, Bloom and Rothmund–Thomson syndromes, respectively. RECQL5 (RecQ helicase protein-like 5) was isolated as the fifth member of the family in humans through a search of homologous expressed sequence tags. The gene is expressed with at least three alternative splicing products, , β and γ. Here, we isolated mouse RECQL5β and determined the DNA sequence of full-length cDNA as well as the genome organization and chromosome locus. The mouse RECQL5β gene consists of 2949 bp coding 982 amino acid residues. Comparison of amino acid sequence among human (Homo sapiens), mouse (Mus musculus), Drosophila melanogaster and Caenorhabditis elegans RECQL5β homologs revealed three portions of highly conserved regions in addition to the helicase domain. Nineteen exons are dispersed over 40 kbp in the genome and all of the acceptor and donor sites for the splicing of each exon conform to the GT/AG rule. The gene is localized to the mouse chromosome 11E2, which has a syntenic relation to human 17q25.2-q25.3 where human RECQL5β exists. Our genetic characterizations of the mouse RECQL5β gene will contribute to functional studies on the RECQL5β products.  相似文献   

15.
Since in rodents the kallikreins are represented by a large multi-gene family, the restriction of this family in humans to three genes is somewhat surprising. In an effort to identify new human kallikrein genes, we examined a genomic area of about 300 kilobases on chromosome 19q13.3-q13.4, a region that contains most of the currently known kallikreins. By using the positional candidate approach, we were able to identify a new gene named KLK-L2 (for kallikrein- like gene 2). Screening of human EST libraries allowed us to delineate the full genomic and cDNA structure of the new gene. KLK-L2 consists of 5 coding exons and 4 introns and has significant similarities to other members of the kallikrein multi-gene family. Homology studies suggest that the protein is likely secreted. KLK-L2 is expressed mainly in breast, brain, and testis and to a lesser extent in many other tissues. KLK-L2 is up-regulated by estrogens and progestins in the breast cancer cell line BT-474.  相似文献   

16.
GABA(C) receptors mediate rapid inhibitory neurotransmission in retina. We have mapped, in detail, the human genes which encode the three polypeptides that comprise this receptor: rho1 (GABRR1), rho2 (GABRR2) and rho3 (GABRR3). We show that GABRR1 and GABRR2 are located close together, in a region of chromosome 6q that contains loci for inherited disorders of the eye, but that GABRR3 maps to chromosome 3q11-q13.3. Our mapping data suggest that the rho polypeptide genes, which are thought to share a common ancestor with GABA(A) receptor subunit genes, diverged at an early stage in the evolution of this gene family.  相似文献   

17.
Glucuronidation is a major pathway of androgen metabolism and is catalyzed by UDP-glucuronosyltransferase (UGT) enzymes. UGT2B15 and UGT2B17 are 95% identical in primary structure, and are expressed in steroid target tissues where they conjugate C19 steroids. Despite the similarities, their regulation of expression are different; however, the promoter region and genomic structure of only the UGT2B17 gene have been characterizedX to date. To isolate the UGT2B15 gene and other novel steroid-conjugating UGT2B genes, eight P-1-derived artificial chromosomes (PAC) clones varying in length from 30 kb to 165 kb were isolated. The entire UGT2B15 gene was isolated and characterized from the PAC clone 21598 of 165 kb. The UGT2B15 and UGT2B17 genes are highly conserved, are both composed of six exons spanning approximately 25 kb, have identical exon sizes and have identical exon-intron boundaries. The homology between the two genes extend into the 5'-flanking region, and contain several conserved putative cis-acting elements including Pbx-1, C/EBP, AP-1, Oct-1 and NF/kappaB. However, transfection studies revealed differences in basal promoter activity between the two genes, which correspond to regions containing non-conserved potential elements. The high degree of homology in the 5'-flanking region between the two genes is lost upstream of -1662 in UGT2B15, and suggests a site of genetic recombination involved in duplication of UGT2B genes. Fluorescence in situ hybridization mapped the UGT2B15 gene to chromosome 4q13.3-21.1. The other PAC clones isolated contain exons from the UGT2B4, UGT2B11 and UGT2B17 genes. Five novel exons, which are highly homologous to the exon 1 of known UGT2B genes, were also identified; however, these exons contain premature stop codons and represent the first recognized pseudogenes of the UGT2B family. The localization of highly homologous UGT2B genes and pseudogenes as a cluster on chromosome 4q13 reveals the complex nature of this gene locus, and other novel homologous UGT2B genes encoding steroid conjugating enzymes are likely to be found in this region of the genome.  相似文献   

18.
To date, few mutations are described to underlie highly-elevated HDLc levels in families. Here we sequenced the coding regions and adjacent sequence of the LIPG, CETP, and GALNT2 genes in 171 unrelated Dutch Caucasian probands with HDLc≥90th percentile and analyzed segregation of mutations with lipid phenotypes in family members. In these probands, mutations were most frequent in LIPG (12.9%) followed by GALNT2 (2.3%) and CETP (0.6%). A total of 6 of 10 mutations in these three genes were novel (60.0%), and mutations segregated with elevated HDLc in families. Interestingly, the LIPG mutations N396S and R476W, which usually result in elevated HDLc, were unexpectedly found in 6 probands with low HDLc (i.e., ≤10th percentile). However, 5 of these probands also carried mutations in ABCA1, LCAT, or LPL. Finally, no CETP and GALNT2 mutations were found in 136 unrelated probands with low HDLc. Taken together, we show that rare coding and splicing mutations in LIPG, CETP, and GALNT2 are enriched in persons with hyperalphalipoproteinemia and segregate with elevated HDLc in families. Moreover, LIPG mutations do not overcome low HDLc in individuals with ABCA1 and possibly LCAT and LPL mutations, indicating that LIPG affects HDLc levels downstream of these proteins.  相似文献   

19.
We identified a novel giant gene encoding a transmembrane protein with CUB and sushi multiple domains on the human chromosome 8q23.3-q24.1 in which benign adult familial myoclonic epilepsy type 1 (BAFME1/FAME, OMIM:601068) has been mapped. This giant gene consists of 73 exons and spans over 1.2Mb on the genomic DNA region. It showed significant homology to two genes, CSMD1 gene on 8p23 and CSMD2 gene on 1p34, at reduced amino acid sequence level and hence we designated as CSMD3. The CSMD3 gene was expressed mainly in adult and fetal brains. We performed mutation analysis on the CSMD3 gene for seven patients with BAFME1/FAME, but no mutation was found in the coding sequence of the CSMD3 gene. Comparative genomic analysis revealed a conserved family of CSMD genes in the mouse and fugu genomes. Possible functions of the CSMD gene family are discussed.  相似文献   

20.
A gene in equine herpesvirus 1 (EHV-1, equine abortion virus) homologous to the glycoprotein H gene of herpes simplex virus (HSV) was identified and characterised by its nucleotide and derived amino acid sequence. The EHV-1 gH gene is located at 0.47-0.49 map units and contains an open reading frame capable of specifying a polypeptide of 848 amino acids, including N- and C-terminal hydrophobic domains consistent with signal and membrane anchor regions respectively, and 11 potential sites for N-glycosylation. Alignment of the amino acid sequence with those published for HSV gH, varicella zoster virus gpIII, Epstein Barr virus gp85 and human cytomegalovirus p86 shows similarity of the EHV gene with the 2 other alpha-herpesviruses over most of the polypeptide, but only the C-terminal half could be aligned for all 5 viruses. The identical positioning of 6 cysteine residues and a number of highly conserved amino acid motifs supports a common evolutionary origin of this gene and is consistent with its role as an essential glycoprotein of the herpesvirus family. An origin of replication is predicted to occur at approximately 300 nucleotides downstream of the EHV-1 gH coding region, on the basis of similarity to other herpesvirus origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号