首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  完全免费   4篇
  1994年   1篇
  1992年   2篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有26条查询结果,搜索用时 42 毫秒
1.
Intact ribonucleic acid (RNA) has been prepared from tissues rich in ribonuclease such as the rat pancreas by efficient homogenization in a 4 M solution of the potent protein denaturant guanidinium thiocyanate plus 0.1 M 2-mercaptoethanol to break protein disulfide bonds. The RNA was isolated free of protein by ethanol precipitation or by sedimentation through cesium chloride. Rat pancreas RNA obtained by these means has been used as a source for the purification of alpha-amylase messenger ribonucleic acid.  相似文献
2.
3.
Specificity of cycloheximide in higher plant systems   总被引:40,自引:33,他引:7       下载免费PDF全文
Although cycloheximide is extremely inhibitory to protein synthesis in vivo in higher plants, the reported insensitivity of some plant ribosomes suggests that it may not invariably act at the ribosomal level. This suggestion is reinforced by results obtained with red beet storage tissue disks, the respiration of which is stimulated by cycloheximide at 1 microgram per milliliter. Inorganic ion uptake by these disks is inhibited by cycloheximide at 1 microgram per milliliter while the uptake of organic compounds, by comparison, is unaffected. Ion uptake by all nongreen tissues tested is inhibited by cycloheximide, but leaf tissue is unaffected, indicating that the ion absorption mechanism in the leaf may differ fundamentally from that in the root. It is concluded that cycloheximide can affect cellular metabolism other than by inhibiting protein synthesis and that the inhibition of ion uptake may be due to disruption of the energy supply.  相似文献
4.
5.
6.
7.
The mRNA sequences for two rat pancreatic elastolytic enzymes have been cloned by recombinant DNA technology and their nucleotide sequences determined. Rat elastase I mRNA is 1113 nucleotides in length, plus a poly(A) tail, and encodes a preproelastase of 266 amino acids. The amino acid sequence of the predicted active form of rat elastase I is 84% homologous to porcine elastase 1. Key amino acid residues involved in determining substrate specificity of porcine elastase 1 are retained in the rat enzyme. The activation peptide of the zymogen does not appear related to that of other mammalian pancreatic serine proteases. The mRNA for elastase I is localized in the rough endoplasmic reticulum of acinar cells, as expected for the site of synthesis of an exocrine secretory enzyme. Rat elastase II mRNA is 910 nucleotides in length, plus a poly(A) tail, and encodes a preproenzyme of 271 amino acids. The amino acid sequence is more closely related to porcine elastase 1 (58% sequence identity) than to the other pancreatic serine proteases (33-39% sequence identity). Predictions of substrate preference based upon key amino acid residues that define the substrate binding cleft are consistent with the broad specificity observed for mammalian pancreatic elastase 2. The activation peptide is similar to that of the chymotrypsinogens and retains an N-terminal cysteine available to form a disulfide link to an internal conserved cysteine residue.  相似文献
8.
The cell-specific elastase I enhancer comprises two domains.   总被引:13,自引:7,他引:6       下载免费PDF全文
Two separate domains within the 134-base-pair rat elastase I enhancer and a third domain at the enhancer-promoter boundary are required for selective expression in pancreatic acinar cells. The domains were detected by a series of 10-base-pair substitution mutations across the elastase I gene regulatory region from positions -200 to -61. The effect of each mutant on the pancreas-specific expression of a linked chloramphenicol acetyltransferase gene was assayed by transfection into pancreatic 266-6 acinar cells and control NIH/3T3 cells. The two enhancer domains are nonredundant, because mutations in either eliminated (greater than 100-fold reduction) expression in 266-6 cells. DNase I protection studies of the elastase I enhancer-promoter region with partially purified nuclear extracts from pancreatic tissue and 266-6 cells revealed nine discrete protected regions (footprints) on both DNA strands. One of three footprints that lie within the two functional domains of the enhancer contained a sequence, conserved among several pancreas-specific genes, which when mutated decreased linked chloramphenicol acetyltransferase expression up to 170-fold in 266-6 cells. This footprint may represent a binding site for one or more pancreas-specific regulatory proteins.  相似文献
9.
Tissue-specific expression of kallikrein-related genes in the rat   总被引:10,自引:0,他引:10  
P L Ashley  R J MacDonald 《Biochemistry》1985,24(17):4520-4527
Four distinct kallikrein-related mRNAs (PS, S1, S2, and S3), encoded by members of a multigene family, are selectively expressed in various combinations in several rat tissues. Although closely related along most of the mRNA sequence, the four mRNAs can be selectively detected with synthetic oligonucleotide probes complementary to highly variable mRNA subregions. PS mRNA, which encodes an enzyme with true kallikrein activity, is present at high levels in the submaxillary gland, pancreas, and kidney. S1 mRNA, which encodes an enzyme similar to the PS kallikrein, is detected only in the submaxillary gland and is present at one-fifth the PS mRNA level. S2 mRNA, which encodes the enzyme tonin, is present in the submaxillary gland at half the PS mRNA level and at a slightly higher level in the prostate. S3 mRNA, which encodes an enzyme very similar to tonin, is present in the submaxillary gland at one-tenth the PS mRNA level and in the prostate at about the same level as tonin mRNA.  相似文献
10.
We have used oligonucleotide probes specific for members of the rat kallikrein/tonin gene family (PS, S1, S2, S3, K1, and P1) to establish which arginyl esteropeptidase (kallikrein-like) genes are expressed in the prostate. We have also compared the expression and androgen dependence of these genes in prostate, submaxillary gland (SMG) and kidney. Only S3 (tonin-like) and P1 (kallikrein-like) are expressed in the prostate, with S3 very much more abundant. Prostatic S3 mRNA disappears after 8 days castration and is restored to intact levels by dihydrotestosterone (DHT) but not estradiol benzoate (EB) for 8 days. Prostate P1 mRNA levels were similarly but not identically affected. All six genes are expressed in the SMG, with PS (true kallikrein) the most abundant. Levels of PS mRNA in SMG are unaffected by castration, DHT, or EB treatment, although mRNA levels of other kallikrein-like (S1, K1, and P1), tonin (S2), and tonin-like (S3) genes fall 40-60% after castration, and are unaffected or partially restored by DHT and/or EB administration. Only PS and K1 are expressed in the kidney, at much lower levels than in the SMG and unaffected by castration or steroids. These studies thus confirm and extend the concept of tissue specificity of arginyl esteropeptidase gene expression, and further demonstrate that the same gene(s) is differentially regulated by androgens in the rat prostate, SMG, and kidney.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号