首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Deletions giving rise to Duchenne muscular dystrophy (DMD) and the less severe Becker muscular dystrophy (BMD) occur in the same large gene on the short arm of the human X chromosome. We present a molecular mechanism to explain the clinical difference in severity between DMD and BMD patients who bear partial deletions of the same gene locus. The model is based on the breakpoints of intragenic deletions and their effect on the translation of triplet codons into amino acids of the protein product. Deletions identified in three DMD patients are shown to shift the translational open reading frame (ORF) of triplet codons for amino acids, and each deletion is predicted to result in a truncated, abnormal protein product. Deletions identified in three BMD patients are shown to maintain the translational ORF for amino acids and predict a shorter, lower molecular weight protein. The smaller protein product is presumed to be semifunctional and to result in a milder clinical phenotype. The same ORF mechanism is also applicable to potential 5' and 3' intron splice mutations and their effect on protein production and clinical phenotype.  相似文献   

2.
Summary We have analyzed patient DNA samples in 77 unrelated Duchenne (DMD) and Becker (BMD) muscular dystrophy families, 73 of which were of French Canadian origin. We show that the frequency (68%) and distribution of deletions within the dystrophin gene was neither random nor unique in this population. We localized 33% of the deletions to the proximal portion of the dystrophin gene while 63% involved the exons spanning introns 43 through 55 with breakpoint clusters occurring within introns 44 and 50. Whether the dystrophin open reading frame (ORF) is maintained constrains the distribution of DMD/BMD deletions such that BMD deletions tend to be strikingly homogeneous. Finally, the conservation of the dystrophin ORF and the severity of the clinical phenotype were concordant in 95% of the DMD/BMD deletions documented by this work.  相似文献   

3.
4.
5.
Duchenne and Becker muscular dystrophies (DMD and BMD) are two allelic recessive X-linked disorders. Molecular deletions of various regions of the dystrophin gene are the main mutations detected in DMD and BMD patients. Molecular study of DMD and BMD DNA are instrumental to understand the pathological molecular mechanisms and the function of the protein. We describe here dystrophin and its interaction with a glycoprotein complex and we then focus on two particular patients with partial deletions of the dystrophin gene: 1) a typical Becker patient, who shows an intragenic deletion disrupting the reading frame. We describe in this case alternative splicings restoring the reading frame, which might explain the mild clinical phenotype of this patient, 2) a deletion of the distal part of the DMD gene coding for the carboxyterminal domain of the dystrophin in a young patient. The normal localization of dystrophin at the inner face of the plasma membrane in the muscle of this patient suggests that the last domain of this protein is not sufficient to anchor dystrophin at the membrane.  相似文献   

6.
Duchenne and Becker muscular dystrophy (DMD and BMD) are caused, in the majority of cases, by deletions in the dystrophin gene (DMD). The disease is an X-linked neuromuscular diseases typically caused by disrupting (DMD) or non-disrupting (BMD) the reading frame in the dystrophin (DMD) gene. In the present study, amplifications of the genomic DNAs of unrelated 15 Saudi DMD males were carried out using multiplex polymerase chain reaction (PCR) for nine-hotspot regions of exons 4, 8, 12, 17, 19, 44, 45, 48 and 51. We detected six Saudi patients having deletions in a frequency of 40%. The frequency of deletions in exon 51 (20%) was the most common deletion frequently associated with our Saudi sample males. Exons 19, 45, and 48 were present in a frequency of 6.7% each. All deletions were recognized as an individual exonic deletions, while no gross deletion where detected. Finally, the molecular deletions in the Saudi males was expected to be characterized by a moderate frequency among different populations due to the geographical KSA region, which it is in the crossroad of intense migrations and admixture of people coming from continental Asia, Africa, and even Europe. In conclusion, attempts to include an extra DNA samples might reflect a valid vision of the deletions within the high frequency deletion regions (HFDR’s) in the DMD gene mutations in KSA.  相似文献   

7.
About 60% of both Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) is due to deletions of the dystrophin gene. For cases with a deletion mutation, the "reading frame" hypothesis predicts that BMD patients produce a semifunctional, internally deleted dystrophin protein, whereas DMD patients produce a severely truncated protein that would be unstable. To test the validity of this theory, we analyzed 258 independent deletions at the DMD/BMD locus. The correlation between phenotype and type of deletion mutation is in agreement with the "reading frame" theory in 92% of cases and is of diagnostic and prognostic significance. The distribution and frequency of deletions spanning the entire locus suggests that many "in-frame" deletions of the dystrophin gene are not detected because the individuals bearing them are either asymptomatic or exhibit non-DMD/non-BMD clinical features.  相似文献   

8.
Duchenne muscular Dystrophy (DMD) is an inherited disease caused by mutations in the dystrophin gene that disrupt the open reading frame, while in frame mutations result in Becker muscular dystrophy (BMD). Ullrich congenital muscular dystrophy (UCMD) is due to mutations affecting collagen VI genes. Specific muscle miRNAs (dystromirs) are potential non-invasive biomarkers for monitoring the outcome of therapeutic interventions and disease progression. We quantified miR-1, miR-133a,b, miR-206 and miR-31 in serum from patients with DMD, BMD, UCMD and healthy controls. MiR-1, miR-133a,b and miR-206 were upregulated in DMD, but unchanged in UCMD compared to controls. Milder DMD patients had higher levels of dystromirs than more severely affected patients. Patients with low forced vital capacity (FVC) values, indicating respiratory muscle weakness, had low levels of serum miR-1 and miR-133b. There was no significant difference in the level of the dystromirs in BMD compared to controls.We also assessed the effect of dystrophin restoration on the expression of the five dystromirs in serum of DMD patients treated systemically for 12 weeks with antisense oligomer eteplirsen that induces skipping of exon 51 in the dystrophin gene. The dystromirs were also analysed in muscle biopsies of DMD patients included in a single dose intramuscular eteplirsen clinical trial. Our analysis detected a trend towards normalization of these miRNA between the pre- and post-treatment samples of the systemic trial, which however failed to reach statistical significance. This could possibly be due to the small number of patients and the short duration of these clinical trials.Although longer term studies are needed to clarify the relationship between dystrophin restoration following therapeutic intervention and the level of circulating miRNAs, our results indicate that miR-1 and miR-133 can be considered as exploratory biomarkers for monitoring the progression of muscle weakness and indirectly the remaining muscle mass in DMD.  相似文献   

9.
Summary We studied 38 unrelated patients from southern France with Duchenne (DMD) or Decker (BMD) muscular dystrophy for intragenic deletions of the DMD/ BMD gene. We used both multiplex amplification of selected exons and cDNA probes. Of the 26 (68%) unrelated individuals found to have deletions, 24 (92%) were detected by multiplex polymerase chain reaction. All these deletions have been delineated with regard to the exon-containing HindIII fragments revealed by cDNA probes, and in two cases, junction fragments of altered size were seen. The correlation between phenotype and type of deletion agreed with the reading frame theory, except for two BMD and two DMD cases.  相似文献   

10.
11.
Germline mutations of the adenomatous polyposis coli ( APC) gene cause familial adenomatous polyposis (FAP), an autosomal, dominantly inherited disease that predisposes patients to colorectal cancer. The APC gene is composed of 15 coding exons and encodes an open reading frame of 8.5 kb. The 3' 6.5 kb of the APCopen reading frame is encoded by a single exon, exon 15. Most identified APC mutations are at the 5' half of the APC open reading frame and are nucleotide substitutions and small deletions or insertions that result in truncation of the APC protein. Very few well-characterized gross alterations of APC have been reported. Patients with FAP typically develop hundreds to thousands of colorectal tumors beginning in their adolescence. A subgroup of patients with FAP who develop fewer tumors at an older age have what is called attenuated FAP (AFAP). Accumulating evidence indicates that patients carrying germline APC mutations in the first four coding exons, in the alternatively spliced region of exon 9, or in the 3' half of the coding region usually develop AFAP. We characterized two germline APC alterations that deleted the entire APC exon 15 as the result of 56-kb and 73-kb deletions at the APC locus. A surprising finding was that one proband had the typical FAP phenotype, whereas the other had a phenotype consistent with that of AFAP.  相似文献   

12.
Golden retriever muscular dystrophy (GRMD) is a spontaneous, X-linked, progressively fatal disease of dogs and is also a homologue of Duchenne muscular dystrophy (DMD). Two-thirds of DMD patients carry detectable deletions in their dystrophin gene. The defect underlying the remaining one-third of DMD patients is undetermined. Analysis of the canine dystrophin gene in normal and GRMD dogs has failed to demonstrate any detectable loss of exons. Here, we have demonstrated a RNA processing error in GRMD that results from a single base change in the 3' consensus splice site of intron 6. The seventh exon is then skipped, which predicts a termination of the dystrophin reading frame within its N-terminal domain in exon 8. This is the first example of dystrophin deficiency caused by a splice-site mutation.  相似文献   

13.
The most frequent causes for the X-linked muscular dystrophy of the allelic Duchenne (DMD) or Becker (BMD) type are partial deletions of the dystrophin gene. These mutations are accompanied either by disrupted or by preserved translational reading frames in mRNAs derived from the deleted genes. As a rule, the reading frame is destroyed in the more severe DMD, whereas it is preserved in the less severe BMD (M. Koenig et al., 1989, Am. J. Hum. Genet. 45, 498-506). We have analyzed in detail a deletion that was detected in a fetus at risk of DMD. The analysis of this mutation included the delineation of the altered subregion in the dystrophin mRNA. mRNA was isolated from myotubes derived from embryonic DMD myoblasts propagated in vitro. This study was based on enzymatic amplification by the polymerase chain reaction (PCR) of dystrophin mRNA and direct sequencing of the amplified cDNA. Exons 47 to 50 were found to be missing in the mRNA. The splicing of exon 46 to exon 51 resulted in a reading frameshift, indicating that this mutation is likely to be responsible for a DMD type of dystrophy. The clinical diagnosis of DMD for a 10-year-old patient in this family was compatible with the "reading frame" assumption.  相似文献   

14.
Spectrum of small mutations in the dystrophin coding region.   总被引:5,自引:0,他引:5       下载免费PDF全文
Duchenne and Becker muscular dystrophies (DMD and BMD) are caused by defects in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5' and central portion of the gene. The nondeletion/duplication cases are most likely the result of smaller mutations that cannot be identified by current diagnostic screening strategies. We screened approximately 80% of the dystrophin coding sequence for small mutations in 158 patients without deletions or duplications and identified 29 mutations. The study indicates that many of the DMD and the majority of the BMD small mutations lie in noncoding regions of the gene. All of the mutations identified were unique to single patients, and most of the mutations resulted in protein truncation. We did not find a clustering of small mutations similar to the deletion distribution but found > 40% of the small mutations 3' of exon 55. The extent of protein truncation caused by the 3' mutations did not determine the phenotype, since even the exon 76 nonsense mutation resulted in the severe DMD phenotype. Our study confirms that the dystrophin gene is subject to a high rate of mutation in CpG sequences. As a consequence of not finding any hotspots or prevalent small mutations, we conclude that it is presently not possible to perform direct carrier and prenatal diagnostics for many families without deletions or duplications.  相似文献   

15.
Eighty unrelated individuals with Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) were found to have deletions in the major deletion-rich region of the DMD locus. This region includes the last five exons detected by cDNA5b-7, all exons detected by cDNA8, and the first two exons detected by cDNA9. These 80 individuals account for approximately 75% of 109 deletions of the gene, detected among 181 patients analyzed with the entire dystrophin cDNA. Endpoints for many of these deletions were further characterized using two genomic probes, p20 (DXS269; Wapenaar et al.) and GMGX11 (DXS239; present paper). Clinical findings are presented for all 80 patients allowing a correlation of phenotypic severity with the genotype. Thirty-eight independent patients were old enough to be classified as DMD, BMD, or intermediate phenotype and had deletions of exons with sequenced intron/exon boundaries. Of these, eight BMD patients and one intermediate patient had gene deletions predicted to leave the reading frame intact, while 21 DMD patients, 7 intermediate patients, and 1 BMD patient had gene deletions predicted to disrupt the reading frame. Thus, with two exceptions, frameshift deletions of the gene resulted in more severe phenotype than did in-frame deletions. This is in agreement with recent findings by Baumbach et al. and Koenig et al. but is in contrast to findings, by Malhotra et al., at the 5' end of the gene.  相似文献   

16.
Recent advances in molecular therapies for Duchenne muscular dystrophy (DMD) require precise genetic diagnosis because most therapeutic strategies are mutation-specific. To understand more about the genotype-phenotype correlations of the DMD gene we performed a comprehensive analysis of the DMD mutational spectrum in a large series of families. Here we provide the clinical, pathological and genetic features of 576 dystrophinopathy patients. DMD gene analysis was performed using the MLPA technique and whole gene sequencing in blood DNA and muscle cDNA. The impact of the DNA variants on mRNA splicing and protein functionality was evaluated by in silico analysis using computational algorithms. DMD mutations were detected in 576 unrelated dystrophinopathy families by combining the analysis of exonic copies and the analysis of small mutations. We found that 471 of these mutations were large intragenic rearrangements. Of these, 406 (70.5%) were exonic deletions, 64 (11.1%) were exonic duplications, and one was a deletion/duplication complex rearrangement (0.2%). Small mutations were identified in 105 cases (18.2%), most being nonsense/frameshift types (75.2%). Mutations in splice sites, however, were relatively frequent (20%). In total, 276 mutations were identified, 85 of which have not been previously described. The diagnostic algorithm used proved to be accurate for the molecular diagnosis of dystrophinopathies. The reading frame rule was fulfilled in 90.4% of DMD patients and in 82.4% of Becker muscular dystrophy patients (BMD), with significant differences between the mutation types. We found that 58% of DMD patients would be included in single exon-exon skipping trials, 63% from strategies directed against multiexon-skipping exons 45 to 55, and 14% from PTC therapy. A detailed analysis of missense mutations provided valuable information about their impact on the protein structure.  相似文献   

17.
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive genetic disorders resulting from mutations in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5' and central region of the gene. The remaining DMD/BMD cases show no deletions, so they cannot be easily identified by current strategies. In these DMD/BMD families, a linkage analysis that involves DNA markers of the flanking and intragenic dystrophin gene are necessary for carrier and prenatal diagnosis. We analyzed eighteen deletion-prone exons of the gene by a polymerase chain reaction (PCR) in order to characterize the molecular defects of the dystrophin gene in Korean DMD/BMD families. We also performed a linkage analysis to assess the usefulness and application of six short tandem repeat markers for molecular diagnosis in the families. We observed a deletion that eliminated the exon 50. Also, a linkage analysis in the families with six short tandem repeat (STR) markers showed heterozygosity at most of the STR markers. The haplotype analysis was useful for detecting the carrier status. This study will be helpful for a molecular diagnosis of DMD/BMD families in the Korean population.  相似文献   

18.
Partial gene deletion is the major type of mutation leading to Duchenne muscular dystrophy (DMD) and its mild allelic form, Becker muscular dystrophy (BMD). Amplification of the genomic DNAs of 152 unrelated dystrophin patients using multiple primers detected 78 (51.3%) probands with deletion mutations. We predicted the translational reading frame for all the deletions in Egyptian dystrophin males. The frameshift rule was confirmed positively ranging for 50 to 67% of the cases depending on the type of disease. We discuss ways of accounting for some exceptions from the frameshift hypothesis in the central and proximal regions. These explanations may help in developing procedures for reducing the severity of dystrophin phenotypes to restore the correct frame by disrupting the translational fidelity. Great efforts have been put into the development of effective 'gene correction' procedures via such intrinsic mechanisms. In addition, we mapped regional difference in deletion mutation frequencies within the DMD gene locus between the different Egyptian governorates. There were no double deletions in the Egyptian dystrophin males.  相似文献   

19.
Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked neuromuscular diseases characterized by progressive muscular weakness and degeneration of skeletal muscles. Approximately two-thirds of the patients have large deletions or duplications in the dystrophin gene and the remaining one-third have point mutations. This study was performed to evaluate point mutations in Iranian DMD/BMD male patients. A total of 29 DNA samples from patients who did not show any large deletion/duplication mutations following multiplex polymerase chain reaction (PCR) and multiplex ligation-dependent probe amplification (MLPA) screening were sequenced for detection of point mutations in exons 50–79. Also exon 44 was sequenced in one sample in which a false positive deletion was detected by MLPA method. Cycle sequencing revealed four nonsense, one frameshift and two splice site mutations as well as two missense variants.  相似文献   

20.
We have used the recently completed set of all homozygous diploid deletion mutants in budding yeast, S. cerevisiae, to screen for new mutants conferring sensitivity to ionizing radiation. In each strain a different open reading frame (ORF) has been replaced with a cassette containing unique 20-mer sequences that allow the relative abundance of each strain in a pool to be determined by hybridization to a high-density oligonucleotide array. Putative radiation-sensitive mutants were identified as having a reduced abundance in the pool of 4,627 individual deletion strains after irradiation. Of the top 33 strains most sensitive to radiation in this assay, 14 contained genes known to be involved in DNA repair. Eight of the remaining deletion mutants were studied. Only one, which deleted for the ORF YDR014W (which we name RAD61), conferred reproducible radiation sensitivity in both the haploid and diploid deletions and had no problem with spore viability when the haploid was backcrossed to wild-type. The rest showed only marginal sensitivity as haploids, and many had problems with spore viability when backcrossed, suggesting the presence of gross aneuploidy or polyploidy in strains initially presumed haploid. Our results emphasize that secondary mutations or deviations from euploidy can be a problem in screening this resource for sensitivity to ionizing radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号