首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns of exon deletions in Duchenne and Becker muscular dystrophy   总被引:11,自引:0,他引:11  
Summary A panel of patients with Duchenne and Becker muscular dystrophy (DMD and BMD) has been screened with the cDNA probes Cf56a and Cf23a, which detect exons in the central part of the DMD gene. One or more exons were deleted in 60% of patients. The deletions were mapped and prove to be heterogeneous in size and extent, particularly in DMD. Deletions specific to DMD and to BMD are described. Half of all BMD patients have a deletion of one particular small group of exons; smaller deletions within this same group produce the more severe DMD.  相似文献   

2.
Summary We have analyzed patient DNA samples in 77 unrelated Duchenne (DMD) and Becker (BMD) muscular dystrophy families, 73 of which were of French Canadian origin. We show that the frequency (68%) and distribution of deletions within the dystrophin gene was neither random nor unique in this population. We localized 33% of the deletions to the proximal portion of the dystrophin gene while 63% involved the exons spanning introns 43 through 55 with breakpoint clusters occurring within introns 44 and 50. Whether the dystrophin open reading frame (ORF) is maintained constrains the distribution of DMD/BMD deletions such that BMD deletions tend to be strikingly homogeneous. Finally, the conservation of the dystrophin ORF and the severity of the clinical phenotype were concordant in 95% of the DMD/BMD deletions documented by this work.  相似文献   

3.
About 60% of both Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) is due to deletions of the dystrophin gene. For cases with a deletion mutation, the "reading frame" hypothesis predicts that BMD patients produce a semifunctional, internally deleted dystrophin protein, whereas DMD patients produce a severely truncated protein that would be unstable. To test the validity of this theory, we analyzed 258 independent deletions at the DMD/BMD locus. The correlation between phenotype and type of deletion mutation is in agreement with the "reading frame" theory in 92% of cases and is of diagnostic and prognostic significance. The distribution and frequency of deletions spanning the entire locus suggests that many "in-frame" deletions of the dystrophin gene are not detected because the individuals bearing them are either asymptomatic or exhibit non-DMD/non-BMD clinical features.  相似文献   

4.
Summary A DNA deletion in a patient with Becker muscular dystrophy (BMD) has been delineated by restriction endonuclease mapping. The deletion is unusually small, removing six kilobases (kb) of DNA distal to pERT 87-1 (DXS164). This region has previously been shown to contain an exon of a candidate gene which, when defective, causes Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy. Removal of this exon and surrounding DNA is apparently sufficient, in this case, to cause a BMD phenotype. The occurrence of this deletion in DXS164 would appear to confirm that this region is part of the BMD locus. Many DMD patients have deletions in and around this region, adding further evidence for the allelic nature of the two disorders. This fortuitous deletion may identify a functionally important domain of the protein product in terms of the severity of phenotype manifested.  相似文献   

5.
Eighty unrelated individuals with Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) were found to have deletions in the major deletion-rich region of the DMD locus. This region includes the last five exons detected by cDNA5b-7, all exons detected by cDNA8, and the first two exons detected by cDNA9. These 80 individuals account for approximately 75% of 109 deletions of the gene, detected among 181 patients analyzed with the entire dystrophin cDNA. Endpoints for many of these deletions were further characterized using two genomic probes, p20 (DXS269; Wapenaar et al.) and GMGX11 (DXS239; present paper). Clinical findings are presented for all 80 patients allowing a correlation of phenotypic severity with the genotype. Thirty-eight independent patients were old enough to be classified as DMD, BMD, or intermediate phenotype and had deletions of exons with sequenced intron/exon boundaries. Of these, eight BMD patients and one intermediate patient had gene deletions predicted to leave the reading frame intact, while 21 DMD patients, 7 intermediate patients, and 1 BMD patient had gene deletions predicted to disrupt the reading frame. Thus, with two exceptions, frameshift deletions of the gene resulted in more severe phenotype than did in-frame deletions. This is in agreement with recent findings by Baumbach et al. and Koenig et al. but is in contrast to findings, by Malhotra et al., at the 5' end of the gene.  相似文献   

6.
We have isolated overlapping human fetal muscle cDNAs encompassing 2.6kb which are localised very close to the 5' end of the Duchenne muscular dystrophy (DMD) gene. Using DNA from patients with deletions of previously reported genomic probes, we have mapped the exons across the region. Investigation of deletions in both DMD and Becker muscular dystrophy (BMD) patients shows the deletions to be present in 10% of cases and heterogeneous.  相似文献   

7.
Gene deletions in X-linked muscular dystrophy   总被引:14,自引:3,他引:11       下载免费PDF全文
Of the approximately 170 families with X-linked muscular dystrophy of the Duchenne (DMD) and Becker (BMD) type in Finland, we have studied 90 unrelated patients for intragenic deletions by using the cDNA probes described by Koenig et al. Forty-five patients (50%) had molecular deletions of one or several of the 65 exon-containing HindIII fragments. In six deletion cases junction fragments of altered size were seen. Thirty-eight (84%) of the 45 deletions were detected using only two (1–2a and 8) of the six cDNA subclones. Using a wheelchair age of 12 years to distinguish between DMD and BMD, we found that the proportions of patients with deletions were similar. Deletions were equally common in familial and sporadic disease. BMD was more commonly caused by deletions in the 5' end of the gene than was DMD. In at least three instances deletions of similar type resulted in diseases of similar severity. Of 14 patients with mental retardation seven had deletions; six of these comprised exons contained in probe 8. We conclude that cDNA hybridization studies provide a powerful diagnostic tool in DMD and BMD and that they promise to produce better insights into molecular-clinical correlations.  相似文献   

8.
Fetal muscle cDNA clones covering at least 11.4 kb of the Duchenne muscular dystrophy (DMD) gene sequence were used to identify a deletion-prone region in DNA from DMD and Becker muscular dystrophy (BMD) patients. Of 36 BMD cases, 17 (47%) had deletions and all of the deletions began in the same intron of the gene. Of 107 DMD patients, 27 (25%) were deleted for this region, and 19 deletions originate in the same intron. Using a cDNA probe for an adjacent region of the gene, 32 new deletions were detected in DMD patients (total 44%). No new BMD deletions were detected. The DMD deletions were very heterogeneous. Thus two cDNA probes covering 2.4 kb could detect 53% of these deletions. Considering the whole locus, DMD and BMD are caused by a deletion of the gene sequence in at least 67% of cases.  相似文献   

9.
DNA deletions in mild and severe Becker muscular dystrophy   总被引:6,自引:0,他引:6  
Summary The DNA of 33 patients diagnosed as suffering from Becker muscular dystrophy (BMD) has been probed with cloned DNA sequences from Xp21, known to reveal DNA deletions in patients suffering from the more severe Duchenne muscular dystrophy (DMD). Two BMD cases showed clear deletions. A third case gave aberrant band sizes, which further analysis showed to be caused by a small deletion. This suggests that deletions in DXS164 occur approximately as frequently in BMD as they do in DMD. Of the two cases showing large deletions, one is at the severe end of the Becker clinical spectrum, whilst the other is a classical Becker-type dystrophy. The fact that loci defined by probes commonly deleted in classical DMD patients are also deleted in BMD patients of varying severity is strong additional evidence that these disorders are allelic, and further justifies the use of probes with defined linkage relationships to DMD also being used for counselling in BMD families.  相似文献   

10.
L Yuge  L Hui  X Bingdi 《Life sciences》1999,65(9):863-869
One hundred thirty-eight patients with Duchenne/Becker muscular dystrophy (DMD/BMD) were screened with complete cDNA probes and the multiplex polymerase chain reaction (mPCR) amplification of 18 pairs of oligonucleotide primers. Eighty-six deletions and 4 duplications were detected, the deletion frequency being 62.3%. Eighty-two deletions were detected with the two sets of primers described by Chamberlain et al. and Beggs et al, which was 95.4% of deletions detected by complete cDNA probes. Consistent with the deletion locations described previously, the deletions of dystrophin gene in Chinese individuals are clustered mainly in two high-frequency deletion regions of exons 44-52 (68.6%) of 3' side of the gene central regions and exons 1-19 (26.7%) in the 5' side. The distribution of deletions in dystrophin gene is associated with the phenotype of DMD/BMD. In the 25 cases with in-frame deletions, 15 deletions located in the region of exons 2-47 were milder BMD and intermediate patients, as the location of deletions was not the important region of the dystrophin gene.  相似文献   

11.
Antibodies directed against the amino- and carboxy-terminal regions of dystrophin have been used to characterize 25 Duchenne muscular dystrophy (DMD), two intermediate, and two Becker muscular dystrophy (BMD) patients. Western blot analysis revealed an altered-size (truncated) immunoreactive dystrophin band in 11 of the 25 DMD patients, in one of the two intermediate patients, and in both BMD patients, when immunostained with antiserum raised against the amino terminus of dystrophin. None of the DMD or intermediate patients demonstrated an immunoreactive dystrophin band when immunostained with an antiserum specific for the carboxy terminus of the protein. In contrast, dystrophin was detected in both BMD patients by the antiserum specific for the carboxy terminus. Quantitative studies indicated that the relative abundance of dystrophin in patients with a severe (DMD), intermediate, or mild (BMD) phenotype may overlap, therefore suggesting that differential diagnosis of disease severity based entirely on dystrophin quantitation may be unsatisfactory. Our results suggest that a differential diagnosis between DMD and BMD would benefit from examination of both the N terminus and C terminus of the protein, in addition to measurements of the relative abundance of the protein.  相似文献   

12.
Becker muscular dystrophy (BMD) often results from in-frame mutations of the dystrophin gene that allow production of an altered but partially functional protein. To address potential structure-function relationships for the various domains of dystrophin, we examined both the dystrophin gene and protein in 68 patients with abnormal dystrophin. Eighty-six percent of BMD patients with dystrophin of altered size have deletions or duplications, and the observed sizes of dystrophin fit well with predictions based on DNA data. Deletions within the amino-terminal domain I tended to result in low levels of dystrophin and a more severe phenotype. The phenotypes of patients with deletions or duplications in the central rod domain were more variable. This region can be divided into three portions based on differences in clinical presentations of patients. Deletions around exons 4553 were most common and generally caused typical BMD; however, phenotypic variability among patients with similar mutations suggests that epigenetic and/or environmental factors play an important role in determining the clinical progression. In contrast, deletions or duplications in the proximal portion of this domain tended to cause severe cramps and myalgia. Finally, loss of the middle of this region probably causes a very mild phenotype, as only one such patient was found and his only symptom was elevated serum creatine phosphokinase levels.  相似文献   

13.
14.
Summary We studied 38 unrelated patients from southern France with Duchenne (DMD) or Decker (BMD) muscular dystrophy for intragenic deletions of the DMD/ BMD gene. We used both multiplex amplification of selected exons and cDNA probes. Of the 26 (68%) unrelated individuals found to have deletions, 24 (92%) were detected by multiplex polymerase chain reaction. All these deletions have been delineated with regard to the exon-containing HindIII fragments revealed by cDNA probes, and in two cases, junction fragments of altered size were seen. The correlation between phenotype and type of deletion agreed with the reading frame theory, except for two BMD and two DMD cases.  相似文献   

15.
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive genetic disorders resulting from mutations in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5' and central region of the gene. The remaining DMD/BMD cases show no deletions, so they cannot be easily identified by current strategies. In these DMD/BMD families, a linkage analysis that involves DNA markers of the flanking and intragenic dystrophin gene are necessary for carrier and prenatal diagnosis. We analyzed eighteen deletion-prone exons of the gene by a polymerase chain reaction (PCR) in order to characterize the molecular defects of the dystrophin gene in Korean DMD/BMD families. We also performed a linkage analysis to assess the usefulness and application of six short tandem repeat markers for molecular diagnosis in the families. We observed a deletion that eliminated the exon 50. Also, a linkage analysis in the families with six short tandem repeat (STR) markers showed heterozygosity at most of the STR markers. The haplotype analysis was useful for detecting the carrier status. This study will be helpful for a molecular diagnosis of DMD/BMD families in the Korean population.  相似文献   

16.
Spectrum of small mutations in the dystrophin coding region.   总被引:5,自引:0,他引:5       下载免费PDF全文
Duchenne and Becker muscular dystrophies (DMD and BMD) are caused by defects in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5' and central portion of the gene. The nondeletion/duplication cases are most likely the result of smaller mutations that cannot be identified by current diagnostic screening strategies. We screened approximately 80% of the dystrophin coding sequence for small mutations in 158 patients without deletions or duplications and identified 29 mutations. The study indicates that many of the DMD and the majority of the BMD small mutations lie in noncoding regions of the gene. All of the mutations identified were unique to single patients, and most of the mutations resulted in protein truncation. We did not find a clustering of small mutations similar to the deletion distribution but found > 40% of the small mutations 3' of exon 55. The extent of protein truncation caused by the 3' mutations did not determine the phenotype, since even the exon 76 nonsense mutation resulted in the severe DMD phenotype. Our study confirms that the dystrophin gene is subject to a high rate of mutation in CpG sequences. As a consequence of not finding any hotspots or prevalent small mutations, we conclude that it is presently not possible to perform direct carrier and prenatal diagnostics for many families without deletions or duplications.  相似文献   

17.
Transcription of the dystrophin gene in Duchenne muscular dystrophy muscle   总被引:5,自引:0,他引:5  
F Muntoni  P N Strong 《FEBS letters》1989,252(1-2):95-98
  相似文献   

18.
Partial gene deletion is the major type of mutation leading to Duchenne muscular dystrophy (DMD) and its mild allelic form, Becker muscular dystrophy (BMD). Amplification of the genomic DNAs of 152 unrelated dystrophin patients using multiple primers detected 78 (51.3%) probands with deletion mutations. We predicted the translational reading frame for all the deletions in Egyptian dystrophin males. The frameshift rule was confirmed positively ranging for 50 to 67% of the cases depending on the type of disease. We discuss ways of accounting for some exceptions from the frameshift hypothesis in the central and proximal regions. These explanations may help in developing procedures for reducing the severity of dystrophin phenotypes to restore the correct frame by disrupting the translational fidelity. Great efforts have been put into the development of effective 'gene correction' procedures via such intrinsic mechanisms. In addition, we mapped regional difference in deletion mutation frequencies within the DMD gene locus between the different Egyptian governorates. There were no double deletions in the Egyptian dystrophin males.  相似文献   

19.
Rapid direct sequence analysis of the dystrophin gene   总被引:8,自引:0,他引:8       下载免费PDF全文
Mutations in the dystrophin gene result in both Duchenne and Becker muscular dystrophy (DMD and BMD), as well as X-linked dilated cardiomyopathy. Mutational analysis is complicated by the large size of the gene, which consists of 79 exons and 8 promoters spread over 2.2 million base pairs of genomic DNA. Deletions of one or more exons account for 55%-65% of cases of DMD and BMD, and a multiplex polymerase chain reaction method-currently the most widely available method of mutational analysis-detects approximately 98% of deletions. Detection of point mutations and small subexonic rearrangements has remained challenging. We report the development of a method that allows direct sequence analysis of the dystrophin gene in a rapid, accurate, and economical fashion. This same method, termed "SCAIP" (single condition amplification/internal primer) sequencing, is applicable to other genes and should allow the development of widely available assays for any number of large, multiexon genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号