首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gamma subunit is a specific regulator of Na,K-ATPase expressed mainly in kidney. On SDS-polyacryylamide gel electrophoresis, gamma runs as a doublet, but the origin and significance of the doublet is obscure. Mass spectrometry of the gamma chains of rat kidney Na, K-ATPase shows that gamma(a) (upper) has a mass of 7184.0 +/- 1 Da (carbamidomethyl cysteine), corresponding closely to that for the published sequence without the initiator methionine, while gamma(b) (lower) has a mass of 7337.9 +/- 1Da. Tryptic peptide mapping and sequencing by mass spectrometry reveals that the seven N-terminal residues of gamma(a), TELSANH, are replaced by Ac-MDRWYL in gamma(b), but otherwise the chains are identical. Antibodies raised against peptides TELSANHC and MDRWYLC recognize either gamma(a) or gamma(b) of the Na,K-ATPase, respectively. gamma(a) or gamma(b) cDNAs have been expressed in human embryonic kidney and HeLa cells. The major bands expressed correspond to gamma(a) or gamma(b) of renal Na, K-ATPase. Additional minor bands seen after transfection, namely gamma(a)' in human embryonic kidney and gamma(b)' in HeLa, are presumably cell-specific modifications. The present work clarifies earlier uncertainty regarding doublets seen in kidney and in transfected cells. In particular, the results show that renal Na, K-ATPase contains two variants of the gamma subunit with different sequences but otherwise are unmodified. We discuss the possible functional significance of the two variants.  相似文献   

2.
FHL2 (Four and a Half LIM domain-containing protein 2) is a member of a small family of proteins with four LIM domains and an N-terminal half LIM domain. It is an intracellular protein thought to function as an adaptor in the formation of multi-protein complexes involved in signaling. To obtain human FHL2 in amounts allowing further characterization, we evaluated different expression systems and chose to express FHL2 with a His6 tag in insect cells using the baculovirus system. The recombinant protein was highly expressed and could be purified to >98% homogeneity as judged by SDS-PAGE analysis. Purified recombinant FHL2 was used to generate antibodies allowing detection and immunoprecipitation of FHL2 from human cells. Both recombinant and natural FHL2 were characterized by SDS-PAGE and MALDI-TOF mass spectrometry. The molecular mass of the recombinant His6-tagged protein obtained by mass spectrometry was 36,995Da, in good agreement with the apparent mass of 36kDa in SDS-PAGE and slightly higher than the 35,981Da calculated from the sequence of the construct. The measured molecular mass of natural human FHL2 was 32,742Da and the calculated mass was 32,192Da. However, the apparent molecular mass in SDS-PAGE is 41kDa, indicating that the natural protein has an abnormal electrophoretic mobility. The results show that both the recombinant and the natural proteins are post-translationally modified and indicate that such modifications may lead to an abnormal electrophoretic behavior of natural human FHL2.  相似文献   

3.
We report here the isolation of a novel acid-labile yellow chromophore from the enzymatic digest of human lens proteins and the identification of its chemical structure by liquid chromatography-mass spectrometry, liquid chromatography-tandem mass spectrometry, and (1)H, (13)C, and two-dimensional NMR. This new chromophore exhibited a UV absorbance maximum at 343 nm and fluorescence at 410 nm when excited at 343 nm. Analysis of the purified compound by reversed-phase HPLC with in-line electrospray ionization mass spectrometry revealed a molecular mass of 370 Da. One- and two-dimensional NMR analyses elucidated the structure to be 1-(5-amino-5-carboxypentyl)-4-(5-amino-5-carboxypentylamino)-3-hydroxy-2,3-dihydropyridinium, a cross-link between the epsilon-amino groups of two lysine residues, and a five-carbon ring. Because this cross-link contains two lysine residues and a dihydropyridinium ring, we assigned it the trivial name of K2P. Quantitative determinations of K2P in individual normal human lens or cataract lens water-soluble and water-insoluble protein digests were made using a high-performance liquid chromatograph equipped with a diode array detector. These measurements revealed a significant enhancement of K2P in cataract lens proteins (613 +/- 362 pmol/mg of water-insoluble sonicate supernatant (WISS) protein or 85 +/- 51 pmol/mg of WS protein) when compared with aged normal human lens proteins (261 +/- 93 pmol/mg of WISS protein or 23 +/- 15 pmol/mg of water-soluble (WS) protein). These data provide chemical evidence for increased protein cross-linking during aging and cataract development in vivo. This new cross-link may serve as a quantitatively more significant biomarker for assessing the role of lens protein modifications during aging and in the pathogenesis of cataract.  相似文献   

4.
Since electrospray ionization mass spectrometry (ESI-MS) has demonstrated capabilities for observing intact, weak interactions, there has been increasing interest in studying by this method noncovalently bound complexes. In this communication, we report for the first time the structure obtained by a commercial ESI quadrupole time-of-flight spectrometer on a native hemocyanin of deep-sea crab Bythograea thermydron with a molecular mass of 1.3 MDa. ESI-MS analysis of the native hemocyanin revealed the formation of a 18-mer noncovalent assembly with a measured molecular mass of 1354940 +/- 480 Da. ESI-MS data also revealed that this huge structure is an equilibrium with several assemblages, dodecamer (measured molecular weight = 902570 +/- 110 Da), hexamer (measured molecular weight = 450310 +/- 260 Da), and monomeric structures (measured molecular weight = 74999 +/- 85 Da).  相似文献   

5.
A family of peptide antimycotics, termed pseudomycins, has been isolated from liquid cultures of Pseudomonas syringae, a plant-associated bacterium. These compounds were purified using Amberlite XAD-2 and reverse-phase liquid chromatography. Pseudomycin A, the predominant peptide in a family of four, showed selective phytotoxicity, and had impressive activity against the human pathogen Candida albicans. Amino acid, mass spectroscopic, and comparative electrophoretic and chromatographic analyses revealed that the pseudomycins are different from previously described antimycotics from P. syringae, including syringomycin, syringotoxin and syringostatins. Pseudomycins A-C contain hydroxyaspartic acid, aspartic acid, serine, arginine, lysine and diaminobutyric acid. The molecular masses of pseudomycins A-C, as determined by plasma desorption mass spectrometry, are 1224, 1208 and 1252 Da, respectively. Pseudomycin D, on the other hand, has a molecular mass of 2401 Da and is more complex than pseudomycins A-C.  相似文献   

6.
We describe the discovery and characterization of ADAMTS10, a novel metalloprotease encoded by a locus on human chromosome 19 and mouse chromosome 17. ADAMTS10 has the typical modular organization of the ADAMTS family, with five thrombospondin type 1 repeats and a cysteine-rich PLAC (protease and lacunin) domain at the carboxyl terminus. Its domain organization and primary structure is similar to a novel long form of ADAMTS6. In contrast to many ADAMTS proteases, ADAMTS10 is widely expressed in adult tissues and throughout mouse embryo development. In situ hybridization analysis showed widespread expression of Adamts10 in the mouse embryo until 12.5 days of gestation, after which it is then expressed in a more restricted fashion, with especially strong expression in developing lung, bone, and craniofacial region. Mesenchymal, not epithelial, expression in the developing lung, kidney, gonad, salivary gland, and gastrointestinal tract is a consistent feature of Adamts10 regulation. N-terminal sequencing and treatment with decanoyl-Arg-Val-Lys-Arg-chloromethylketone indicate that the ADAMTS10 zymogen is processed by a subtilisin-like proprotein convertase at two sites (Arg64/Gly and Arg233/Ser). The widespread expression of ADAMTS10 suggests that furin, a ubiquitously expressed proprotein convertase, is the likely processing enzyme. ADAMTS10 expressed in HEK293F and COS-1 cells is N-glycosylated and is secreted into the medium, as well as sequestered at the cell surface and extracellular matrix, as demonstrated by cell surface biotinylation and immunolocalization in nonpermeabilized cells. ADAMTS10 is a functional metalloprotease as demonstrated by cleavage of alpha2-macroglobulin, although physiological substrates are presently unknown.  相似文献   

7.
We report the characterization of 5-methoxy-1,2-dimethyl-3-[(4-nitrophenoxy)methyl]indole-4,7-dione (ES936) as a mechanism-based inhibitor of NQO1. Inactivation of NQO1 by ES936 was time- and concentration-dependent and required the presence of a pyridine nucleotide cofactor consistent with a need for metabolic activation. That ES936 was an efficient inhibitor was demonstrated in these studies by the low partition ratio (1.40 +/- 0.03). The orientation of ES936 in the active site of NQO1 was examined by X-ray crystallography and found to be opposite to that observed for other indolequinones acting as substrates. ES936 was oriented in such a manner that, after enzymatic reduction and loss of a nitrophenol leaving group, a reactive iminium species was located in close proximity to nucleophilic His 162 and Tyr 127 and Tyr 129 residues in the active site. To determine if ES936 was covalently modifying NQO1, ES936-treated protein was analyzed by electrospray ionization liquid chromatography/mass spectrometry (ESI-LC/MS). The control NQO1 protein had a mass of 30864 +/- 6 Da (n = 20, theoretical, 30868.6 Da) which increased by 217 Da after ES936 treatment (31081 +/- 7 Da, n = 20) in the presence of NADH. The shift in mass was consistent with adduction of NQO1 by the reactive iminium derived from ES936 (M + 218 Da). Chymotryptic digestion of the protein followed by LC/MS analysis located a tetrapeptide spanning amino acids 126-129 which was adducted with the reactive iminium species derived from ES936. LC/MS/MS analysis of the peptide fragment confirmed adduction of either Tyr 127 or Tyr 129 residues. This work demonstrates that ES936 is a potent mechanism-based inhibitor of NQO1 and may be a useful tool in defining the role of NQO1 in cellular systems and in vivo.  相似文献   

8.
Plasmids were constructed for overexpression of the Escherichia coli dihydrolipoamide acetyltransferase (1-lip E2, with a single hybrid lipoyl domain per subunit) and dihydrolipoamide dehydrogenase (E3). A purification protocol is presented that yields homogeneous recombinant 1-lip E2 and E3 proteins. The hybrid lipoyl domain was also expressed independently. Masses of 45,953+/-73Da (1-lip E2), 50,528+/-5.5Da (apo-E3), 51,266+/-48Da (E3 including FAD), and 8982+/-4.0 (lipoyl domain) were determined by MALDI-TOF mass spectrometry. The purified 1-lip E2 and E3 proteins were functionally active according to the overall PDHc activity measurement. The lipoyl domain was fully acetylated after just 30 s of incubation with E1 and pyruvate. The mass of the acetylated lipoyl domain is 9019+/-2Da according to MALDI-TOF mass spectrometry. Treatment of the 1-lip E2 subunit with trypsin resulted in the appearance of the lipoyl domain with a mass of 10,112+/-3Da. When preincubated with E1 and pyruvate, this tryptic fragment was acetylated according to the mass increase. MALDI-TOF mass spectrometry was thus demonstrated to be a fast and precise method for studying the reductive acetylation of the recombinant 1-lip E2 subunit by E1 and pyruvate.  相似文献   

9.
N-terminal acetylation in E coli is a rare event catalyzed by three known N-acetyl-transferases (NATs), each having a specific ribosomal protein substrate. Multiple, gram-scale lots of recombinant F1-V, a fusion protein constructed from Y. Pestis antigens, were expressed and purified from a single stably transformed E. coli cell bank. A variant form of F1-V with mass increased by 42-43 Da was detected in all purified lots by electrospray orthogonal acceleration time-of-flight mass spectrometry (MS). Peptide mapping LCMS localized the increased mass to an N-terminal Lys-C peptide, residues 1-24, and defined it as +42.0308+/-0.0231 Da using a LockSpray exact mass feature and a leucine enkaphalin mass standard. Sequencing of the variant 1-24 peptide by LCMS and high-energy collision induced dissociation (LCMS(E)) further localized the modification to the amino terminal tri-peptide ADL and identified the modification as N(alpha)-acetylation. The average content of N(alpha)-acetylated F1-V in five lots was 24.7+/-2.6% indicating that a stable acetylation activity for F1-V was established in the E. coli expression system. Alignment of the F1-V N-terminal sequence with those of other known N(alpha)-acetylated ectopic proteins expressed in E. coli reveals a substrate motif analogous to the eukaryote NatA' acetylation pathway and distinct from endogenous E. coli NAT substrates.  相似文献   

10.
The cysteine protease cathepsin K is believed to play a key role in bone resorption as it has collagenolytic activity and is expressed predominantly and in high levels in bone resorbing osteoclast cells. The addition of nitric oxide (NO) and NO donors to osteoclasts in vitro results in a reduction of bone resorption, although the mechanism of this effect is not fully understood. The S-nitroso derivatives of glutathione (GSNO) and N-acetylpenicillamine (SNAP) and the non-thiol NO donors NOR-1 and NOR-3 all inhibited the activity of purified cathepsin K in a time- and concentration-dependent manner (IC(50) values after 15 min of preincubation at pH 7.5 of 28, 105, 0.4, and 10 microM, respectively). Cathepsin K activity in Chinese hamster ovary cells stably transfected with cathepsin K was also inhibited by the above NO donors with similar potencies. GSNO at 100 microM also completely inhibited the autocatalytic maturation at pH 4.0 of procathepsin K to cathepsin K. The inhibition of cathepsin K by GSNO was rapidly reversed by DTT, but inhibition by NOR-1 was not reversed by DTT, and analysis of the inhibited cathepsin K for S-nitrosylation using the Greiss reaction gave negative results in both cases. Analysis of the protein by electrospray liquid chromatography/mass spectrometry showed that the inhibition of cathepsin K by GSNO resulted in a mass increase of 306 +/- 2 Da, consistent with the formation of a glutathione adduct. Prior inhibition of cathepsin K by the active site thiol-modifying inhibitor E-64 blocked the modification by GSNO, indicating that the glutathione adduct is likely formed at the active site cysteine. Treatment of cathepsin K with NOR-1 resulted in a mass increase of between 30 and 50 Da, corresponding to the oxidation of a cysteine to sulfinic and sulfonic acids. Cotreatment of cathepsin K with NOR-1 plus the sulfenic acid reagent dimedone resulted in a mass increase of approximately 141 Da, which is consistent with the formation of a dimedone adduct. This result demonstrates that the NOR-1-dependent formation of cathepsin K sulfinic and sulfonic acids occurs via a sulfenic acid. These results show that inhibition of cathepsin K activity and its autocatalytic maturation represent two potential mechanisms by which NO can exert its inhibitory effect on bone resorption. This work also shows that oxidative thiol modifications besides S-nitrosylation should be considered when the effects of NO and NO donors on critical thiol-containing proteins are investigated.  相似文献   

11.
A disintegrin-like and metalloprotease domain with thrombospondin type 1 motifs (ADAMTS)8 is a secreted protease, which was recently implicated in pathogenesis of pulmonary arterial hypertension (PAH). However, the substrate repertoire of ADAMTS8 and regulation of its activity are incompletely understood. Although considered a proteoglycanase because of high sequence similarity and close phylogenetic relationship to the proteoglycan-degrading proteases ADAMTS1, 4, 5, and 15, as well as tight genetic linkage with ADAMTS15 on human chromosome 11, its aggrecanase activity was reportedly weak. Several post-translational factors are known to regulate ADAMTS proteases such as autolysis, inhibition by endogenous inhibitors, and receptor-mediated endocytosis, but their impacts on ADAMTS8 are unknown. Here, we show that ADAMTS8 undergoes autolysis at six different sites within its spacer domain. We also found that in contrast to ADAMTS4 and 5, ADAMTS8 levels were not regulated through low-density lipoprotein receptor-related protein 1 (LRP1)-mediated endocytosis. Additionally, ADAMTS8 lacked significant activity against the proteoglycans aggrecan, versican, and biglycan. Instead, we found that ADAMTS8 cleaved osteopontin, a phosphoprotein whose expression is upregulated in PAH. Multiple ADAMTS8 cleavage sites were identified using liquid chromatography–tandem mass spectrometry. Osteopontin cleavage by ADAMTS8 was efficiently inhibited by TIMP-3, an endogenous inhibitor of ADAMTS1, 4, and 5, as well as by TIMP-2, which has no previously reported inhibitory activity against other ADAMTS proteases. These differences in post-translational regulation and substrate repertoire differentiate ADAMTS8 from other family members and may help to elucidate its role in PAH.  相似文献   

12.
The soluble dimeric beta-galactoside-binding lectin (subunit molecular mass, approximately 14 kDa) of bovine heart muscle, in common with the 14-kDa lectins of several other animal species, displays carbohydrate-binding activity when it is in the reduced state, but the purified lectin loses this activity upon oxidation. In the present study, the presence of any post-translational modification and the mechanism of the oxidative inactivation have been investigated by analyses of the reduced and oxidized forms of the purified bovine lectin by electrospray ionization-mass spectrometry (ESI-MS) and by liquid secondary ion mass spectrometry (LSIMS) of tryptic and peptic peptides. By ESI-MS, the molecular mass of the reduced lectin is determined to be 14,654.6 +/- 0.9 Da, and that of the oxidized lectin is 14,649.3 +/- 1.1 Da. These masses correspond to the amino acid sequence of the protein with the cysteines having free sulfhydryl groups in the reduced state and forming disulfide bonds in the oxidized state. There is no evidence of post-translational modification in either lectin form except for monoacetylation already predicted for alanine at the blocked N-terminal end. Pronounced differences in charge distribution in the electrospray ionization mass spectra of the reduced and oxidized lectin, reflecting a change in the number of accessible protonation sites in the oxidized protein, are consistent with the protein being held in an altered conformation by covalent bonding. The results of LSIMS analyses of tryptic and peptic peptides in conjunction with Edman sequencing indicate that disulfide bonding occurs predominantly between Cys2 and Cys130, Cys16 and Cys88, and Cys42 and Cys60. There is no evidence of oxidation of Trp68. These results, taken together with observations that almost the complete polypeptide chain is necessary for the functional integrity of the carbohydrate recognition domain (Abbott, W. M., and Feizi, T. (1991) J. Biol. Chem. 266, 5552-5557) point to intramolecular disulfide bonding with a change in protein folding and conformation as the mechanism of oxidative inactivation of the purified bovine lectin.  相似文献   

13.
We have identified, purified, and determined the complete amino acid sequence of a novel protein, ohanin from Ophiophagus hannah (king cobra) venom. It is a small protein containing 107 amino acid residues with a molecular mass of 11951.47 +/- 0.67 Da as assessed by electrospray ionization-mass spectrometry. It does not show similarity to any known families of snake venom proteins and hence is the first member of a new family of snake venom proteins. It shows similarity to PRY and SPRY domain proteins. It is nontoxic up to 10 mg/kg when injected intraperitoneally in mice. Ohanin produced statistically significant and dose-dependent hypolocomotion in mice. In a pain threshold assay, it showed dose-dependent hyperalgesic effect. The ability of the protein to elicit a response at greatly reduced doses when injected intracerebroventricularly as compared with intraperitoneal administration in both the locomotion and hot plate experiments strongly suggests that ohanin acts on the central nervous system. Since the natural abundance of the protein in the venom is low (approximately 1 mg/g), a synthetic gene was constructed and expressed. The recombinant protein, which was obtained in the insoluble fraction in Escherichia coli, was purified under denaturing condition and was refolded. Recombinant ohanin is structurally and functionally similar to native protein as determined by circular dichroism and hot plate assay, suggesting that it will be useful in future structure-function relationship studies.  相似文献   

14.
The complete primary structure of ADAMTSL-3/punctin-2, a novel member of the family designated ADAMTSL (a disintegrin-like and metalloprotease domain with thrombospondin type I motifs-like), was determined by cDNA cloning from a human placenta library. The predicted open reading frame encodes a protein of 1690 amino acids that has considerable similarity to ADAMTSL-1/punctin-1. These multi-domain proteins lack both a protease domain and a disintegrin-like domain but are remarkably similar in their domain organization to the ADAMTS proteases, hence the name ADAMTS-like. Punctin-2 contains thrombospondin type 1 repeats (TSRs), a cysteine-rich domain and a cysteine-free spacer domain in the precise order in which they occur in the ADAMTS proteases. However, the number and organization of the TSRs in punctin-2 is unique with respect to the ADAMTS proteases. Punctin-2 contains 13 TSRs arranged in two arrays separated by a region containing three immunoglobulin-like repeats. Northern blot analysis of RNA from human adult tissues demonstrated that ADAMTSL3 is widely expressed, with highest expression in liver, kidney, heart and skeletal muscle, whereas it is expressed at low levels in mouse embryos. We characterized two punctin-2 polyclonal antisera. Using these and a monoclonal antibody to a C-terminal myc tag, we show that in transfected COS-7 cells, punctin-2 is expressed as a 210-kDa glycoprotein that is located in the extracellular matrix. The domain structure of punctin-2 and its matrix localization suggest that it might play a role in cell-matrix interactions or in assembly of specific extracellular matrices.  相似文献   

15.
A novel hemoglobin variant was detected by electrospray ionization mass spectrometry. Hb Zurich-Hottingen is characterized by an Asn --> Ser replacement in the alpha-chain at position 9 as confirmed by DNA analysis. This hemoglobin variant is silent in isoelectric focusing, reversed-phase chromatography, and cation-exchange chromatography. The mutant alpha-chain was detectable only with electrospray mass spectrometry by its mass shift of -27 Da. The carrier was found to be heterozygous for the new hemoglobin variant. These results illustrate the power of ESI mass spectrometry for hemoglobin analysis.  相似文献   

16.
A thrombin (E.C. 3.4.21.5) inhibitor, savignin, was isolated from the salivary glands of Ornithodoros savignyi by a combination of size exclusion, anion-exchange, and reversed-phase chromatography. The inhibitor has a molecular mass of 12,430.4 Da as determined by electrospray mass spectrometry. The behavior of savignin during anion-exchange chromatography indicated that it has an acidic pI. The available N-terminal sequence (residues 1-11) differed from that of ornithodorin with only one residue. Savignin inhibits thrombin-induced platelet aggregation, but has no effect on ADP- or collagen-induced aggregation. Kinetic studies indicated that savignin is a competitive, slow-, tight-binding inhibitor of alpha-thrombin (K(i) = 4.89 +/- 1.39 pM). Tight-binding kinetics showed that the inhibitor has a lower affinity for gamma-thrombin (K(i) = 22.3 +/- 5.9 nM). Plasmin, factor Xa, and trypsin are not inhibited by savignin.  相似文献   

17.
Human connexins 26 and 30 were expressed either through the bicistronic pIRES-EGFP expression vector or as EYFP-tagged chimeras. When transiently transfected in communication-incompetent HeLa cells, hCx26-pIRES transfectants were permeable to dyes up to 622 Da, but were significantly less permeable to 759 Da molecules. Under the same conditions, permeability of hCx26-EYFP fusion products was comparable to that of hCx26-pIRES, but with significant increase in diffusion at 759 Da, possibly as a consequence of having selected large fluorescent junctional plaques. Dye transfer was limited to 457 Da in hCx30-EYFP transfectants. When reconstructed from confocal serial sections, fluorescent plaques formed by hCx26-EYFP and hCx30-EYFP appeared irregular, often with long protrusions or deep invagination. Similar plaques were observed following immunostaining both in cells transfected with hCx26-pIRES and in HeLa cells stably transfected with mouse Cx26. Tissue conductance (Tg(j)) displayed significantly smaller values (28.8+/-1.8 nS) for stably transfected mCx26 than transiently transfected hCx26 (43.5+/-3.3 nS). These differences reflected in distinct functional dependence of normalized junctional conductance (G(j)) on transjunctional voltage (V(j)). The half-activation voltage for G(j) was close to +/-95 and +/-58 mV in mCx26 and hCx26, respectively. The corresponding parameters for hCx30 transfectants were Tg(j)= 45.2 +/- 3.5 nS and V(0)= +/- 34 mV. These results highlight unexpected differences between mCx26 and hCx26 in this expression system, reinforce the concept that channel permeability may be related to Cx level expression, and indicate that fusion of hCx30 to GFP colour mutants produces channels that are suitable for permeability and gating studies.  相似文献   

18.
19.
Stem cell factor (SCF) is the most important cytokine regulating human mast cell growth and functions. The immunogold technique showed SCF in the secretory granules of skin mast cells and in lung parenchymal mast cells (HLMC). Immunoreactive SCF (iSCF) was detected in cell lysates of HLMC, but not in basophils; iSCF and histamine were detected in supernatants of HLMC 3 min after challenge with anti-FcepsilonRI or anti-IgE, and iSCF in supernatants rapidly declined after 30 min, whereas histamine remained unchanged for 120 min. HPLC and electrospray mass spectrometry (ES/MS) analysis of recombinant human SCF1-166 (18,656. 9 +/- 0.9 Da) treated with chymase showed a polypeptide of 17,977.1 +/- 0.6 Da and a minor component of 697.4 +/- 0.1 Da generated by specific cleavage at Phe159. SCF1-166 and SCF1-159 similarly activated HLMC, potentiated anti-IgE-induced activation of these cells, and stimulated HLMC chemotaxis. SCF159-166 had no effect on mast cells. Western blot analysis of supernatants of anti-IgE-activated HLMC incubated with recombinant human SCF1-166 showed that SCF1-166 was rapidly cleaved to SCF1-159 and SCF1-144. Experiments with supernatants of anti-IgE-activated HLMC incubated with SCF1-166 yielded similar results. In conclusion, SCF is stored in mast cell secretory granules and is immunologically released by human mast cells. SCF1-166 is rapidly and specifically cleaved to SCF1-159 by chymase, which retains its biological effect on mast cells. SCF is also cleaved by other proteases to several SCF species whose possible biological activities remain to be established.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号