首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We isolated a novel acid-labile yellow chromophore from the incubation of lysine, histidine and d-threose and identified its chemical structure by one and two-dimensional NMR spectroscopy combined with LC-tandem mass spectrometry. This new cross-link exhibits a UV absorbance maximum at 305 nm and a molecular mass of 451 Da. The proposed structure is 2-amino-5-(3-((4-(2-amino-2-carboxyethyl)-1H-imidazol-1-yl)methyl)-4-(1,2-dihydroxyethyl)-2-formyl-1H-pyrrol-1-yl)pentatonic acid, a cross-link between lysine and histidine with addition of two threose molecules. It was in part deduced and confirmed through synthesis of the analogous compound from n-butylamine, imidazole and d-threose. We assigned the compound the trivial name histidino-threosidine. Systemic incubation revealed that histidino-threosidine can be formed in low amounts from fructose, glyceraldehyde, methylglyoxal, glycolaldehyde, ascorbic acid, and dehydroascorbic acid, but at a much higher yield with degradation products of ascorbic acid, i.e. threose, erythrose, and erythrulose. Bovine lens protein incubated with 10 and 50 mM threose for two weeks yielded 560 and 2840 pmol/mg histidino-threosidine. Histidino-threosidine is to our knowledge the first Maillard reaction product known to involve histidine in a crosslink.  相似文献   

2.
The Maillard reaction, or nonenzymatic browning, proceeds in vivo, and the resulting protein modifications (advanced glycation end products) have been associated with various pathologies. Despite intensive research only very few structures have been established in vivo. We report here for the first time N(6)-[2-[(5-amino-5-carboxypentyl)amino]-2-oxoethyl]lysine (GOLA) and N(6)-glycoloyllysine (GALA) as prototypes for novel amide protein modifications produced by reducing sugars. Their identity was confirmed by independent synthesis and coupled liquid chromatography/mass spectrometry. Model reactions with N(alpha)-t-butoxycarbonyl-lysine showed that glyoxal and glycolaldehyde are immediate precursors, and reaction pathways are directly linked to N(epsilon)-carboxymethyllysine via glyoxal-imine structures. GOLA, the amide cross-link, and 1,3-bis(5-amino-5-carboxypentyl)imidazolium salt (GOLD), the imidazolium cross-link, share a common intermediate. The ratio of GOLA to GOLD is greater when glyoxal levels are low at constant lysine concentrations. GOLA and GALA formation from the Amadori product of glucose and lysine depends directly upon oxidation. With the advanced glycation end product inhibitors aminoguanidine and pyridoxamine we were able to dissect oxidative fragmentation of the Amadori product as a second mechanism of GOLA formation exactly coinciding with N(epsilon)-carboxymethyllysine synthesis. In contrast, the formation of GALA appears to depend solely upon glyoxal-imines. After enzymatic hydrolysis GOLA was found at 66 pmol/mg of brunescent lens protein. This suggests amide protein modifications as important markers of pathophysiological processes.  相似文献   

3.
Post-translational modifications of proteins take place during the aging of human lens. The present study describes a newly isolated glycation product of lysine, which was found in the human lens. Cataractous and aged human lenses were hydrolyzed and fractionated using reverse-phase and ion-exchange high performance liquid chromatography (HPLC). One of the nonproteinogenic amino acid components of the hydrolysates was identified as a 3-hydroxypyridinium derivative of lysine, 2-ammonio-6-(3-oxidopyridinium-1-yl)hexanoate (OP-lysine). The compound was synthesized independently from 3-hydroxypyridine and methyl 2-[(tert-butoxycarbonyl)amino]-6-iodohexanoate. The spectral and chromatographic properties of the synthetic OP-lysine and the substance isolated from hydrolyzed lenses were identical. HPLC analysis showed that the amounts of OP-lysine were higher in water-insoluble compared with water-soluble proteins and was higher in a pool of cataractous lenses compared with normal aged lenses, reaching 500 pmol/mg protein. The model incubations showed that an anaerobic reaction mixture of Nalpha-tert-butoxycarbonyllysine, glycolaldehyde, and glyceraldehyde could produce the Nalpha-t-butoxycarbonyl derivative of OP-lysine. The irradiation of OP-lysine with UVA under anaerobic conditions in the presence of ascorbate led to a photochemical bleaching of this compound. Our results argue that OP-lysine is a newly identified glycation product of lysine in the lens. It is a marker of aging and pathology of the lens, and its formation could be considered as a potential cataract risk-factor based on its concentration and its photochemical properties.  相似文献   

4.
Chromatographic evidence supporting the similarity of the yellow chromophores isolated from aged human and brunescent cataract lenses and calf lens proteins ascorbylated in vitro is presented. The water-insoluble fraction from early stage brunescent cataract lenses was solubilized by sonication (WISS) and digested with a battery of proteolytic enzymes under argon to prevent oxidation. Also, calf lens proteins were incubated with ascorbic acid for 4 weeks in air and submitted to the same digestion. The percent hydrolysis of the proteins to amino acids was approximately 90% in every case. The content of yellow chromophores was 90, 130 and 250 A(330) units/g protein for normal human WISS, cataract WISS and ascorbate-modified bovine lens proteins respectively. Aliquots equivalent to 2.0 g of digested protein were subjected to size-exclusion chromatography on a Bio-Gel P-2 column. Six peaks were obtained for both preparations and pooled. Side by side thin-layer chromatography (TLC) of each peak showed very similar R(f) values for the long wavelength-absorbing fluorophores. Glycation with [U-(14)C]ascorbic acid, followed by digestion and Bio-Gel P-2 chromatography, showed that the incorporated radioactivity co-eluted with the A(330)-absorbing peaks, and that most of the fluorescent bands were labeled after TLC. Peaks 2 and 3 from the P-2 were further fractionated by preparative Prodigy C-18 reversed-phase high-performance liquid chromatography. Two major A(330)-absorbing peaks were seen in peak 2 isolated from human cataract lenses and 5 peaks in fraction 3, all of which eluted at the same retention times as those from ascorbic acid glycated calf lens proteins. HPLC fractionation of P-2 peaks 4, 5 and 6 showed many A(330)-absorbing peaks from the cataract WISS, only some of which were identical to the asorbylated proteins. The major fluorophores, however, were present in both preparations. These data provide new evidence to support the hypothesis that the yellow chromophores in brunescent lenses represent advanced glycation endproducts (AGEs) probably due to ascorbic acid glycation in vivo.  相似文献   

5.
We have employed recently developed blind modification search techniques to generate the most comprehensive map of post-translational modifications (PTMs) in human lens constructed to date. Three aged lenses, two of which had moderate cataract, and one young control lens were analyzed using multidimensional liquid chromatography mass spectrometry. In total, 491 modification sites in lens proteins were identified. There were 155 in vivo PTM sites in crystallins: 77 previously reported sites and 78 newly detected PTM sites. Several of these sites had modifications previously undetected by mass spectrometry in lens including carboxymethyl lysine (+58 Da), carboxyethyl lysine (+72 Da), and an arginine modification of +55 Da with yet unknown chemical structure. These new modifications were observed in all three aged lenses but were not found in the young lens. Several new sites of cysteine methylation were identified indicating this modification is more extensive in lens than previously thought. The results were used to estimate the extent of modification at specific sites by spectral counting. We tested the long-standing hypothesis that PTMs contribute to age-related loss of crystallin solubility by comparing spectral counts between the water-soluble and water-insoluble fractions of the aged lenses and found that the extent of deamidation was significantly increased in the water-insoluble fractions. On the basis of spectral counting, the most abundant PTMs in aged lenses were deamidations and methylated cysteines with other PTMs present at lower levels.  相似文献   

6.
The agonist, [3H](-)[S]-1-(2-amino-2-carboxyethyl)-5-fluoro-pyrimidine-2,4-dione ([3H](S)F-Willardiine) binding to functional alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors of resealed plasma membrane vesicles and nerve endings freshly isolated from the rat cerebral cortex displayed two binding sites (K(D1)=33+/-7 nM, B(MAX1)=1.6+/-0.3 pmol/mg protein, K(D2)=720+/-250 nM and B(MAX2)=7.8+/-4.0 pmol/mg protein). The drug which impairs AMPA receptor desensitisation, 6-chloro-3,4-dihydro-3-(2-norbornene-5-yl)-2H-1,2,4-benzothiadiazine-7-sulphonamide-1,1-dioxide (cyclothiazide, CTZ) fully displaced the [3H](S)F-Willardiine binding at a concentration of 500 microM. In the presence of 100 microM CTZ (K(I(CTZ))=60+/-6 microM), both the antagonist [3H]-1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo(F)quinoxaline-7-sulfonamide ([3H]NBQX: K(D)=24+/-4 nM, B(MAX)=12.0+/-0.1 pmol/mg protein) and the high-affinity agonist binding showed similar affinity reduction ([3H](S)F-Willardiine: K(D)=140+/-19 nM, B(MAX)=2.9+/-0.5 pmol/mg protein; [3H]NBQX: K(D)=111+/-34 nM, B(MAX)=12+/-3 pmol/mg protein). To disclose structural correlates underlying genuine allosteric binding interactions, molecular mechanics calculations of CTZ-induced structural changes were performed with the use of PDB data on extracellular GluR2 binding domain dimeric crystals available by now. Hydrogen-bonding and root mean square (rms) values of amino acid residues recognising receptor agonists showed minor alterations in the agonist binding sites itself. Moreover, CTZ binding did not affect dimeric subunit structures significantly. These findings indicated that the structural changes featuring the non-desensitised state could possibly occur to a further site of the extracellular GluR2 binding domain. The increase of agonist efficacy on allosteric CTZ binding may be interpreted in terms of a mechanism involving AMPA receptor desensitisation sequential to activation.  相似文献   

7.
The chaperone-like activity of human lens alpha-crystallin in inhibiting the aggregation of denatured proteins suggests a role for alpha-crystallin in cataract prevention. Although a variety of techniques have generated structural information relevant to its chaperone-like activity, the size and heterogeneity of alpha-crystallin have prevented determination of its crystal structure. Even though synthetic cross-linkers have provided considerable information about protein structures, they have not previously been used to study the proximity and orientation of subunits within human alpha-crystallin. Cross-linkers provide structural insight into proteins by binding the side chains of amino acids within close proximity. To identify the cross-linked residues, the modified protein is digested and the resulting peptides are analyzed by mass spectrometry. Analysis of products from the reaction of alpha-crystallin with 3,3'dithiobis(sulfosuccinimidyl propionate), DTSSP, identified several modifications to both alphaA and alphaB. The most structurally informative of these modifications was a cross-link between lysine 166 of alphaA and lysine 175 of alphaB. This cross-link provides experimental evidence supporting theoretical structural models that place the C termini of alphaA and alphaB within close proximity in the native aggregate.  相似文献   

8.
Human lens membranes contain the highest cholesterol concentration of any known biological membranes, but it significantly decreases with age. Oxygenation of cholesterol generates numerous forms of oxysterols (bile acids). We previously showed that two forms of the bile acid components—ursodeoxycholic acid (UDCA) and tauroursodeoxycholic acid (TUDCA)—suppressed lens epithelial cell death and alleviated cataract formation in galactosemic rat lenses. We investigated whether these compounds also suppress the thermal aggregation of human lens crystallins. Total water-soluble (WS) proteins were prepared from human lenses, and recombinant human crystallins (αA-, αB-, βB2-, and γC-crystallin) were generated by a prokaryotic expression system and purified by liquid chromatography. The light scattering of proteins in the presence or absence of UDCA or TUDCA was measured using a spectrofluorometer set at Ex/Em = 400/400 nm. Protein blot analysis was conducted for detection of α-crystallins in the human lens WS proteins. High concentrations of UDCA and TUDCA significantly suppressed thermal aggregation of total lens WS proteins, which contained a low level of αA-/αB-crystallin. Spectroscopic analysis with each recombinant human lens crystallin indicated that the bile acids did not suppress the thermal aggregation of γC-, βB2-, αA-, or αB-crystallin. Combination of α-crystallin and bile acid (either UDCA or TUDCA) suppressed thermal aggregation of each individual crystallin as well as a non-crystallin protein, insulin. These results suggest that UDCA or TUDCA protects the chaperone activity of α-crystallin. It is believed that these two naturally occurring intermediate waste products in the lens enhance the chaperone activity of α-crystallin. This finding may lead to the development of UDCA and TUDCA as anticataract agents.  相似文献   

9.
It has been shown that the maxima (Bragg-spacings 4,5-19 A) on the X-ray diffraction patterns of the bovine lens native tissues from nuclear and cortical parts are predominantly due to the water-soluble crystallin intramolecular structure. The structures of water-soluble and water-insoluble fractions from bovine lens nucleus and cortex were qualitatively compared. Reversible dependence of the lens water-soluble protein structure on water content in the system was demonstrated.  相似文献   

10.
Glycation reactions leading to protein modifications (advanced glycation end products) contribute to various pathologies associated with the general aging process and long term complications of diabetes. However, only few relevant compounds have so far been detected in vivo. We now report on the first unequivocal identification of the lysine-arginine cross-links glucosepane 5, DOGDIC 6, MODIC 7, and GODIC 8 in human material. For their accurate quantification by coupled liquid chromatography-electrospray ionization mass spectrometry, (13)C-labeled reference compounds were synthesized independently. Compounds 5-8 are formed via the alpha-dicarbonyl compounds N(6)-(2,3-dihydroxy-5,6-dioxohexyl)-l-lysinate (1a,b), 3-deoxyglucosone (), methylglyoxal (), and glyoxal (), respectively. The protein-bound dideoxyosone 1a,b seems to be of prime significance for cross-linking because it presumably is not detoxified by mammalian enzymes as readily as 2-4. Hence, the follow-up product glucosepane 5 was found to be the dominant compound. Up to 42.3 pmol of 5/mg of protein was identified in human serum albumin of diabetics; the level of 5 correlates markedly with the glycated hemoglobin HbA(1c). In the water-insoluble fraction of lens proteins from normoglycemics, concentration of 5 ranges between 132.3 and 241.7 pmol/mg. The advanced glycoxidation end product GODIC 8 is elevated significantly in brunescent lenses, indicating enhanced oxidative stress in this material. Compounds 5-8 thus appear predestined as markers for pathophysiological processes.  相似文献   

11.
The effects of various ions on L-glutamate (L-Glu) binding sites (Na+-dependent, Cl(-)-dependent, and Cl(-)-independent) in synaptic plasma membranes (SPM) isolated from rat spinal cord and forebrain were examined. Cl(-)-dependent binding sites were over twofold higher in spinal cord (Bmax = 152 +/- 34 pmol/mg protein) as compared to forebrain SPM (Bmax = 64 +/- 12 pmol/mg protein). Na+-dependent binding, on the other hand, was nearly sixfold less in spinal cord (Bmax = 74 +/- 10 pmol/mg protein) compared to forebrain SPM (408 +/- 26 pmol/mg protein). Uptake of L-Glu (Na+-dependent) was also eightfold less in the P2 fraction from spinal cord relative to forebrain (Vmax of 2.89 and 22.3 pmol/mg protein/min, respectively). The effects of Na+, K+, NH4+, and Ca2+ on L-Glu binding sites were similar in both regions of the CNS. In addition, in spinal cord membranes, Br-, I-, and NO3- were equivalent to Cl- in their capacity to stimulate L-Glu binding, whereas F- and CO3- were less effective. Cl(-)-dependent L-Glu binding in spinal cord membranes consisted of two distinct sites. The predominant site (74% of the total) had characteristics similar to the Cl(-)-dependent binding site in forebrain membranes [i.e., Ki values of 5.7 +/- 1.4 microM and 119 +/- 38 nM for 2-amino-4-phosphonobutyric acid (AP4) and quisqualic acid, (QUIS), respectively]. The other Cl(-)-dependent site was unaffected by AP4 but was blocked by QUIS (Ki = 14.2 +/- 4.8 microM).  相似文献   

12.
Ketoconazole (K) is an antifungal imidazole derivative which has been shown to be a potent inhibitor of testosterone (T) biosynthesis in rodents and humans. To study the effect of K on rat testicular steroidogenesis we measured the activities of five testicular microsomal steroidogenic enzymes in K-treated rats and controls. Thirty male adult rats were given either 2 mg K or water every 12 hours by mouth during 5 days. Mean testicular weight was similar in both groups of animals. The K-treated group had a T serum concentration of 83 +/- 14 ng/dL whereas it was 94 +/- 16 ng/dL in the control group (NS). The K-treated animals had decreased activities of the 3 beta-hydroxysteroid dehydrogenase (830 +/- 48 vs 2,245 +/- 109 pmol/mg protein/min, P less than 0.001), 17-hydroxylase (243 +/- 5 vs 676 +/- 17 pmol/mg protein/min, P less than 0.001), 17-ketosteroid reductase (31 +/- 2 vs 169 +/- 7 pmol/mg protein/min, P less than 0.001), and aromatase enzymes (92 +/- 6 vs 123 +/- 7 pmol/mg protein/min, P less than 0.01). The 17,20-desmolase activity was similar in both groups of animals (210 +/- 4 vs 171 +/- 18 pmol/mg protein/min). We conclude that K given orally to rats inhibits the activity of several testicular steroidogenic enzymes.  相似文献   

13.
Analysis of aged and cataract lenses shows the presence of increased amounts of crystallin fragments in the high molecular weight aggregates of water-soluble and water-insoluble fractions. However, the significance of accumulation and interaction of low molecular weight crystallin fragments in aging and cataract development is not clearly understood. In this study, 23 low molecular mass (<3.5-kDa) peptides in the urea-soluble fractions of young, aged, and aged cataract human lenses were identified by mass spectroscopy. Two peptides, alphaB-(1-18) (MDIAIHHPWIRRPFFPFH) and betaA3/A1-(59-74) (SD(N)AYHIERLMSFRPIC), present in aged and cataract lens but not young lens, and a third peptide, gammaS-(167-178) (SPAVQSFRRIVE) present in all three lens groups were synthesized to study the effects of interaction of these peptides with intact alpha-, beta-, and gamma-crystallins and alcohol dehydrogenase, a protein used in aggregation studies. Interaction of alphaB-(1-18) and betaA3/A1-(59-74) peptides increased the scattering of light by beta- and gamma-crystallin and alcohol dehydrogenase. The ability of alpha-crystallin subunits to function as molecular chaperones was significantly reduced by interaction with alphaB-(1-18) and betaA3/A1-(59-74) peptides, whereas gammaS peptide had no effect on chaperone-like activity of alpha-crystallin. The betaA3/A1-(59-74 peptide caused a 5.64-fold increase in alphaB-crystallin oligomeric mass and partial precipitation. Replacing hydrophobic residues in alphaB-(1-18) and betaA3/A1-(59-74) peptides abolished their ability to induce crystallin aggregation and light scattering. Our study suggests that interaction of crystallin-derived peptides with intact crystallins could be a key event in age-related protein aggregation in lens and cataractogenesis.  相似文献   

14.
Human lens crystallins become progressively yellow-brown pigmented with age. Both fluorescent and non-fluorescent protein adducts and cross-links are formed, many of which result from the advanced Maillard reaction. One of them, LM-1, is a blue fluorophore that was earlier tentatively identified as a cross-link involving lysine residues (1). A two-step chromatographic system was used to unequivocally identify and quantitatively prepare a synthetic fluorescent cross-link with lysine residues that had identical UV, fluorescent, and chromatographic properties with both acetylated and non-acetylated LM-1. Proton, (13)C NMR, and molecular mass of the synthetic compound were identical with vesperlysine A, a fluorescent cross-link discovered by Nakamura et al. (2). The fragmentation patterns of vesperlysine A and LM-1 were identical as determined by NMR/mass spectrometry. Lenticular levels of vesperlysine A increase curvilinearly with age and reach 20 pmol/mg at 90 years. Levels correlate with degree of lens crystallin pigmentation and fluorescence and are increased in diabetes, in contrast to N(epsilon)-(carboxymethyl)lysine and pentosidine. Ascorbate, D-pentoses, and D-threose, but neither D-glucose under oxidative conditions, DL-glyceraldehyde, methylglyoxal, glyoxal, nor glycolaldehyde, are precursors. However, addition of C-2 compounds greatly catalyzes vesperlysine A formation from ribose. Thus, vesperlysine A/LM-1 is a novel product of the advanced Maillard reaction in vivo and a specific marker of a diabetic process in the lens that is different from glyco- and lipoxidation.  相似文献   

15.
Tryptophan can be oxidized in the eye lens by both enzymatic and non-enzymatic mechanisms. Oxidation products, such as kynurenines, react with proteins to form yellow-brown pigments and cause covalent cross-linking. We generated a monoclonal antibody against 3-hydroxykynurenine (3OHKYN)-modified keyhole limpet hemocyanin and characterized it using 3OHKYN-modified amino acids and proteins. This monoclonal antibody reacted with 3OHKYN-modified N(alpha)-acetyl lysine, N(alpha)-acetyl histidine, N(alpha)-acetyl arginine, and N(alpha)-acetyl cysteine. Among the several tryptophan oxidation products tested, 3OHKYN produced the highest concentration of antigen when reacted with human lens proteins. A major antigen from the reaction of 3OHKYN and N(alpha)-acetyl lysine was purified by reversed phase high pressure liquid chromatography, which was characterized by spectroscopy and identified as 2-amino-3-hydroxyl-alpha-((5S)-5-acetamino-5-carboxypentyl amino)-gamma-oxo-benzene butanoic acid. Enzyme-digested cataractous lens proteins displayed 3OHKYN-derived modifications. Immunohistochemistry revealed 3OHKYN modifications in proteins associated with the lens fiber cell plasma membrane. The low molecular products (<10,000 Da) isolated from normal lenses after reaction with glucosidase followed by incubation with proteins generated 3OHKYN-derived products. Human lens epithelial cells incubated with 3OHKYN showed intense immunoreactivity. We also investigated the effect of glycation on tryptophan oxidation and kynurenine-mediated modification of lens proteins. The results showed that glycation products failed to oxidize tryptophan or generate kynurenine modifications in proteins. Our studies indicate that 3OHKYN modifies lens proteins independent of glycation to form products that may contribute to protein aggregation and browning during cataract formation.  相似文献   

16.
Microsomes and Golgi fractions were isolated from 13 human liver samples without local malignancy. Binding of insulin to microsomes (per cent per 0.5 mg protein) was 14.4 +/- 7.9% with two classes of receptors: K1 = 1.4 nM, R1 = 0.28 pmol/mg; K2 = 8.1 nM, R2 = 0.62 pmol/mg. The binding was insignificantly lower than in rats. Binding of EGF was only 3.4 +/- 1.7% with two classes of receptors: K1 = 1.4 nM, R1 = 0.06 pmol/mg; K2 = 10.8 nM, R2 = 0.22 pmol/mg; the binding was much lower than in rats (26.3 +/- 5.8%). Binding of insulin to Golgi fraction (per cent per 0.1 mg protein) was 5.5 +/- 0.4% with straight line Scatchard plot; Kd = 5.6 nM, Ro = 3.06 pmol/mg; it was only half of that found in rats. In one case of hepatoma, the binding of insulin to microsomes was normal but that of EGF very low.  相似文献   

17.
Formation of lanthionine, a dehydroalanine crosslink, is associated with aging of the human lens and cataractogenesis. In this study we investigated whether modification of lens proteins by glutathione could proceed through an alternative pathway: that is, by the formation of a nonreducible thioether bond between protein and glutathione. Direct ELISA of the reduced water-soluble and water-insoluble lens proteins from human cataractous, aged and bovine lenses showed a concentration-dependent immunoreactivity toward human nonreducible glutathionyl-lens proteins only. The reduced water-insoluble cataractous lens proteins showed the highest immunoreactivity, while bovine lens protein exhibited no reaction. These data were confirmed by dot-blot analysis. The level of this modification ranged from 0.7 to 1.6 nmol/mg protein in water-insoluble proteins from aged and cataractous lenses. N-terminal amino acid determination in the reduced and alkylated lens proteins, performed by derivatization of these preparations with dansyl chloride followed by an exhaustive dialysis, acid hydrolysis and fluorescence detection of dansylated amino acids by RP-HPLC, showed that N-terminal glutamic acid was present in concentration of approximately 0.2 nmol/mg of lens protein. This evidence points out that at least some of the N-terminal amino groups of nonreducible glutathione in the reduced human lens proteins are not involved in a covalent bond formation. Since disulfides were not detected in the reduced and alkylated human lens proteins, GSH is most likely attached to lens proteins through thioether bonds. These results provide, for the first time, evidence that glutathiolation of human lens proteins can occur through the formation of nonreducible thioether bonds.  相似文献   

18.
Crystal structures of the tetrameric yellow-fluorescent protein zFP538 from the button polyp Zoanthus sp. and a green-emitting mutant (K66M) are presented. The atomic models have been refined at 2.7 and 2.5 A resolution, with final crystallographic R factors of 0.206 (R(free) = 0.255) and 0.190 (R(free) = 0.295), respectively, and have excellent stereochemistry. The fold of the protomer is very similar to that of green (GFP) and red (DsRed) fluorescent proteins; however, evidence from crystallography and mass spectrometry suggests that zFP538 contains a three-ring chromophore derived from that of GFP. The yellow-emitting species (lambda(em)(max) = 538 nm) is proposed to result from a transimination reaction in which a transiently appearing DsRed-like acylimine is attacked by the terminal amino group of lysine 66 to form a new six-membered ring, cleaving the polypeptide backbone at the 65-66 position. This extends the chromophore conjugation by an additional double bond compared to GFP, lowering the absorption and emission frequencies. Substitution of lysine 66 with aspartate or glutamate partially converts zFP538 into a red-fluorescent protein, providing additional support for an acylimine intermediate. The diverse and unexpected roles of the side chain at position 66 give new insight into the chemistry of chromophore maturation in the extended family of GFP-like proteins.  相似文献   

19.
α-Crystallin, comprising 40–50 subunits of αA- and αB-subunits, is a long-lived major soluble chaperone protein in lens. During aging, α-crystallin forms aggregates of high molecular weight (HMW) protein and eventually becomes water-insoluble (WI). Isomerization of Asp in α-crystallin has been proposed as a trigger of protein aggregation, ultimately leading to cataract formation. Here, we have investigated the relationship between protein aggregation and Asp isomerization of αA-crystallin by a series of analyses of the soluble α-crystallin, HMW and WI fractions from human lens samples of different ages (10–76 years). Analytical ultracentrifugation showed that the HMW fraction had a peak sedimentation coefficient of 40 S and a wide distribution of values (10–450 S) for lens of all ages, whereas the α-crystallin had a much smaller peak sedimentation coefficient (10–20 S) and was less heterogeneous, regardless of lens age. Measurement of the ratio of isomers (Lα-, Lβ-, Dα-, Dβ-) at Asp58, Asp91/92 and Asp151 in αA-crystallin by liquid chromatography–mass spectrometry showed that the proportion of isomers at all three sites increased in order of aggregation level (α-crystallin < HMW < WI fractions). Among the abnormal isomers of Asp58 and Asp151, Dβ-isomers were predominant with a very few exceptions. Notably, the chaperone activity of HMW protein was minimal for lens of all ages, whereas that of α-crystallin decreased with increasing lens age. Thus, abnormal aggregation caused by Asp isomerization might contribute to the loss of chaperone activity of α-crystallin in aged human lens.  相似文献   

20.
Human lens α-crystallin becomes progressively insoluble with age and is the major crystallin component in the water-insoluble (WI) fraction. The mechanism that causes the originally water-soluble (WS) α-crystallin to become insoluble is unknown. A conformational change by chemical modification may be the cause, but the nature of insolubility renders it impossible to study protein conformation in the WI fraction by most spectroscopic measurements. In the present study, α-crystallin in the WI fraction was extracted by urea and reconstituted to a folded protein by dialysis. The refolded urea-soluble (US) α-crystallin was compared with WS α-crystallin. The US α-crystallin has a greater amount of polymeric species, but fewer degraded subunits than the WS α-crystallin as shown by SDS-PAGE and Western blot. Circular dichroism (CD) measurements indicate that they have the same secondary structure but a different tertiary structure, possibly a partial unfolding in the US α-crystallin. This is supported by fluorescence measurements: Trp residues are more exposed and protein has a more-hydrophobic surface in the US than in the WS α-crystallin. Blue fluorescence further indicates that the US α-crystallin has a greater amount of pigment than the WS α-crystallin. Together, these results indicate that the US α-crystallin is a chemically and conformationally modified protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号