首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early morphogenesis of dorsal and pelvic fins and their supports in the larval and juvenile red-spotted grouper, Epinephelus akaara, was examined using a hatchery-reared series. The dorsal spine anlage first appeared suspended in the middle part of the finfold at ca. 2.5 mm TL. Dorsal and pelvic supports appeared by the time the fish reached ca. 3 mm and started to ossify at ca. 3.5 mm. Elongated spines and their supports developed synchronously in both dorsal and pelvic fins. The formation of dorsal fin supports proceeded from anterior to posterior. The ossification of supports was completed by ca. 33 mm. Spinelets on the second dorsal spine and pelvic spine appeared by ca. 3 mm. In specimens larger than 36 mm, all spinelets on the second dorsal spine and pelvic spine had disappeared. The maximum size of the second dorsal spine and pelvic spine lengths relative to TL were ca. 45% and 44% at 3.3 mm in fish size, respectively. Thereafter, their proportions decreased gradually. Considering the order of development of the elongated spines and mucous cells in the early life stages, the elongated spines might function as antipredator devices. Received: June 20, 2000 / Revised: April 28, 2001 / Accepted: June 11, 2001  相似文献   

2.
The developmental sequence of morphological characteristics related to swimming and feeding functions was investigated in hatchery-reared larvae and juveniles ofSebastes schlegeli, a viviparous scorpaenid. The fish were extruded at an early larval stage, when the mean body size was 6.23 mm TL. Fin-ray rudiments became visible at 9.0 mm TL in the dorsal and anal fins, at 8.0 mm TL in the pectoral and pelvic fins and 6.0 mm TL (size at extrusion) in the caudal fin. Completion of segmentation of soft rays in the dorsal and anal fins was attained by 14 mm TL and in all fins by 17 mm TL. Branching of soft rays in the respective fins started and was completed considerably later than the completion of segmentation, as well as ossification of the fin-supports. Morphological transformation from larva to juvenile was apparently completed by about 17 mm TL. Although the completion of basic juvenile structures was attained by transformation at that body size, succeeding morphological changes occurred between 17 mm and 32 mm TL. Newly-extruded larvae possessed one or two teeth on the lower pharyngeal and pharyngobranchials 3 and 4, but lacked premaxillary, dentary, palatine and prevomer teeth. The fish attained full development of gill rakers and gill teeth by 15 mm TL, the upper and lower pharyngeal teeth subsequently developing into a toothplate. Development of the premaxillary, dentary and palatine teeth was completed at about 30 mm TL, by which time loop formation of the digestive canal and the number of pyloric caeca had attained the adult condition. The developmental sequence of swimming and feeding functions during larval and early juvenile periods appeared to proceed from primitive functions to advanced or complex ones, from the ability to produce propulsive force to that of swimming with high maneuverability and from development of the irreducible minimum function of passing food into the stomach to the ability to actively capture prey via passive food acquisition with the gill rakers and gill teeth. The relationship of morphological development to the behavior and feeding activity of artificially-produced hatchlings is also discussed.  相似文献   

3.
A late-stage larva of Coryphaenoides pectoralis was first observed in situ and subsequently collected by the deep-sea submersible “Shinkai 2000” from mesopelagic waters at a depth of 530 m off Hokkaido, Japan. The larva (14.5 mm in head length, 149+ mm in total length) has fan-like pectoral fins, elongate first dorsal fin, pelvic fin and tail, 10 first dorsal rays (including 2 pseudospines), and 7 pelvic fin rays, 6 branchiostegal rays, no light organ, anus just anterior to anal fin origin, 2 retia and gas glands, 14 abdominal vertebrae, and previously reported larval pigmentation. Counts of second dorsal and anal fin rays, and caudal vertebrae, are reported for the first time.  相似文献   

4.
The pectoral fin girdle was the first element of the fins to develop in Sparus aurata. By 3·1mm L N (notochord length) the cleithrum was ossified and the cartilaginous caracoid-scapula was present. The fin was fully developed at 11·6 mm L S (standard length) and by 16·0 mm L S most elements of the fin were ossified. The pelvic fins were the last pair to develop and rudiments of these were first detected at 7·9 mm L S. The pelvic fin and girdle were completely formed and ossified at 16·0 mm L S. The development of dorsal and anal fins began at c. 6·5–7·0 mm L S with the formation of 10 cartilaginous dorsal proximal radials and eight cartilaginous ventral proximal radials. The three cartilaginous predorsals (supraneurals) appeared at 7·7 mm L S and the ossification of dorsal and anal proximal and distal radials began, respectively, at 10·5 mm L S and 11·3 mm L S. Ossified structures in the fins were also classified according to their origin, as being either dermal or endochondral. Finally the chronology of appearance of fin structures in S. aurata was compared with that reported for other Sparidae, Engraulidae and Haemulidae.  相似文献   

5.
The artificial fertilization of the puffer,Takifugu chrysops (Hilgendorf), was carried out at Sajima in Yokosuka City on May 22, 1984. Hatched larvae were reared for a period of about 150 days. The spawning period seems to extend from mid to late May in the eastern part of Sagami Bay. The eggs were spherical, pale milky white and semitransparent, demersal and adhesive in nature, measuring 1.32±0.04 mm in diamter, and with a cluster of small oil-globules. The incubation period was about 162 hours at a water temperature of 17.4 to 21.8°C. During embryonic development, the only pigment cells that appeared on the embryo were the black chromatophores. The newly hatched larvae measured from 2.72 to 3.06 mm TL, averaging 2.87±0.1 mm TL, and 22–23 (9 + 13?14) myomeres. At yolk absorption, 4 days after hatching, the larvae attained 3.64–3.79 mm TL. On the 11th day, postlarvae averaged 4.69±0.24 mm TL. Larval finfolds disappeared and rudimental dorsal, anal and caudal fins were formed. There were two large clusters of melanophores, one on the back, exteding from the mid-base of the dorsal fin to the caudal peduncle region, the other along the anal fin base. The color of the body began to turn pale green to brownish-orange and spinelike scales appeared on the belly. Eighteen days after hatching (7.02±0.27 mm TL), the caudal notochord began to turn up and a “constriction” appeared on the posterior margin of the caudal fin membrane. This notch moved upwards as the notochord upturning advances. The larvae attained full fin ray counts and reached the juvenile stage at 9.1-9.5 mm TL, 24 days after hatching. Characteristic black blotches on the back and specific brownish orange body color appeared at the stage of 20 mm TL, 24 days after hatching. The growth during the larval stage and early juvenile stage (24 to 51 days after hatching) were expressed by the following equations, wherey is total length (mm) andx is days after hatching.y 1=2.8424× 1.05099 (0≦x≦24)y 2 = 3.7872×1.0372x (24≦x≦51)  相似文献   

6.
The cichlid Hypsophrys nicaraguensis is a popular fish known as butterfly, and despite its widespread use as pets, little is known about its reproductive biology. In order to contribute to this knowledge, the study describes the relevant larval development characteristics, from adult and larval cultures in captivity. Every 12h, samples of larvae were collected and observed under the microscope for larval stage development, and every 24h morphometric measurements were taken. Observations showed that at 120h, some larvae had swimming activity and the pectoral fins development was visible; at 144h, the dorsal fin appear and all larvae started food intake; at 168h, the formation of anal fins begins, small rudiments of pelvic fins emerge, the separation of caudal fin from anal and dorsal fins starts, and the yolk sac is reabsorbed almost completely; at 288h, the pelvic fins starts to form; at 432h, the rays and spines of dorsal and anal fins can be distinguished, both the anal and the dorsal fins have the same number of spines and rays as in adults. After 480h larvae have the first scales, ending the larval stages and starting the transformation to fingerlings. Larvae were successfully fed with commercial diet.  相似文献   

7.
Development of fin-supports and fin-rays was observed in larval and juvenileChanos chanos, Chondrification of the caudal complex started at 4.70 mm SL. Ossification of the caudal elements started at 7.80 mm SL and was nearly completed at about 30 mm SL. Cartilaginous fusion of caudal elements, which occurs in hypurals of higher teleostean fishes but is not seen in lower teleosts, was observed between the neural arch of the preural centrum 1 and that of the ural centrum 1 via a small cartilage bridging the distal tips of the two arches. Caudal finrays began to develop at 6.60 mm SL, and an adult complement of principal rays was attained at 7.35 mm SL. Dorsal and anal pterygiophore elements were first evident at 6.70 mm and 6.65 mm SL, respectively. All proximal radiais were formed at 8.15 mm SL in both fins. Formation of dorsal and anal fin-rays started simultaneously at 8.60 mm SL, and adult fin-ray complements were attained at 10,00 mm and 10.70 mm SL, respectively. In the pectoral fin, the cleithrum, coraco-scapular cartilage and blade-like cartilage (fin plate) had already been formed at 4.65 mm SL. The mesocoracoid was observed to originate from the coraco-scapular cartilage and become detached from it in the course of ossification. Pectoral fin-ray formation started at 13.80 mm SL and was completed in number of rays at 20.00 mm SL. In the pelvic fin, the basipterygium was first evident at 13.00 mm SL. Pelvic fin-rays appeared at 13.80 mm SL and attained their adult count at 17.15 mm SL.  相似文献   

8.
广西高原鳅属鱼类一穴居新种记述   总被引:11,自引:0,他引:11  
2003年1月,在广西壮族自治区天峨县红水河水系地下河采集到一批盲鱼标本。经鉴定,为高原鳅属Triplophysa一未经发表的新种。新种天峨高原鳅Triplophysa tianeensis sp.nov.与个旧盲高原鳅T.gejiuensis、石林盲高原鳅T.shilinensis、阿庐高原鳅T.aluensis和南丹高原鳅T.nandanensis相似;本新种腹鳍末端不达肛门,尾鳍分枝鳍条16,可进一步与个旧盲高原鳅和石林盲高原鳅(腹鳍末端达到肛门,尾鳍分枝鳍条14-15)相区别;本新种背鳍起点位于体之中点、腹鳍起点之后,肛门紧靠臀鳍起点,可进一步与阿庐高原鳅(背鳍起点靠近吻端、位于腹鳍起点之前,肛门距臀鳍起点仍有一段距离)相区别。本新种与同分布于红水河水系的南丹高原鳅Triplophysa nandanensis Lan et al.较为相似;但二者区别明显:新种背鳍分枝鳍条7、胸鳍分枝鳍条9、腹鳍分枝鳍条6、背鳍外缘平截、背鳍起点位于腹鳍起点之后,后者背鳍分枝鳍条8、胸鳍分枝鳍条10~11、腹鳍分枝鳍条7、背鳍外缘凹入、背鳍起点位于腹鳍起点之前;此外,新种的穴居特征更为显著:眼极度退化、头长为眼径16.8—32.8(25.0)倍、部分个体无色素斑且各鳍无斑点,而南丹高原鳅眼小、头长为眼径4.7~9.0(7.5)倍、体和头背侧密布云状斑且各鳍均具点状斑。  相似文献   

9.
The ontogeny of the developmental stages of the hake Merluccius hubbsi is described. Fish larvae and post-transitional juveniles were collected in the Nor-Patagonian area from 1989 to 2004. The opening of the mouth and the pigmentation of the eyes are coincident with yolk resorption, finishing the yolk-sac stage. This species presents pigmentation on the head, trunk and tail typical of gadiform larvae. Pectoral fin development is completed during the transformation stage. The post-transitional juvenile stage begins when the fin-ray complements are complete and squamation begins. The fins become fully formed in the following sequence: pelvic fins, first dorsal fin, second dorsal and anal fins together, caudal fin and pectoral fins. The caudal complex is totally developed in larvae of 22·0–23·0 mm standard lengths ( L S) and all vertebral elements are first observed in larvae of 8·5 mm L S. The rate of development of M. hubbsi observed in this study could be faster than the rates reported for other species of Merluccius by different authors.  相似文献   

10.
The osteological development of the vertebral column and fins in shi drum Umbrina cirrosa was studied in order to improve knowledge for its introduction in Mediterranean aquaculture. The osteological development was studied in 171 individuals, of total length (LT) from 2·7 to 30·2 mm that were reared under the mesocosm technique. Vertebral ontogeny starts at 3·4 and 4·0 mm LT, with the formation of the first cartilaginous neural and haemal arches, and spines, respectively, and is completed with the full attainment of epicentrals (12·5 mm LT). The formation of vertebral centra occurs between 4·1 and 7·4 mm LT. Pectoral supports are the first fin elements to develop (3·0 mm LT), followed by those of the caudal fin (3·8 mm LT), pelvic fin (3·9 mm LT) and finally by those of the dorsal and anal fins (4·5 mm LT). The caudal fin is the first to develop fin rays and attain the full count of principal fin rays (4·5–6·8 mm LT), but the last to be fully completed with the formation of procurrent fin rays (6·9–17·5 mm LT). The next fins starting to present rays are the dorsal (5·3 mm LT) and the pectoral fins (5·6 mm LT), while the anal and pelvic fins are the last (5·7 mm LT). Following the caudal principal fin rays (6·8 mm LT), the dorsal, anal (6·9 mm LT), pelvic (7·4 mm LT) and pectoral fins (9·8 mm LT) are the next with fully completed ray counts. Aggregation of qualitative changes, such as the appearance of cartilages, the beginning and the complement of the ossification process and the full complement of elements in U. cirrosa were measured as cumulative frequency counts. These measurements reveal three ontogenetic intervals: one very developmentally active period during early life stages (from 3 to 5·9 mm LT), a second slower developmental period (from 6·0 to 8·9 mm LT) and finally a period of ontogeny more focused on structure refinement up to metamorphosis and settlement (>9·0 mm LT).  相似文献   

11.
12.
13.
Ray‐finned fishes actively control the shape and orientation of their fins to either generate or resist hydrodynamic forces. Because of the emergent mechanical properties of their segmented, bilaminar fin rays (lepidotrichia), and actuation by multiple muscles, fish can control the rigidity and curvature of individual rays independently, thereby varying the resultant forces across the fin surfaces. Expecting that differences in fin‐ray morphology should reflect variation in their mechanical properties, we measured several musculoskeletal features of individual spines and rays of the dorsal and anal fins of bluegill sunfish, Lepomis macrochirus, and assessed their mobility and flexibility. We separated the fin‐rays into four groups based on the fin (dorsal or anal) or fin‐ray type (spine or ray) and measured the length of the spines/rays and the mass of the three median fin‐ray muscles: the inclinators, erectors and depressors. Within the two ray groups, we measured the portion of the rays that were segmented vs. unsegmented and branched vs. unbranched. For the majority of variables tested, we found that variations between fin‐rays within each group were significantly related to position within the fin and these patterns were conserved between the dorsal and anal rays. Based on positional variations in fin‐ray and muscle parameters, we suggest that anterior and posterior regions of each fin perform different functions when interacting with the surrounding fluid. Specifically, we suggest that the stiffer anterior rays of the soft dorsal and anal fins maintain stability and keep the flow across the fins steady. The posterior rays, which are more flexible with a greater range of motion, fine‐tune their stiffness and orientation, directing the resultant flow to generate lateral and some thrust forces, thus acting as an accessory caudal fin. J. Morphol., 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

14.
《Journal of morphology》2017,278(12):1716-1725
The dorsal fin is one of the most varied swimming structures in Acanthomorpha, the spiny‐finned fishes. This fin can be present as a single contiguous structure supported by bony spines and soft lepidotrichia, or it may be divided into an anterior, spiny dorsal fin and a posterior, soft dorsal fin. The freshwater fish family Percidae exhibits especially great variation in dorsal fin spacing, including fishes with separated fins of varying gap length and fishes with contiguous fins. We hypothesized that fishes with separated dorsal fins, especially those with large gaps between fins, would have stiffened fin elements at the leading edge of the soft dorsal fin to resist hydrodynamic loading during locomotion. For 10 percid species, we measured the spacing between dorsal fins and calculated the second moment of area of selected spines and lepidotrichia from museum specimens. There was no significant relationship between the spacing between dorsal fins and the second moment of area of the leading edge of the soft dorsal fin.  相似文献   

15.
One of the most conspicuous characters of the ocean sunfishes, family Molidae, is the punctuation of the body by a deep, abbreviated, caudal fin-like structure extending vertically between the posterior ends of the dorsal and anal fins, termed the clavus by Fraser Brunner. Homology of the clavus has been a matter of debate since the first studies on molid anatomy in the early 1800s. Two hypotheses have been proposed: 1) It is a highly modified caudal fin; 2) It is formed by highly modified elements of the dorsal and anal fins. To resolve this homology issue, we studied the ontogeny of the molid vertebral column and median fins and compared it to that of a less morphologically derived gymnodont (see Part 1 of this study), a member of the family Tetraodontidae. We show that in molids the chorda never flexes during development, that the claval rays form from the posterior ends of the dorsal and anal fins toward the middle, thus closing the gap inward, and that elements of the molid clavus have an identical development and composition as the proximal-middle and distal radials of the regular dorsal and anal fins. We thus conclude that the molid clavus is unequivocally formed by modified elements of the dorsal and anal fin and that the caudal fin is lost in molids.  相似文献   

16.
To describe the skeletal development and abnormalities in turbot Scophthalmus maximus, samples were collected every day from hatching to 60 days after hatching (DAH). A whole-mount cartilage and bone-staining technique was used. Vertebral ontogeny started with the formation of anterior haemal arches at 5·1 mm standard length (L(S) ) c. 11 DAH, and was completed by the full attainment of parapophyses at 16·9 mm L(S) c. 31 DAH. Vertebral centra started to develop at 6·3 mm L(S) c. 16 DAH and ossification in all centra was visible at 11·0 mm L(S) c. 25 DAH. The caudal fin appeared at 5·1 mm L(S) c. 11 DAH and ossification was visible at 20·6 mm L(S) c. 37 DAH. The onset of dorsal and anal fin elements appeared at 5·8 mm L(S) c. 15 DAH and 6·3 mm L(S) c. 16 DAH, respectively. Ossifications of both dorsal fin and anal fin were visible at 20·6 mm L(S) c. 37 DAH. The pectorals were the only fins present before first feeding, their ossifications were completed at 23·5 mm L(S) c. 48 DAH. Pelvic fins began forming at 7·2 mm L(S) c. 19 DAH and calcification of the whole structure was visible at 19·8 mm L(S) c. 36 DAH. In the present study, 24 types of skeletal abnormalities were observed. About 51% of individuals presented skeletal abnormalities, and the highest occurrence was found in the haemal region of the vertebral column. As for each developmental stage, the most common abnormalities were in the dorsal fin during early metamorphic period (stage 2), vertebral fusion during climax metamorphosis (stage 3) and caudal fin abnormality during both late-metamorphic period (stage 4) and post-metamorphic period (stage 5). Such research will be useful for early detection of skeletal malformations during different growth periods of reared S. maximus.  相似文献   

17.
Specimens of a new genus and species of the stichaeid fish,Leptostichaeus pumilus, were collected from the Okhotsk Sea off Hokkaido in Japan. The present new genus and species clearly differs from all the other genera and species of the stichaeid fishes in the following characters: 3 or 4 pectoral fin rays; 10 or fewer caudal principal rays; 79–82 dorsal spines; no pelvic fin; last interneural spine supporting a single dorsal spine; infraorbital, occipital and lateral line canals absent; moderate size of dorsal spine shorter than eye diameter; membranes of dorsal and anal fins widely connected with caudal fin; a large black spot divided by a yellow band present just above gill cover.  相似文献   

18.
The osteological development of the head skeleton and dorsal, pectoral, and anal fin supports, are described from cleared and stained specimens ofLophius gastrophysus larvae, ranging from 4.6 to 21.8 mm NL; the results are compared with those of juvenile (79.8 mm SL) and adult (398 mm SL) specimens. Tiny conical teeth are present on the premaxillary, dentary, palatine and vomer since early stage. The first three dorsal fin spines are initially positioned on the midline of body posterior to the supraoccipital, but they migrate forward with growth and become cephalic in juveniles. The forward movement of the dorsal spines is produced by the forward extension of the cartilaginous basal inside the subepidermal space. During the planktonic larval stage the pectoral fins are on the sides of body as in ordinary fishes, but they move ventrad and become leg-like in bottom living juveniles and adults. Ossification of the caudal complex ofL. gastrophysus larvae proceeds very slowly and only the 21.8 mm NL larva has an almost completely ossified caudal complex. Eight principal caudal rays are loosely attached on the posterior edge of the hypurals and no procurrent rays are present. Larvae have well developed parhypurapophysis at the mid-portion of the urostyle which transforms into keel-like structure in juveniles and adults.  相似文献   

19.
《Journal of morphology》2017,278(6):848-864
The median fins in extant actinopterygians are the product of millions of years of evolution. During this time, different developmental patterns for the dorsal and anal fins emerged leading to a high variation in median fin morphology and ontogeny. In this study, the development of anal and dorsal fins in atheriniforms is described and its consequences for the current phylogenetic hypothesis are discussed. Developmental series of five atheriniform species were investigated using clearing and staining as well as antibody staining. The skeletal elements of the second dorsal fin and the anal fin emerge in a bidirectional pattern. The first dorsal fin, however, arises separately in front of the second dorsal fin after this one is almost completely formed. The pterygiophores of the first dorsal fin, including the interdorsal pterygiophores, develop from caudal to rostral, but the fin‐spines of the first dorsal fin form in the opposite direction. This new mode of fin development has been found in all examined atheriniform species with two dorsal fins. Several morphological characters of atheriniforms, including interdorsal pterygiophores, are also found in one other taxon: the Mugiliformes. Thus, several dorsal fin characteristics may provide evidence for a closer relationship of these two taxa.  相似文献   

20.
WithAcanthodes bourbonensis n.sp. another acanthodian from Lower Permian basins of Europe is described. The new species is similar toAcanthodes gracilis (Beyrich) from Silesia (Poland), but it differs from this and all other species of the genus in the development of the pectoral fins, dorsal fin, anal fin and caudal fin. In pectoral fins, dorsal and anal fin there are different ceratotrichia as supporting elements and pectoral fins are attaching along a row of oblonged large scales. In the caudal fin there is an epichoral appendix first found byHeyler (1969).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号