首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The activity and properties of phosphofructokinase (PFK) in tissues of horse mackerel which was swimming at burst regimen for 5 min and at cruiser one for 60 min have been investigated. In white muscle the PFK activity increased 1.6-fold after burst swimming and Hill's coefficient rose as well and decreased 3-fold after cruiser one. Swimming did not change the half-maximal saturation constant for both substrates and inhibition constants for ATP and citrate. In the preparations from white muscle of fish which were stimulated by burst swimming the PFK activity at physiological pH values (6.0-7.0) was higher comparing with one from the control group and after cruiser swimming. Incubation of preparations at 45 degrees C decreased the activity of PFK in control and cruiser swimming groups (to 61-67% of initial level) and increased it after burst swimming (1.3-fold). The mechanisms involving in stable modification of PFK under different swimming regimens are discussed.  相似文献   

2.
The larval life of the spiny lobster Jasus edwardsii is one of the longest and most complex of any marine organism and is poorly understood due to the difficulty of studying cryptic, pelagic organisms. Hence, the capacity for active swimming in the phyllosoma, puerulus and juvenile stages and the use of possible metabolic fuel reserves was inferred from a number of enzyme activities, including citrate synthase, lactate dehydrogenase, and HOAD. High activities of CS and LDH in abdominal tissues of Stage 11 phyllosoma and pueruli are consistent with a capacity to commence active on-shore movement. The activities of LDH and HOAD showed positive allometry while CS was independent of body mass. The body mass dependence of LDH activity may reflect the developing ability of the lobster to initiate brief escape manoeuvres, and the scaling of HOAD reflects an increased use of lipid fuel reserves. Aerobic enzyme activities were higher in abdominal tissues than in cephalic tissues of pelagic pueruli, but high activities appear in the cephalic tissues of juveniles. These changes mirror a developmental shift in activity from pelagic oceanic swimming to a benthic existence on the seabed of the near shore. The low LDH activity in pueruli confirmed previous findings that they have limited feeding capacity, with carbohydrate contributing little towards the major energy reserves. The highest LDH activities occur in the abdominal muscles of juveniles and correlate with rapid tail-flicking escape behaviour. The activities of HOAD increased throughout development, and in the abdominal tissues of juveniles, may reflect lipid transformation and accumulation as an energy reserve. Enzyme activities, therefore, provide useful information concerning migratory behaviour that is presently unavailable from ecological studies.  相似文献   

3.
This study evaluated whether indicators of metabolic capacity of cod white muscle differ along the length of the body, whether this variation persists over a large range of body sizes, and whether the allometry of metabolic capacities is similar along the length of the body. We examined the maximal activities of two glycolytic enzymes, phosphofructokinase (PFK) and lactate dehydrogenase (LDH), a mitochondrial enzyme, cytochrome C oxidase (CCO), and the biosynthetic enzyme nucleotide diphosphate kinase (NDPK). All enzymes examined showed significant size dependence, which was generally apparent in all regions. The activity of glycolytic enzymes increased with size, whereas that of CCO and NDPK decreased with size. For PFK and LDH, the size dependence decreased caudally, whereas for CCO and NDPK it was strongest in the caudal sample. For each size range, the activities of PFK, LDH, and CCO were higher in the last third of the body than in the middle or just behind the head. In contrast, NDPK activity was higher just behind the head than at the middle or in the last third of the body, suggesting that nuclear proliferation is more rapid in this zone. The high capacity for adenosine triphosphate (ATP) generation in the caudal region suggests that increases in mass-specific ATP output are advantageous in this relatively thin section of the body.  相似文献   

4.
The effect of ontogenetic increases in total length on burst swimming performance was investigated in tadpoles of the striped marsh frog (Limnodynastes peronii) over the total-length range of 1. 5-4 cm and Gosner developmental stages 25-38. The burst swimming performance of tadpoles at 10 degrees and 24 degrees C was determined by videotaping startle responses with a high-speed video camera at 200 Hz and analysing the sequences frame by frame. Maximum swimming velocity (Umax) and acceleration (Amax) increased with total length (L) at a rate that was proportionally greater than the increase in total length (i.e., positive allometry; exponents >1) and was described by the allometric equations Umax=0.061L1.34 and Amax=1.15L1.11 at 10 degrees C and Umax=0.114L1.34 and Amax=1.54L1. 11 at 24 degrees C. Stride length increased with a total-length exponent of approximately 1 but was unaffected by temperature. Tail-beat frequency was not affected by total length and increased from 7.8+/-0.2 Hz at 10 degrees C to 21.7+/-0.7 Hz at 24 degrees C. Developmental stage did not significantly influence the relationship between total length and Umax or Amax. Furthermore, temperature and the associated changes in water viscosity did not affect the relationship between total length and burst swimming performance. At their Umax, Reynolds numbers ranged from approximately 1,500 in the smaller tadpoles up to 50,000 for the larger animals at 24 degrees C. We suggest the positive allometry of Umax in larval L. peronii was due in part to the increases in tail width (TW) with total length (TW=-1.36L1.66), possibly reflecting the increasing importance of burst swimming performance to survival during larval development.  相似文献   

5.
It had been suggested that the activity of anaerobic enzymes in the white muscle of fish increases exponentially with body size to meet the increasing hydrodynamic costs of burst swimming. We tested whether this relationship holds across a very large size range of striped bass, spanning a nearly 3,000-fold range in body mass. We examined the scaling of marker enzymes of anaerobic (lactate dehydrogenase and pyruvate kinase) and aerobic (citrate synthase and malate dehydrogenase) metabolism in the red and white locomotor muscles. In white muscle, we found positive scaling of anaerobic enzymes only in smaller fishes. Positive scaling of anaerobic enzymes was not found among the samples that included fishes >1,000 g despite having a sufficiently large sample size to detect such scaling. The absence of positive scaling in the white muscles of large bass suggests that they are unable to generate sufficient power to sustain relative burst swimming performance. Enzymes from aerobic pathways had activities that were mass independent in both red and white muscle. Red and white muscles were metabolically distinct except among the smallest fishes. Among young of the year, the anaerobic capacity of red muscle approached that of white muscle and also showed positive scaling. This unusual pattern suggests that red muscle might augment white muscle during burst swimming and add to the total power generated by these small fish. Maximizing burst swimming performance may be critical for small fishes vulnerable to predation but unimportant for large fishes.  相似文献   

6.
We measured maximal oxygen consumption (VO(2max)) and burst speed in populations of Trinidadian guppies (Poecilia reticulata) from contrasting high- and low-predation habitats but reared in "common garden" conditions. We tested two hypothesis: first, that predation, which causes rapid life-history evolution in guppies, also impacts locomotor physiology, and second, that trade-offs would occur between burst and aerobic performance. VO(2max) was higher than predicted from allometry, and resting VO(2) was lower than predicted. There were small interdrainage differences in male VO(2max), but predation did not affect VO(2max) in either sex. Maximum burst speed was correlated with size; absolute burst speed was higher in females, but size-adjusted speed was greater in males. For both sexes, burst speed conformed to allometric predictions. There were differences in burst speed between drainages in females, but predation regime did not affect burst speed in either sex. We did not find a significant correlation between burst speed and VO(2max), suggesting no trade-off between these traits. These results indicate that predation-mediated evolution of guppy life history does not produce concomitant evolution in aerobic capacity and maximum burst speed. However, other aspects of swimming performance (response latencies or acceleration) might show adaptive divergence in contrasting predation regimes.  相似文献   

7.
The fuels used by the hawkmoth Amphion floridensis to power flight are determined by nectar-feeding, with fed moths using primarily carbohydrate and unfed moths using primarily fat. To investigate the metabolic pathways underlying fuel-use flexibility in this species, we measured the maximal activities of several key metabolic enzymes in the flight muscle of fed and unfed individuals, for which metabolic rates and fuel utilization had been previously determined. Hexokinase (HK) and phosphofructokinase (PFK) occur at high activities and, during carbohydrate-fueled flight, are estimated to operate at fractional velocities comparable to those of exclusively carbohydrate-utilizing insects. Females exhibited higher glycolytic enzyme activities than did males, and males regulated PFK activity according to nectar feeding. Although beta-hydroxyacyl-CoA dehydrogenase (HOAD) was found at high activities, carnitine palmitoyl transferase (CPT) was not detectable, suggesting that fatty acids may be utilized via a carnitine-independent pathway during flight. Principal component analysis revealed a tendency for the activities of citrate synthase, HK, PFK, and HOAD to be positively correlated among individuals, as well as a lesser tendency for the activities of glycolytic vs. mitochondrial enzymes to be negatively correlated with each other. However, the principal components did not correlate with variation in either oxygen consumption rate or fuel use in vivo, suggesting that variation in enzyme concentration did not determine differences among individuals in metabolic performance during flight. J. Exp. Zool. 290:108-114, 2001.  相似文献   

8.
To examine whether Atlantic cod maintain constant hierarchies of sprint speeds and muscle metabolic capacities under different feeding regimes, the physiological capacities of individual cod were followed through a starvation-feeding-starvation cycle. We examined sprint speeds and maximal enzyme activities in white-muscle biopsies at each period. We measured the glycolytic enzymes, phosphofructokinase (PFK) and lactate dehydrogenase (LDH), the mitochondrial enzyme, cytochrome C oxidase (CCO), and the biosynthetic enzyme, nucleotide diphosphate kinase (NDPK). Sprint speeds were measured in a laser diode/photocell-timed raceway. As expected, the feeding regime had a marked impact on the physiological capacities of cod, but the responses differed for sprint-swimming and muscle metabolic capacities. The different enzyme activities as well the condition index generally decreased during the first starvation, improved with feeding, and fell again during the second starvation. In contrast, sprint performance improved after feeding but did not fall with the second starvation. Although both the enzyme activities and the sprint speeds showed considerable interindividual variation, sprint speeds were not significantly correlated with the enzyme activities. The hierarchy of sprint performance of the cod was maintained, regardless of the preceding feeding regime, whereas those of muscle metabolic capacities were not.  相似文献   

9.
The function of the vertebrate eye depends on its absolute size, and the size is presumably adapted to specific needs. We studied the variation of eye size at all levels, from intra-individual to inter-specific, in lid- less, spectacled, gecko lizards (Gekkonomorpha). We mea sured 1,408 museum specimens of 62 species, representing subfamilies Diplodactylinae, Gekkoninae, and Sphaerodactylinae. Intra-individually, eye size showed significant directional asymmetry in Stenodactylus sthenodactylus. A latitudinal study of six species confirmed that during postnatal ontogeny eye size undergoes conventional negative allometry; the slope is steeper among adults than among juveniles, expressing the need of juveniles for relatively larger eyes. Within species with sexual size dimorphism, commonly the larger sex possessed larger eyes in absolute terms but not relative to head-and-body length. Interspecifically, eye size showed negative allometry, with slope significantly steeper than those of intraspecific ontogenetic allometry, again expressing the need of juveniles for relatively larger eyes and showing that eye-size differences among species do not merely result from body-size differences. Finally, adult eye size varied interspecifically in correlation with parameters of behavioral ecology: eyes were significantly larger in nocturnal than in diurnal species, and significantly larger in cursorial than in scansorial species.  相似文献   

10.
Comparative physiologists and ecologists have searched for aspecific morphological, physiological or biochemical parameterthat could be easily measured in a captive, frozen, or preservedanimal, and that would accurately predict the routine behavioror performance of that species in the wild. Many investigatorshave measured the activity of specific enzymes in the locomotormusculature of marine fishes, generally assuming that high specificactivities of enzymes involved in aerobic metabolism are indicatorsof high levels of sustained swimming performance and that highactivities of anaerobic metabolic enzymes indicate high levelsof burst swimming performance. We review the data that supportthis hypothesis and describe two recent studies we have conductedthat specifically test the hypothesis that biochemical indicesof anaerobic or aerobic capacity in fish myotomal muscle correlatewith direct measures of swimming performance. First, we determinedthat the maximum speed during escapes (C-starts) for individuallarval and juvenile California halibut did not correlate withthe activity of the enzyme lactate dehydrogenase, an index ofanaerobic capacity, in the myotomal muscle, when the effectsof fish size are factored out using residuals analysis. Second,we found that none of three aerobic capacity indices (citratesynthase activity, 3-hydroxy-o-acylCoA dehydrogenase activity,and myoglobin concentration) measured in the slow, oxidativemuscle of juvenile scombrid fishes correlated significantlywith maximum sustained speed. Thus, there was little correspondencebetween specific biochemical characteristics of the locomotormuscle of individual fish and whole animal swimming performance.However, it may be possible to identify biochemical indicesthat are accurate predictors of animal performance in phylogeneticallybased studies designed to separate out the effects of body size,temperature, and ontogenetic stage.  相似文献   

11.
Both activation and relaxation times of rainbow trout Oncorhynchus mykiss red muscle were shorter in parr than in older juveniles. Furthermore, parr red muscle had a faster maximum shortening velocity than that of older fish, as estimated with the force-clamp technique. Parr swam with higher tailbeat frequencies and lower tailbeat amplitude than did older fish across a range of length-specific steady swimming speeds. The developmental shift in contraction kinetics of red muscle and steady swimming kinematics was associated with a reduction from two or three myosin heavy chain isoforms in parr to one in older juveniles. This transition provides a mechanism to explain the variations in muscle contraction kinetics and swimming performance.  相似文献   

12.
Glycolytic flux in white muscle can be increased several-hundredfold by exercise. Phosphofructokinase (PFK; EC 2.7.1.11) is a key regulatory enzyme of glycolysis, but how its activity in muscle is controlled is not fully understood. In order not to neglect integrative aspects of metabolic regulation, we have studied in frogs (Rana temporaria) a physiological form of muscle work (swimming) that can be triggered like a reflex. We analysed swimming to fatigue in well rested frogs, recovery from exercise, and repeated exercise after 2 h of recovery. At various times, gastrocnemius muscles were tested for glycolytic intermediates and effectors of PFK. All metabolites responded similarly to the two periods of exercise, with the notable exception of fructose 2,6-bisphosphate (F2,6P(2)), which we proved to be a most potent activator of frog muscle PFK. The first bout of exercise triggered a more than 10-fold increase in F2,6P(2); PFK activity and the content of F2,6P(2) in muscle were well correlated. F2,6P(2) decreased to pre-exercise levels in fatigued frogs and it virtually disappeared during recovery. Varying by a factor of 70, F2,6P(2) was the most dynamic of all metabolites in muscle. Even more surprisingly, F2,6P(2) did not respond at all to a second bout of exercise. Other activators of PFK, such as Pi, AMP and ADP, are increased as a consequence of increased ATP turnover in contracting muscle cells. This does not apply to F2,6P(2) which is likely to respond to extracellular signals and could be involved in mechanisms by which muscle metabolism is integrated into the metabolism of the whole body. Whether this phenomenon exists in vertebrates other than the frog, and maybe even in humans, and how the content of F2,6P(2)in muscle is controlled are intriguing open questions.  相似文献   

13.
In scallops, gametogenesis leads to mobilization of glycogen and proteins from the adductor muscle towards the gonad. This mobilization is likely to diminish the metabolic capacities of the adductor muscle and thereby the scallops' escape response. We examined the escape response in terms of number of valve claps until exhaustion, rate of clapping and the recovery during and after valve closure in adult scallops, Chlamys islandica, sampled at different stages in the reproductive cycle (immature, mature, before and after spawning). In parallel, we measured muscle glycogen, protein and phosphoarginine contents, the oxidative capacity of mitochondria isolated from the adductor muscle and levels of muscle enzymes which are active during exercise and recovery. The number of claps (24-26), rate of clapping ( approximately 13 clapsmin(-1)) and phosphoarginine and arginine kinase levels were similar during the different reproductive stages. All immature scallops responded to restimulation immediately after opening their valves, while only 62% of mature, 82% of prespawned and 38% of spawned scallops responded. Immature animals completely recovered their initial swimming capacity within 4 h of opening their valves, but mature, prespawned and spawned scallops needed 18, 12 and 18 h, respectively. Overall phasic adductor muscle from mature, prespawned and spawned animals showed decreased glycogen phosphorylase, phosphofructokinase, pyruvate kinase (except for prespawned), octopine dehydrogenase and citrate synthase levels, a deterioration of the oxidative capacity of mitochondria and a marked decrease in glycogen content compared to immature scallops. Therefore, during gonadal maturation and spawning, C. islandica did not change its clapping capacity, but slowed its recuperation from exhausting burst exercise, both during and after valve closure, likely due to the decreased metabolic capacity of the adductor muscle.  相似文献   

14.
Natural selection drives the evolution of traits to optimize organismal performance, but optimization of one aspect of performance can influence other aspects of performance. Here, we asked how phenotypic variation between locally adapted fish populations affects locomotion and ventilation, testing for functional trade‐offs and trait–performance correlations. Specifically, we investigated two populations of livebearing fish (Poecilia mexicana) that inhabit distinct habitat types (hydrogen‐sulphide‐rich springs and adjacent nonsulphidic streams). For each individual, we quantified different metrics of burst swimming during simulated predator attacks, steady swimming and gill ventilation. Coinciding with predictions, we documented significant population differences in all aspects of performance, with fish from sulphidic habitats exhibiting higher steady swimming performance and higher ventilation capacity, but slower burst swimming. There was a significant functional trade‐off between steady and burst swimming, but not between different aspects of locomotion and ventilation. Although our findings about population differences in locomotion performance largely parallel the results from previous studies, we provide novel insights about how morphological variation might impact ventilation and ultimately oxygen acquisition. Overall, our analyses provided insights into the functional consequences of previously documented phenotypic variation, which will help to disentangle the effects of different sources of selection that may coincide along complex environmental gradients.  相似文献   

15.
Three species of Hawaiian amphidromous gobioid fishes are remarkable in their ability to climb waterfalls up to several hundred meters tall. Juvenile Lentipes concolor and Awaous guamensis climb using rapid bursts of axial undulation, whereas juvenile Sicyopterus stimpsoni climb using much slower movements, alternately attaching oral and pelvic sucking disks to the substrate during prolonged bouts of several cycles. Based on these differing climbing styles, we hypothesized that propulsive musculature in juvenile L. concolor and A. guamensis would be dominated by white muscle fibers, whereas S. stimpsoni would exhibit a greater proportion of red muscle fibers than other climbing species. We further predicted that, because adults of these species shift from climbing to burst swimming as their main locomotor behavior, muscle from adult fish of all three species would be dominated by white fibers. To test these hypotheses, we used ATPase assays to evaluate muscle fiber type distribution in Hawaiian climbing gobies for three anatomical regions (midbody, anal, and tail). Axial musculature was dominated by white muscle fibers in juveniles of all three species, but juvenile S. stimpsoni had a significantly greater proportion of red fibers than the other two species. Fiber type proportions of adult fishes did not differ significantly from those of juveniles. Thus, muscle fiber type proportions in juveniles appear to help accommodate differences in locomotor demands among these species, indicating that they overcome the common challenge of waterfall climbing through both diverse behaviors and physiological specializations.  相似文献   

16.
The intracellular non-bicarbonate buffering capacity of vertebrate muscle is mainly supported by the imidazole groups of histidine residues in proteins, free L-histidine in some fish species, and histidine-containing dipeptides such as carnosine, anserine, and balenine (ophidine). The proton buffering capacity markedly differs between muscle types and animal species depending on the ability for anaerobic exercise. The capacity is typically high in fast-twitch glycolytic muscles of vertebrates adapted for anaerobic performance such as burst swimming in fishes, prolonged anoxic diving in marine mammals, flight in birds, sprint running in mammalian sprinters, and hopping locomotion in some terrestrial mammals. A high correlation between buffering capacity, concentration of histidine-related compounds in muscle, and percentage of fast-twitch fibers in all vertebrates adapted for intense anaerobic performance clearly supports the idea that proton buffering is the main physiological function of histidine-related compounds.  相似文献   

17.
采用实验生态学方法,在室内水槽条件下研究了金乌贼(Sepia esculenta Hoyle,1885)繁殖过程中社群等级的形成对其行为表型和能量代谢的影响,分析测定了不同优势等级雌雄个体腕部肌肉和性腺组织中己糖激酶(Hexokinase, HK)、丙酮酸激酶(Pyruvate kinase, PK)、乳酸脱氢酶(Lactate dehydrogenase, LDH)、苹果酸脱氢酶(Malate dehydrogenase, MDH)、柠檬酸合酶(Citrate synthetase, CS)活性以及乳酸(Lactic acid, LD)含量。结果显示:(1)金乌贼繁殖期不同优势等级雌雄个体之间行为表型具有显著差异,优势雄性个体游动悬浮、争斗时间显著高于劣势个体,而优势雌性个体静止伏底时间高于劣势个体,游动悬浮时间低于劣势雌性;(2)优势雄性个体在争斗过程中主要通过无氧代谢提供能量,而处于游动悬浮状态时通过有氧代谢提供能量。主要表现在优势雄性个体肌肉中无氧代谢酶(PK、HK、LDH)活性显著高于劣势个体(P0.05),有氧代谢酶(MDH、CS)活性也显著高于劣势个体,雌性个体之间则差异不显著(P0.05);(3)繁殖期雌性个体通过减少运动量来储存能量用于产卵繁殖,主要表现在优势雌性个体肌肉中有氧代谢酶(MDH、CS)活性低于劣势个体,而在性腺中恰恰相反;(4)运动表型与能量代谢之间存在显著相关性,表现在游动悬浮时间与有氧代谢酶(MDH、CS)活性呈显著正相关(P0.001),争斗时间与无氧代谢酶(PK、HK、LDH)及乳酸(LD)含量呈显著正相关(P0.05)。结果表明,社群等级高的雄性个体运动能力强,具有较高的生存适应性。而社群等级高的雌性个体多处于静止状态,以便更好地储存能量用于繁殖。研究结果为金乌贼健康苗种培育以及规模化繁殖技术优化提供了理论依据。  相似文献   

18.
The purpose of the study was to estimate the genetic effect for skeletal muscle characteristics using pairs of nontwin brothers (n = 32), dizygotic (DZ) twins (n = 26), and monozygotic (MZ) twins (n = 35). They were submitted to a needle biopsy of the vastus lateralis for the determination of fiber type distribution (I, IIa, IIb) and the following enzymes were assayed for maximal activity: creatine kinase, hexokinase, phosphofructokinase (PFK), lactate dehydrogenase, malate dehydrogenase, 3-hydroxyacyl CoA dehydrogenase, and oxoglutarate dehydrogenase (OGDH). For the percentage of type I fibers, intraclass correlations were 0.33 (p less than 0.05), 0.52 (p less than 0.01), and 0.55 (p less than 0.01) in brothers and DZ and MZ twins, respectively. MZ twins exhibited significant within-pair resemblance for all enzyme activities (0.30 less than or equal to r less than or equal to 0.68). In spite of these correlations, genetic analyses performed with the twin data alone indicated that there was no significant genetic effect for muscle fiber type I, IIa, and IIb distribution and fiber areas. Although there were significant correlations in MZ twins for all muscle enzyme activities, the often nonsignificant intraclass coefficients found in brothers and DZ twins suggest that variations in enzyme activities are highly related to common environmental conditions and nongenetic factors. However, genetic factors appear to be involved in the variation of regulatory enzymes of the glycolytic (PFK) and citric acid cycle (OGDH) pathways and in the variation of the oxidative to glycolytic activity ratio (PFK/OGDH ratio). Data show that these genetic effects reach only about 25-50% of the total phenotypic variation when data are adjusted for age and sex differences.  相似文献   

19.
Intraspecific variability in body oxygen reserves, muscle buffering capacity, diving metabolic rate, and diving behavior were examined in recently captured juvenile and adult muskrats. Allometric scaling exponents for lung (b=1.04), blood (b=0.91), and total body oxygen storage capacity (b=1.09) did not differ from unity. The concentration of skeletal muscle myoglobin scaled positively with mass in 254-600-g juveniles (b=1.63) but was mass-independent in larger individuals. Scaling exponents for diving metabolic rate and calculated aerobic dive limit (ADL) were 0.74 and 0.37, respectively. Contrary to allometric predictions, we found no evidence that the diving abilities of muskrats increased with age or body size. Juveniles aged 1-2 mo exhibited similar dive times but dove more frequently than summer-caught adults. Average and cumulative dive times and dive&rcolon;surface ratios were highest for fall- and winter-caught muskrats. Total body oxygen reserves were greatest in winter, mainly due to an increase in blood oxygen storage capacity. The buffering capacity of the hind limb swimming muscles also was highest in winter-caught animals. Several behavioral indicators of dive performance, including average and maximum duration of voluntary dives, varied positively with blood hemoglobin and muscle myoglobin concentration of muskrats. However, none of the behavioral measures were strongly correlated with the total body oxygen reserves or ADLs derived for these same individuals.  相似文献   

20.
1. Particulate (cytoskeleton-bound) and soluble phosphofructokinase (PFK), separated from rat muscle, exhibited different allosteric properties; in contrast to the soluble PFK, the bound enzyme was not sensitive to allosteric regulation. 2. Treatment of muscle with Ca2(+)-ionophore A23187, serotonin, or phospholipase A2, reduced the binding of PFK and aldolase. 3. The decrease in enzymes' binding was most probably mediated by the rise in free intracellular Ca2+ induced by these agents, as we found that direct addition of Ca2+ to the particulate fraction of muscle, caused solubilization of bound PFK and aldolase. 4. The reduction in binding of PFK and aldolase to cytoskeletal proteins, may have a deleterious effect on muscle function and structure, and may be involved in the mechanism of muscle damage in pathological conditions where accumulation of Ca2+ occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号