首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
白腰文鸟发声行为的神经发育   总被引:5,自引:0,他引:5  
本文研究了 5~ 15 0日龄雄性白腰文鸟 (Lonchurastriataswinhoei)不同年龄段的声谱变化以及这种变化的神经调制机制。结果如下 :(1)HVC、RA和AreaX三个发声核团的神经联系基本接近成年鸟的水平后 ,幼鸟才开始学习鸣叫 (约 45日龄 ) ;(2 )HVC、RA和AreaX达到成年核团体积时 (约 80日龄 ) ,幼鸟才具有成年雄鸟的鸣叫模式 ;(3)发声控制核团的发育与核团间的神经支配有关 ,而基本不受鸣唱行为的影响 ,HVC、RA和AreaX的最快增长时间段各不相同 ,三个核团随年龄增长而呈现体积增长的显著变化 (one wayANOVA ,P <0 0 5 ) ,但各核团在任意两个时间段的体积差异并不都显著。结果提示 :发声行为产生的时间和发展与发声控制核团的发育、核团间的神经联系有关 ,最终的体积发育程度受内在遗传力的作用 ,同时可能还受神经核团建立正常神经联系时间的影响  相似文献   

2.
鸣禽前脑发声控制核团的雌雄差别   总被引:24,自引:5,他引:19  
李东风  左明雪 《动物学报》1992,38(3):298-301
本文应用尼氏染色组织学方法,对黄喉鹀(Emberiza elegans)、黄雀(Carduclis spinus)和燕雀(Fringilla montifringilla)三种鸣禽的前脑发声控制核团(HVc,RA,Area X)进行了观察和比较。结果表明,这些核团的体积存在着显著的性双形性。雄鸟的核团体积均大于雌鸟(P<0.001)。说明鸟类鸣啭行为的性别差异是由其神经结构的形态不同所造成的。  相似文献   

3.
本文究了雌、雄白腰文鸟(Lonchura striata swinhoei)不同发育时期前脑四个控制发声重要核团古纹状体栎核(RA)、新纹状体前部巨细胞核外侧部(LMAN)、X区(Area X)和高级发声中枢(HVC)中神经元数量、体积和体内雌二醇(E2)和睾酮(T)浓度的变化,以揭示性激素对鸣禽发声核团性双态性分化的影响。结果发现:(1)HVC、LMAN和X区在发育早期神经元数量和体积均呈显著性双态性差异,而RA神经元直至30日龄(P30)后才显示出明显性别差异(P<0.05);(2)除RA外,HVC、LMAN和X区神经元体积的显著性双态性差异均发生在P20左右,P20后雌、雄核团内的神经元体积仅有较小范围的波动;(3)RA和LMAN神经元数量随年龄增长而逐渐减少;雌、雄鸟HVC和雄鸟X区的神经元数量在P20—30间均增长,雄鸟HVC的增长幅度显著大于雌鸟。P30后HVC和X区的神经元数量不再增加,开始小幅度减少;(4)四个发声核团的神经元数量和体积在P5-120期间均出现1—2个急剧变化期,此变化期与体内雌激素水平开始出现显著性差异的临界期及核团间神经联系开始建立的时期相对应;(5)雌、雄鸟血清中E2的水平在核团发育初期(P5)差异显著,雌鸟为雄鸟的7.45倍,P5后则呈相反方向变化趋势,在P15时雄鸟中的E2水平反超过雌鸟,差异显著(P<0.05)。睾酮仅在发育P50后的雄鸟体内被检测出,雌鸟中始终未能检测出T的存在。结果提示:雌、雄白腰文鸟发育早期体内E2浓度的变化启动了HVC、LMAN和X区早期神经元性双态性的分化和持续发育;睾酮对雌、雄鸣禽发声控制核团中早期神经元的性双态性分化作用较小[动物学报49(3):353—361,2003]。  相似文献   

4.
白腰文鸟发声行为的性别差异及其机制   总被引:3,自引:1,他引:2  
通过声谱分析,研究了5-120日龄雌、雄白腰文鸟(Lonchura striata swinhoei)的声谱变化,及该时段3个主要发声控制核团)HVC、RA、Area X)体积、睾丸(睾酮)的相应改变。结果如下:①45日龄以前,雌雄鸟只能发出简单鸣叫(call),鸣声基本不会鸣唱。②雄性HVC,RA,AreaX体积均比雌性大2-6部。3个核团的大小发育不完全一致。各核团的快速生长期与鸣唱学习的主要时段(60-120日龄)不同步,说明核团的个体发育可能不完全受发声行为的影响。③睾丸的充分发育(120日龄后)及血液中具有较高的睾酮水平是雄鸟发出成熟鸣唱语句的重要条件。  相似文献   

5.
用常规组织学,HRP 逆行示踪,电生理等方法确定了鸣禽锡嘴雀控制发声的神经核团及这些核团的定位坐标值。锡嘴雀控制发声的神经通路由四级神经核团组成。位于端脑上纹状体腹侧的尾部区域(HVc)是控制鸣禽发声的高位中枢,它发出的神经纤维投射到端脑原纹状体腹内侧的粗核(RA),由 RA 又发出两束纤维,分別投射到中脑丘间核(ICo)和延脑的中间核(IM)。左右侧发声控制神经通路并非严格单侧性,每侧气管鸣管肌群分別受双侧发声中枢的交叉控制。中脑 ICo 在控制发声行为中具有相对独立性。各级发声核团的定位坐标值为,HVc∶p1.3,L/R2.4,H0.8;RA∶1.4,L/R3.2,H6.0;ICo∶p0.3,L/R2.6,H8.5:IM∶P3.1,L/R1.0,H∶7.8。  相似文献   

6.
鸟类的发声和发声学习涉及处于脑中不同水平的相互联系的一些发声核团。在很多鸟类中, 仅雄性鸣啭, 例如在斑胸草雀(Taeniogygia guttata) 中, 雌雄个体间存在显著的性差异, 雌性发声系统和发声核团中的神经元数量显著少于雄性。推测这种性差异也可能存在于弓状皮质前部大细胞外侧核(LMAN), 但有关这方面的报道还很少。为探讨雌雄鸣禽脑中神经元数量发育的规律, 我们应用半薄切片对斑胸草雀发育不同阶段的神经元数量和密度的变化进行了数量分析。结果表明, 在全部实验组中, 发育10 d和成体雌性LMAN中神经元的密度和神经元数量均无明显变化, 神经元的数量维持在一个较高水平。在雄鸟中, 我们发现在发育早期神经元的数量有极为显著的减少, 这与已有的报道, 即应用非类固醇技术获得的结果相似。LMAN中神经元数量的减少(57%) 一直持续到成体。因此, 成年雌鸟LMAN中的全部神经元数量是雄鸟的4 倍(P<0 001)。推测雌鸟脑中存在较多的神经元数量可能与其在发育和成体期间需维持适当的神经网络有关, 这种神经构筑对于动物种间识别等功能可能具有特殊意义。  相似文献   

7.
采用辣根过氧化物酶顺、逆行标记方法对鸣禽鸟蜡嘴雀控制发声的神经核团、脑干听觉核团及神经通路,从外周至中枢逐级进行了追踪研究。结果表明:1.控制发声的神经核团及通路,前脑古纹状体腹内侧粗核是大脑控制发声的重要核团之一,它发出枕中脑后束经端脑前联合呈双侧支配延脑中间核,中间核又发出舌下神经经气管鸣管分支支配鸣肌,中间核同时也接受中脑背内侧核的支配;2.脑干听觉中枢及通路,中脑背外侧核是脑干较高级听觉中  相似文献   

8.
鸟类呼吸与发声的神经调控   总被引:4,自引:2,他引:2  
鸟类的发声产生于呼吸过程的呼气相;呼吸与发声中枢控制通路间具有复杂的纤维联系,构成“发声通讯复合体”;前脑的RA是鸣禽协调呼吸与发声的高位中枢;脑干部的DM、nRAm、PBvl、IOS、RVL及Ⅻts等核团参与呼吸肌及鸣肌活动的调节,使呼吸与发声的配合准确、协调。  相似文献   

9.
采用辣根过氧化物酶顺、逆行标记方法对鸣禽鸟蜡嘴雀控制发声的神经核团、脑干听觉核团及神经通路,从外周至中枢逐级进行了追踪研究。结果表明:1.控制发声的神经核团及通路,前脑古纹状体腹内侧粗核是大脑控制发声的重要核团之一,它发出枕中脑后束经端脑前联合呈双侧支配延脑中间核,中间核又发出舌下神经经气管鸣管分支支配鸣肌,中间核同时也接受中脑背内侧核的支配,2.脑干听觉中枢及通路,中脑背外侧核是脑干较高级听觉中枢、初级中枢耳蜗核由角核和前庭外侧核组成,NA发出以对侧为主的纤维经外侧丘系可直接传入中脑背外侧核形成脑干听觉直接通路。  相似文献   

10.
栗鹀发声中枢对叫声的调控模式   总被引:3,自引:0,他引:3  
鸣禽栗鹀(Emberiza rutila)高级发声中枢(HVC)的单一型调控模式产生单、双音节的单次叫声, 并对叫声的双音节、主频率提升和声强度增高的调控显示出明显的左侧优势. 栗鹀HVC的复合型调控模式产生多音节复合叫声, 对叫声的音节数、音调变化和声强度的调控具有明显的左侧优势, 提示左侧HVC控制频率较高和较复杂的句型结构. 鸣禽鸟的基本发声中枢(DM)对叫声的调控模式是产生单次叫声, 对叫声音节数和声强度的调控呈明显的左侧优势. 这不仅在声学上为鸣禽高级发声中枢的左侧优势理论提供了直接证据, 而且提示鸣禽高级发声中枢与基本发声中枢的左侧优势之间存在一定的内源性联系.  相似文献   

11.
12.
In songbirds, the size of brain nuclei that control song learning and production change seasonally. These changes are mainly controlled by seasonal changes in plasma testosterone (T) concentration. One hypothesis to explain why it may be adaptive for these areas to regress in the fall is that this would decrease the metabolic demand of maintaining a large song system when singing is reduced or absent. We used a marker for cellular metabolism to examine birds with regressed song nuclei and compared them to birds whose song nuclei were induced to grow by administration of exogenous T. Photorefractory male Gambel's white-crowned sparrows were captured during their autumnal migration and kept in outdoor aviaries on a natural photoperiod. We implanted birds with Silastic capsules containing T or with empty implants. Three weeks later the birds were sacrificed. We assayed the brains for cytochrome oxidase (CO) activity and measured the volume of four song nuclei: HVc, RA, 1MAN, and area X. All four nuclei increased in volume in response to T treatment. T treatment increased the metabolic capacity of area X, HVc, and RA relative to surrounding tissue but had no effect on the metabolic capacity of 1MAN. These results support the hypothesis that song nuclei are more metabolically active under the influence of T than they are when plasma T levels are low.  相似文献   

13.
The contribution of social factors to seasonal plasticity in singing behavior and forebrain nuclei controlling song, and their interplay with gonadal steroid hormones are still poorly understood. In many songbird species, testosterone (T) enhances singing behavior but elevated plasma T concentrations are not absolutely required for singing to occur. Singing is generally produced either to defend a territory or to attract a mate and it is therefore not surprising that singing rate can be influenced by the sex and behavior of the social partner. We investigated, based on two independent experiments, the effect of the presence of a male or female partner on the rate of song produced by male canaries. In the first experiment, song rate was measured in dyads composed of one male and one female (M-F) or two males (M-M). Birds were implanted with T-filled Silastic capsules or with empty capsules as control. The number of complete song bouts produced by all males was recorded during 240 min on week 1, 2, 4, and 8 after implantation. On the day following each recording session, brains from approximately one-fourth of the birds were collected and the volumes of the song control nuclei HVC and RA were measured. T increased the singing rate and volume of HVC and RA but these effects were affected by the social context. Singing rates were higher in the M-M than in the M-F dyads. Also, in the M-M dyads a dominance-subordination relationship soon became established and dominant males sang at higher rates than subordinates in T-treated but not in control pairs. The differences in song production were not reflected in the size of the song control nuclei: HVC was larger in M-F than in M-M males and within the M-M dyads, no difference in HVC or RA size could be detected between dominant and subordinate males. At the individual level, the song rate with was positively correlated with RA and to a lower degree HVC volume, but this relationship was observed only in M-M dyads, specifically in dominant males. A second experiment, carried out with castrated males that were all treated with T and exposed either to another T-treated castrate or to an estradiol-implanted female, confirmed that song rate was higher in the M-M than in the M-F condition and that HVC volume was larger in heterosexual than in same-sex dyads. The effects of T on singing rate and on the volume of the song control nuclei are thus modulated by the social environment, including the presence/absence of a potential mate and dominance status among males.  相似文献   

14.
Brain nuclei that control song are larger in male canaries, which sing, than in females, which sing rarely or not at all. Treatment of adult female canaries with testosterone (T) induces song production and causes song-control nuclei to grow, approaching the volumes observed in males. For example, the higher vocal center (HVC) of adult females approximately doubles in size by 1 month following the onset of T treatment. Male HVC projects to a second telencephalic nucleus, RA (the robust nucleus of the archistriatum), which projects in turn to the vocal motor neurons. Whether HVC makes a similar connection in female canaries is not known, although HVC and RA are not functionally connected in female zebra finches, a species in which testosterone does not induce neural or behavioral changes in the adult song system. This experiment investigated whether HVC makes an efferent projection to RA in normal adult female canaries, or if T is necessary to induce the growth of this connection. In addition, we examined whether T-induced changes in adult female canary brain are reversible. Adult female canaries received systemic T implants that were removed after 4 weeks; these birds were killed 4 weeks after T removal (Testosterone-Removal, T-R). Separate groups of control birds received either (a) T implants for 4 weeks which were not removed (Testosterone-Control, T-C) or (b) empty implants (Untreated Control, øO-C). Crystals of the fluorescent tracer DiI were placed in the song-control nucleus HVC in order to anterogradely label both efferent targets of HVC, RA and Area X. Projections from HVC to RA and Area X were present in all treatment groups including untreated controls, and did not appear to differ either qualitatively or quantitatively. Thus, formation of efferent connections from HVC may be prerequisite to hormone-induced expression of song behavior in adult songbirds. The volumes of RA and Area X were measured using the distribution of anterograde label as well as their appearance in Nissl-stained tissue. RA was larger in T-treated control birds than in untreated controls. Experimental birds in which T was given and then removed (T-R) had RA volumes closer in size to untreated controls (ø-C). Because the volume of RA in T-treated controls (T-C) was larger than that of birds that did not receive T (ø-C), we conclude that the volume of RA increased in both T-C and T-R birds but regressed upon removal of T in T-R birds. Surprisingly, the volume of Area X did not increase in T-treated birds. Birds in this study were maintained on short days, suggesting that T-induced growth of Area X reported previously may have resulted from an interaction between T and another seasonal or photoperiodic factor induced by exposure to long daylengths. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
In songbirds the forebrain nuclei HVC (high vocal center) and RA (robust nucleus of the archistriatum) are larger in individuals or species that produce larger song repertoires, but the extent to which the size of these nuclei reflects a need for either producing or perceiving large repertoires is unknown. We, therefore, tested the hypothesis that species differences in the size of song nuclei reflect a commitment of “brain space” to the perceptual processing of conspecific song. The two species of marsh wren (Cistothorus palustris western and eastern) provide a good test case. Western males produce larger song repertoires, and have larger HVC and RA than do eastern males. Female marsh wrens do not sing, and if they use their song nuclei to assess conspecific male song repertoires, then we predicted that measurable cellular and nuclear parameters of HVC and RA would be greater in western than eastern female wrens. For males we confirmed that the volumes of HVC and RA, and cellular parameters of HVC, are greater in western than in eastern birds. These nuclei were also considerably larger in males than in conspecific females. Western and eastern female wrens, however, did not differ in any measured parameters of HVC or RA. Females of these wren species thus do not provide any direct evidence of anatomical specializations of song nuclei for the perceptual processing of conspecific male song. 1994 John Wiley & Sons, Inc.  相似文献   

16.
The contribution of social factors to seasonal plasticity in singing behavior and forebrain nuclei controlling song, and their interplay with gonadal steroid hormones are still poorly understood. In many songbird species, testosterone (T) enhances singing behavior but elevated plasma T concentrations are not absolutely required for singing to occur. Singing is generally produced either to defend a territory or to attract a mate and it is therefore not surprising that singing rate can be influenced by the sex and behavior of the social partner. We investigated, based on two independent experiments, the effect of the presence of a male or female partner on the rate of song produced by male canaries. In the first experiment, song rate was measured in dyads composed of one male and one female (M‐F) or two males (M‐M). Birds were implanted with T‐filled Silastic capsules or with empty capsules as control. The number of complete song bouts produced by all males was recorded during 240 min on week 1, 2, 4, and 8 after implantation. On the day following each recording session, brains from approximately one‐fourth of the birds were collected and the volumes of the song control nuclei HVC and RA were measured. T increased the singing rate and volume of HVC and RA but these effects were affected by the social context. Singing rates were higher in the M‐M than in the M‐F dyads. Also, in the M‐M dyads a dominance‐subordination relationship soon became established and dominant males sang at higher rates than subordinates in T‐treated but not in control pairs. The differences in song production were not reflected in the size of the song control nuclei: HVC was larger in M‐F than in M‐M males and within the M‐M dyads, no difference in HVC or RA size could be detected between dominant and subordinate males. At the individual level, the song rate with was positively correlated with RA and to a lower degree HVC volume, but this relationship was observed only in M‐M dyads, specifically in dominant males. A second experiment, carried out with castrated males that were all treated with T and exposed either to another T‐treated castrate or to an estradiol‐implanted female, confirmed that song rate was higher in the M‐M than in the M‐F condition and that HVC volume was larger in heterosexual than in same‐sex dyads. The effects of T on singing rate and on the volume of the song control nuclei are thus modulated by the social environment, including the presence/absence of a potential mate and dominance status among males. 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

17.
Sexually size dimorphic brains and song complexity in passerine birds   总被引:1,自引:0,他引:1  
Neural correlates of bird song involve the volume of particularsong nuclei in the brain that govern song development, production,and perception. Intra- and interspecific variation in the volumeof these song nuclei are associated with overall brain size,suggesting that the integration of complex songs into the brainrequires general neural augmentation. In a comparative studyof passerine birds based on generalized least square models,we tested this hypothesis by exploring the interspecific relationshipbetween overall brain size and repertoire size. We found nosignificant association between song complexity of males andbrain size adjusted for body size. However, species in whichmales produced complex songs tended to have sex differencesin overall brain size. This pattern became stronger when wecontrolled statistically for female song complexity by usingsex differences in song complexity. In species with large differencesin song complexity, females evolved smaller brains than didmales. Our results suggest no role for the evolution of extendedneural space, as reflected by total brain size, owing to songcomplexity. However, factors associated with sexual selectionmirrored by sex differences in song complexity were relatedto sexual dimorphism in overall brain size.  相似文献   

18.
19.
Accurate song perception is likely to be as important for female songbirds as it is for male songbirds. Male zebra finches (Taeniopygia guttata) show differential ZENK expression to conspecific and heterospecific songs by day 30 posthatch in auditory perceptual brain regions such as the caudomedial nidopallium (NCM) and the caudomedial mesopallium (CMM). The current study examined ZENK expression in response to songs of different qualities at day 45 posthatch in both sexes. Normally reared juvenile zebra finches showed higher densities of immunopositive nuclei in both the dorsal and ventral areas of NCM and CMM (formerly cmHV), but not HA, a visual area, in response to normal song over untutored song or silence. Male and female patterns of ZENK expression did not differ. We next compared responses of birds reared without exposure to normal song (untutored) to those of normally reared birds. Untutored birds did not show higher responses to normal song than to untutored song in the three song perception areas. Furthermore, untutored birds of both sexes showed lower densities of immunopositive nuclei in all four areas than did normally reared birds. In addition, ZENK expression was greater in untutored females than in males in the dorsal portion of NCM and in CMM. Our findings suggest that at least some neural mechanisms of song perception are in place in socially reared female and male finches at an early age. Furthermore, early exposure to song tutors affects responses to song stimuli.  相似文献   

20.
We examined the effects of song tutoring on adult song preferences, volume of song-control brain regions, and activity of auditory brain regions in female house finches (Carpodacus mexicanus). Hand-reared females were tutored with local songs, foreign songs, or no song. We then examined adult song preferences, determined the Nissl-defined volume of the song-control nuclei HVc, Area X, and RA, and compared the number of cells immunoreactive for Zenk protein in the auditory regions NCM and cmHV, following playback of songs heard early in life (Tutor/Playback Match) versus not heard (Tutor/Playback Nonmatch). All hand-reared birds exhibited preferences for locally recorded song over foreign or heterospecific song. We found no difference in the volume of song-control nuclei among the three groups. As well, we found no difference in the number of Zenk immunoreactive cells in NCM and cmHV between females in the Tutor/Playback Match group and females in the Tutor/Playback Nonmatch group. Isolate-reared birds showed greater Zenk immunoreactivity following song playback than either tutored group. Thus, early auditory experience may not play a role in adult geographic song preferences, suggesting that genetic factors can lead to preferences for songs of local dialects. Song tutoring did not influence the size of song-control regions nor Zenk induction levels following song playback, suggesting that early experience with particular songs does not influence Zenk expression. However, overall greater activation in isolate females in auditory areas suggests that exposure to song early in life may increase the selectivity of Zenk activation to song playback in auditory areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号