首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transplantation of male germ line cells into sterilized recipients has been used in mammals for conventional breeding as well as for transgenesis. We have previously adapted this approach for the domestic chicken and we present now an improvement of the germ cell transplantation technique by using an enriched subpopulation of c-Kit-positive spermatogonia as donor cells. Dispersed c-Kit positive testicular cells from 16 to 17 week-old pubertal donors were transplanted by injection directly into the testes of recipient males sterilized by repeated gamma irradiation. We describe the repopulation of the recipient's testes with c-Kit positive donor testicular cells, which resulted in the production of functional heterologous spermatozoa.Using manual semen collection, the first sperm production in the recipient males was observed about nine weeks after the transplantation. The full reproduction cycle was accomplished by artificial insemination of hens and hatching of chickens.  相似文献   

2.
3.
The continuous production of mammalian sperm is maintained by the proliferation and differentiation of spermatogonial stem cells that originate from primordial germ cells (PGCs) in the early embryo. Although spermatogonial stem cells arise from PGCs, it is not clear whether fetal male germ cells function as spermatogonial stem cells able to produce functional sperm. In the present study, we examined the timing and mechanisms of the commitment of fetal germ cells to differentiate into spermatogonial stem cells by transplantation techniques. Transplantation of fetal germ cells into the seminiferous tubules of adult testis showed that donor germ cells, at 14.5 days postcoitum (dpc), were able to initiate spermatogenesis in the adult recipient seminiferous tubules, whereas no germ cell differentiation was observed in the transplantation of 12.5-dpc germ cells. These results indicate that the commitment of fetal germ cells to differentiate into spermatogonial stem cells initiates between embryonic days 12.5 and 14.5. Furthermore, the results suggest the importance of the interaction between germ cells and somatic cells in the determination of fetal germ cell differentiation into spermatogonial stem cells, as normal spermatogenesis was observed when a 12.5-dpc whole gonad was transplanted into adult recipient testis. In addition, sperm obtained from the 12.5- dpc male gonadal explant had the ability to develop normally if injected into the cytoplasm of oocytes, indicating that normal development of fetal germ cells in fetal gonadal explant occurred in the adult testicular environment.  相似文献   

4.
The niche is considered to play an important role in stem cell biology. Sertoli cells are the only somatic cells in the seminiferous tubule that closely interact with germ cells to create a favorable environment for spermatogenesis. However, little is known about how Sertoli cells develop to form the male germ line niche. We report here that Sertoli cells recovered and dissociated from testes of donor male mice can be microinjected into recipient testes, form mature seminiferous tubule structures, and support spermatogenesis. Sertoli cells from perinatal donors had a dramatically greater capacity for generating seminiferous tubules than those from adult donors. Furthermore, transplantation of wild-type Sertoli cells into infertile Steel/Steel(dickie) testes created a permissive testicular microenvironment for generating spermatogenesis and spermatozoa. Thus, our results demonstrate that the male germ line stem cell niche can be transferred between animals. In addition, the technique provides a novel tool with which to analyze spermatogenesis and might provide a mechanism for correcting fertility in males suffering from supporting cell defects.  相似文献   

5.
The present study was conducted to evaluate the development of spermatogenesis and utility of using electroporation to stably transfect germ cells with the beta-galactosidase gene in neonatal bovine testicular tissue ectopically xenografted onto the backs of recipient nude mice. Bull testicular tissue from 4-wk donor calves, which contains a germ cell population consisting solely of gonocytes or undifferentiated spermatogonia, was grafted onto the backs of castrated adult recipient nude mice. Testicular grafts significantly increased in weight throughout the grafting period and the timing of germ cell differentiation in grafted tissue was consistent with postnatal testis development in vivo relative to the bull. Seminiferous tubule diameter also significantly increased with advancing time after grafting. At 1 wk after grafting, gonocytes in the seminiferous cords completed migration to the basement membrane and differentiated germ cell types could be observed 24 wk after grafting. The presence of elongating spermatids at 24 wk confirmed that germ cell differentiation occurred in the bovine tissue. Leydig cells in the grafted bovine tissue were also capable of producing testosterone in the castrated recipient mice from 4 wk to 24 wk after grafting at concentrations that were similar to levels in intact, nongrafted control mice. The testicular tissue that had been electroporated with a beta-galactosidase expression vector showed tubule-specific transgene expression 24 wk after grafting. Histological analysis showed that transgene expression was present in both Sertoli and differentiated germ cells but not in interstitial cells. The system reported here has the potential to be used for generation of transgenic bovine spermatozoa.  相似文献   

6.
We investigated the possible protective effects of L-carnitine on cisplatin induced prepubertal gonadotoxicity and on adult sperm. Prepubertal 30-day-old male rats were divided randomly into three groups: control (n = 12), cisplatin exposed (n = 16) and carnitine treated after cisplatin exposure (n = 16). Rats in the experimental groups were injected with a single dose of cisplatin. L-carnitine was injected 1 h before cisplatin administration and for the following 3 days for the cisplatin + carnitine group. The rats were sacrificed at 31 or 90 days old and their testes were harvested for morphometric and histopathological analysis. Testes of 31-day-old prepubertal rats were examined for germ cell apoptosis using the TUNEL method and for proliferation using PCNA immunostaining. The morphology, motility, quantity and vitality of sperm in epididymal fluid samples of adult 90-day-old rats also were evaluated. L-carnitine treatment reduced testicular damage and the number of TUNEL positive cells significantly, while the number of PCNA positive cells in the cisplatin + carnitine group increased compared to the cisplatin group. During the adult period, epididymal sperm count and viability were improved in rats treated with L-carnitine before prepubertal cisplatin injection. L-carnitine may reduce late testicular and spermatic damage caused by cisplatin administration to prepubertal rats by inducing germ cell proliferation and preventing apoptosis.  相似文献   

7.
Animal cloning by nuclear transfer has been successful in several species and was expected to become an alternative reproductive technique. Among the problems associated with this cloning technique, however, are its low success rate and high mortality of cloned animals even if they develop to term. Nuclear transfer has thus come to be considered too difficult to apply as a reproductive technique. The transplantation of male germ cells or pieces of testicular tissue has enabled the induction of spermatogenesis from fetal or postnatal male mice. In the present study, we examined whether functional male gametes could be obtained by the transplantation of pieces of testicular tissue from cloned mice that died immediately after birth with typical aberrant phenotypes, such as large offspring syndrome. Donor testicular tissues were retrieved from cloned mice that died postnatally and were transplanted into the testes of recipient nude mice. Two to three months after transplantation, the grafted donor testicular tissue had grown in the host testis, and histological analysis showed that spermatogenesis occurred within the graft. Intracytoplasmic sperm injection demonstrated that the testicular sperm generated in the grafted donor tissue were able to support full-term development of progeny. These results clearly showed that functional spermatogenesis could be induced by transplanting testicular tissue from cloned mice that died postnatally into recipient mice. The strategy presented here will be applicable to cloned animals of other species, because the xenografting of testicular tissue into mice has been demonstrated previously to be possible.  相似文献   

8.
Transplantation of germ cells from fertile donor mice to the testes of infertile recipient mice results in donor-derived spermatogenesis and transmission of the donor's genetic material to the offspring of recipient animals. Germ cell transplantation provides a bioassay to study the biology of male germ line stem cells, develop systems to isolate and culture spermatogonial stem cells, examine defects in spermatogenesis and treat male infertility. Although most widely studied in rodents, germ cell transplantation has been applied to larger mammals. In domestic animals including pigs, goats and cattle, as well as in primates, germ cells can be transplanted to a recipient testis by ultrasonographic-guided cannulation of the rete testis. Germ cell transplantation was successful between unrelated, immuno-competent pigs and goats, whereas transplantation in rodents requires syngeneic or immuno-compromised recipients. Genetic manipulation of isolated germ line stem cells and subsequent transplantation will result in the production of transgenic sperm. Transgenesis through the male germ line has tremendous potential in domestic animal species where embryonic stem cell technology is not available and current options to generate transgenic animals are inefficient. As an alternative to transplantation of isolated germ cells to a recipient testis, ectopic grafting of testis tissue from diverse mammalian donor species, including horses and primates, into a mouse host represents a novel possibility to study spermatogenesis, to investigate the effects of drugs with the potential to enhance or suppress male fertility, and to produce fertile sperm from immature donors. Therefore, transplantation of germ cells or xenografting of testis tissue are uniquely valuable approaches for the study, preservation and manipulation of male fertility in domestic animals.  相似文献   

9.
The male reproductive glands of the red-bellied tree squirrel, Callosciurus erythraeus, in the infantile, and prepubertal males, as well as sexually functional, degenerating and redeveloping adults were studied histologically. In the infant, testes are characterized with solid seminiferous tubules filled with primordial germ cells and Sertoli cells. Interstitial cells are sparse. The prostate is composed of condensed cell cords grouped into lobules dispersed with interlobular tissues rich in fibroblasts. In the epididymis the highly convoluted tubule is lined with a simple cuboidal or columnar epithelium and thin smooth musculature without. In the prepubertal male, germ cells are engaged actively in mitosis. Primary spermatocytes are readily recognized. Leydig cells appear in groups in the interstitial tissue. In the prostate, cell cords become highly branched and collecting tubules make their appearance. The tubules in the epididymis are enlarged in diameter but their peripheral musculature becomes thinner. In functional males, meiosis is active and bundles of spermatozoa are scattered along the central lumen. Leydig cells have their cytoplasm highly enriched. The prostate is in the secretory phase. The tubule in the epididymis is filled with sperm. In the degenerating adult, meiosis is interrupted and necrotic germ cells are detached from germinal epithelium. In the prostate, secretory and collecting ducts are eventually reduced to condensed lobules separated by interlobular fibrous tissue. The tubule in the epididymis often fills with necrotic germ cells but no sperm. In the redeveloping adult, the histology of the testes, prostate and epididymis is similar to that of the prepubertal male. However, there is more fibrous tissue in the interlobular septa in the prostate gland and thick musculature at the periphery of the tubule in the epididymis.  相似文献   

10.
Klinefelter syndrome (KS) is the most common genetic form of male hypogonadism, but the phenotype becomes evident only after puberty. During childhood, and even during early puberty, pituitary-gonadal function in 47,XXY subjects is relatively normal, but from midpuberty onwards, FSH and LH levels increase to hypergonadotropic levels, inhibin B decreases to undetectable levels, and testosterone after an initial increase levels off at a low or low-normal level. Hence, most adult KS males display a clear hypergonadotropism with a varying degree of androgen deficiency; subsequently, testosterone substitution therapy is widely used to prevent symptoms and sequels of androgen deficiency. Testicular biopsies of prepubertal KS boys have shown preservation of seminiferous tubules with reduced numbers of germ cells, but Sertoli and Leydig cells have appeared normal. The testes in the adult KS male are, however, characterized by extensive fibrosis and hyalinization of the seminiferous tubules, and hyperplasia of the interstitium, but the tubules may show residual foci of spermatogenesis. Introduction of testicular sperm extraction in combination with intracytoplasmic sperm injection techniques has allowed non-mosaic KS males to father children.  相似文献   

11.
The common marmoset is a small nonhuman primate in which the application of transgenesis and genetic knockout techniques allows the generation of gene‐modified models of human diseases. However, its longer generation time than that of rodents is a major obstacle to the widespread use of gene‐modified marmosets for biomedical research. In this study, we examined the feasibility of shortening the generation time by using prepubertal marmoset males as gamete donors. We collected late round stage spermatids (Steps 5–7), elongated spermatids, and testicular spermatozoa from the testis of a prepubertal 11‐month‐old male marmoset and injected them into in vitro‐matured oocytes. After 7 days in culture, two embryos from elongated spermatid injection and two embryos from sperm injection were transferred into two separate recipient females. The recipient female that received elongated spermatid injection‐derived embryos became pregnant and gave birth to one female infant. This is the first demonstration that a spermatid from a prepubertal male primate can support full‐term development. Using this method, we can expect to obtain offspring of gene‐modified males 6 months to a year earlier than with natural mating  相似文献   

12.
Germ cell transplantation is a technique that transfers donor testicular cells into recipient testes. A population of germ cells can colonize the recipient testis, initiate spermatogenesis, and produce sperm capable of fertilization. In the present study, a nonmosaic Klinefelter bull was used as a germ cell recipient. The donor cell suspension was introduced into the rete testis using ultrasound-guided puncture. A pulsatile administration of GnRH was performed to stimulate spermatogenesis. The molecular approach to detect donor cells was done by a quantitative polymerase chain reaction with allele discrimination based on a genetic mutation between donor and recipient. Therefore, a known genetic mutation, associated with coat-color phenotype, was used to calculate the ratio of donor to recipient cells in the biopsy specimens and ejaculates for 10 mo. After slaughtering, meiotic preparations were performed. The injected germ cells did not undergo spermatogenesis. Six months after germ cell transplantation, the donor cells were rejected, which indicates that the donor cells could not incorporate in the testis. The hormone stimulation showed that the testosterone-producing Leydig cells were functionally intact. Despite subfertility therapy, neither the recipient nor the donor cells underwent spermatogenesis. Therefore, nonmosaic Klinefelter bulls are not suitable as germ cell recipients. Future germ cell recipients in cattle could be mosaic Klinefelters, interspecies hybrids, bulls with Sertoli cell-only syndrome, or bulls with disrupted germ cell migration caused by RNA interference.  相似文献   

13.
Germline stem cells (GSCs) can be used for large animal transgenesis, in which GSCs that are genetically manipulated in vitro are transplanted into a recipient testis to generate donor‐derived transgenic sperm. The objectives of this study were to explore a non‐viral approach for transgene delivery into goat GSCs and to investigate the efficiency of nucleofection in producing transgenic sperm. Four recipient goats received fractionated irradiation at 8 weeks of age to deplete endogenous GSCs. Germ cell transplantations were performed 8–9 weeks post‐irradiation. Donor cells were collected from testes of 9‐week‐old goats, enriched for GSCs by Staput velocity sedimentation, and transfected by nucleofection with a transgene construct harboring the human growth hormone gene under the control of the goat beta‐casein promoter (GBC) and a chicken beta‐globin insulator (CBGI) sequence upstream of the promoter. For each recipient, transfected cells from 10 nucleofection reactions were pooled, mixed with non‐transfected cells to a total of 1.5 × 108 cells in 3 ml, and transplanted into one testis (n = 4 recipients) by ultrasound‐guided cannulation of the rete testis. The second testis of each recipient was removed. Semen was collected, starting at 9 months after transplantation, for a period of over a year (a total of 62 ejaculates from four recipients). Nested genomic PCR for hGH and CBGI sequences demonstrated that 31.3% ± 12.6% of ejaculates were positive for both hGH and CBGI. This study provides proof‐of‐concept that non‐viral transfection (nucleofection) of primary goat germ cells followed by germ cell transplantation results in transgene transmission to sperm in recipient goats. Mol. Reprod. Dev. 79: 255–261, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

14.
This study was carried out to elucidate whether primordial germ cells, obtained from embryonic blood and transferred into partially sterilized male and female recipient embryos, could differentiate into functional gametes and give rise to viable offspring. Manipulated embryos were cultured until hatching and the chicks were raised until maturity, when they were mated. When the sex of the donor primordial germ cells and the recipient embryo was the same, 15 out of 22 male chimaeric chickens (68.2%) and 10 out of 16 female chimaeric chickens (62.5%) produced donor-derived offspring. When the sex of the donor primordial germ cells and the recipient embryo was different, 4 out of 18 male chimaeric chickens (22.2%) and 2 out of 18 female chimaeric chickens (11.1%) produced donor-derived offspring. The rates of donor-derived offspring from the chimaeric chickens were 0.6-40.0% in male donor and male recipient and 0.4-34.9% in female donor and female recipient. However, the rates of donor-derived offspring from the chimaeric chickens were 0.4-0.9% in male donor and female recipient and 0.1-0.3% in female donor and male recipient. The presence of W chromosome-specific repeating sequences was detected in the sperm samples of male chimaeric chickens produced by transfer of female primordial germ cells. These results indicate that primordial germ cells isolated from embryonic blood can differentiate into functional gametes giving rise to viable offspring in the gonads of opposite-sex recipient embryos and chickens, although the efficiency was very low.  相似文献   

15.
Progeny from sperm obtained after ectopic grafting of neonatal mouse testes   总被引:26,自引:0,他引:26  
Ectopic grafting of testicular tissue is a promising new approach that can be used to preserve testicular function. This technique has been used recently to differentiate the neonatal testes of different species, up to the level of complete spermatogenesis. This approach can be applied successfully to generate live progeny using sperm extracted from grafts originating from testes of newborn donors. The sperm are capable of supporting normal development and producing fertile male and female offspring after intracytoplasmic injection into mouse oocytes and embryo transfer into surrogate mothers. The grafted tissue was also capable of significantly normalizing reproductive hormone levels in the castrated recipients. This technique presents new avenues for experimentation. The recipient mouse can be regarded as a living incubator and a culture system of testicular tissue, allowing the experimental manipulation of several aspects of testis development and spermatogenesis. The successful generation of pups indicates that this technique can be used to study the testicular phenotype and to breed mutant or transgenic mouse strains with lethal postnatal phenotypes. The ability to generate sperm from the germ line ex vivo also paves the way for the development of new strategies for preserving fertility in boys undergoing cancer therapy.  相似文献   

16.
Testis xenografting is both a promising tool to study spermatogenesis and a means to preserve the genetic information and reproductive potential of prepubertal male animals. The present study was conducted to evaluate this technique using testis tissue from domestic ferrets, an important biomedical model and a model for the conservation of small carnivore species. Fresh testis tissue from 8-wk-old ferrets was implanted ectopically under the skin on the backs of castrated nude mice and subsequently evaluated for testosterone production and establishment of spermatogenesis at 10, 20, 25, and 30 wk after xenografting. A total of 40% of fresh ferret xenografts were harvested. Seminal vesicles were collected from the recipient mice and weighed as an assay for bioactive testosterone. The weights of seminal vesicles from the mice showed no significant difference from those of uncastrated, control nude mice, indicating that the xenografts were producing physiologically relevant amounts of testosterone. The ferret testis xenografts produced differentiating germ cells and sperm at the same time as did testis from age-matched control ferrets. These data demonstrate the ability of Mustelidae testicular tissue to establish spermatogenesis in nude mice after testis xenografting.  相似文献   

17.
Radiation and chemotherapeutic drugs cause permanent sterility in male rats, not by killing most of the spermatogonial stem cells, but by blocking their differentiation in a testosterone-dependent manner. However, it is not known whether radiation induces this block by altering the germ or the somatic cells. To address this question, we transplanted populations of rat testicular cells containing stem spermatogonia and expressing the green fluorescent protein (GFP) transgene into various hosts. Transplantation of the stem spermatogonia from irradiated adult rats into the testes of irradiated nude mice, which do not show the differentiation block of their own spermatogonia, permitted differentiation of the rat spermatogonia into spermatozoa. Conversely transplantation of spermatogonial stem cells from untreated prepubertal rats into irradiated rat testes showed that the donor spermatogonia were able to colonize along the basement membrane of the seminiferous tubules but could not differentiate. Finally, suppression of testosterone in the recipient irradiated rats allowed the differentiation of the transplanted spermatogonia. These results conclusively show that the defect caused by radiation in the rat testes that results in the block of spermatogonial differentiation is due to injury to the somatic compartment. We also observed colonization of tubules by transplanted Sertoli cells from immature rats. The present results suggest that transplantation of spermatogonia, harvested from prepubertal testes to adult testes that have been exposed to cytotoxic therapy might be limited by the somatic damage and may require hormonal treatments or transplantation of somatic elements to restore the ability of the tissue to support spermatogenesis.  相似文献   

18.
Although the adult mouse Leydig cell (LC) has been considered refractory to cytotoxic destruction by ethane dimethanesulfonate (EDS), the potential consequences of exposure during reproductive development in this species are unknown. Herein pregnant CD-1 mice were treated with 160 mg/kg on Gestation Days 11-17, and reproductive development in male offspring was evaluated. Prenatal administration of EDS compromised fetal testosterone (T) levels, compared with controls. EDS-exposed pups recovered their steroidogenic capacities after birth because T production by hCG-stimulated testis parenchyma from prepubertal male offspring was unchanged. However, prepubertal testes from prenatally exposed males contained seminiferous tubules (STs) devoid of germ cells, indicating a delay in spermatogenesis. In adults, some STs in exposed males still contained incomplete germ cell associations corroborating observed reductions in epididymal sperm reserves, fertility ratios, and litter size. Morphometry revealed an EDS-induced increase in interstitial area and a concomitant decrease in ST area, but stereology revealed an unexpected decrease in the number and size of the LCs per testis in exposed males. Paradoxically, there was an increase in both serum LH and T production by adult testis parenchyma, indicating that the LCs were hyperstimulated. These data demonstrate permanent lesions in LC development and spermatogenesis caused by prenatal exposure in mice. Thus, although adult mouse LCs are insensitive to EDS, EDS appears to have direct action on fetal LCs, resulting in abnormal testis development.  相似文献   

19.
Sexually selected male ejaculate traits are expected to depend on the resource state of males. Theory predicts that males in good condition will produce larger ejaculates, but that ejaculate composition will depend on the relative production costs of ejaculate components and the risk of sperm competition experienced by low- and high-condition males. Under some conditions, when low condition leads to poorer performance in sperm competition, males in low condition may produce ejaculates with higher sperm content relative to their total ejaculate and may even transfer more sperm than high-condition males in an absolute sense. Previous studies in insects have shown that males in good condition transfer larger ejaculates or more sperm, but it has not been clear whether increased sperm content represents a shift in allocation or simply a larger ejaculate, and thus the condition dependence of ejaculate composition has been largely untested. We examined condition dependence in ejaculate by manipulating adult male condition in a ladybird beetle (Adalia bipunctata) in which males transfer three distinct ejaculate components during mating: sperm, non-sperm ejaculate retained within the female reproductive tract, and a spermatophore capsule that females eject and ingest following mating. We found that high condition males indeed transferred larger ejaculates, potentially achieved by an increased rate of ejaculate transfer, and allocated less to sperm compared with low-condition males. Low-condition males transferred ejaculates with absolutely and proportionally more sperm. This study provides the first experimental evidence for a condition-dependent shift in ejaculate composition.  相似文献   

20.
The testis is one of several immune-privileged organs and is known for its unique ability to support allogeneic or xenogeneic tissue transplants. We investigated the possibility of deriving offspring from mice that underwent transplantation with allogeneic male germ line stem cells in the testis. Although mature adult mice rejected allogeneic germ cells and were infertile, offspring were obtained by intracytoplasmic germ cell injection using partially differentiated donor cells. In contrast, complete spermatogenesis occurred when allogeneic germ cells were transplanted into immature pup testes. Tolerance induction by monoclonal antibody administration allowed the pup transplant recipients to produce allogeneic offspring by natural mating, whereas no spermatozoa were found in the epididymis of untreated recipients. Thus, these results indicate that a histoincompatible recipient can serve as a "surrogate father" to propagate the genetic information of heterologous male donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号