首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  2010年   2篇
  2002年   1篇
排序方式: 共有3条查询结果,搜索用时 46 毫秒
1
1.
Flavonoids represent a group of phytochemicals exhibiting a wide range of biological activities arising mainly from their antioxidant properties and ability to modulate several enzymes or cell receptors. Flavonoids have been recognized to exert anti-bacterial and anti-viral activity, anti-inflammatory, anti-angionic, analgesic, anti-allergic effects, hepatoprotective, cytostatic, apoptotic, estrogenic and anti-estrogenic properties. However, not all flavonoids and their actions are necessarily beneficial. Some flavonoids have mutagenic and/or prooxidant effects and can also interfere with essential biochemical pathways. Among the proteins that interact with flavonoids, cytochromes P450 (CYPs), monooxygenases metabolizing xenobiotics (e.g. drugs, carcinogens) and endogenous substrates (e.g. steroids), play a prominent role. Flavonoid compounds influence these enzymes in several ways: flavonoids induce the expression of several CYPs and modulate (inhibit or stimulate) their metabolic activity. In addition, some CYPs participate in metabolism of flavonoids. Flavonoids enhance activation of carcinogens and/or influence the metabolism of drugs via induction of specific CYPs. On the other hand, inhibition of CYPs involved in carcinogen activation and scavenging reactive species formed from carcinogens by CYP-mediated reactions can be beneficial properties of various flavonoids. Flavonoids show an estrogenic or anti-estrogenic activity owing to the structural similarity with the estrogen skeleton. Mimicking natural estrogens, they bind to estrogen receptor and modulate its activity. They also block CYP19, a crucial enzyme involved in estrogen biosynthesis. Flavonoids in human diet may reduce the risk of various cancers, especially hormone-dependent breast and prostate cancers, as well preventing menopausal symptoms. For these reasons the structure-function relationship of flavonoids is extensively studied to provide an inspiration for a rational drug and/or chemopreventive agent design of future pharmaceuticals.  相似文献
2.
Transplantation of male germ line cells into sterilized recipients has been used in mammals for conventional breeding as well as for transgenesis. We have previously adapted this approach for the domestic chicken and we present now an improvement of the germ cell transplantation technique by using an enriched subpopulation of c-Kit-positive spermatogonia as donor cells. Dispersed c-Kit positive testicular cells from 16 to 17 week-old pubertal donors were transplanted by injection directly into the testes of recipient males sterilized by repeated gamma irradiation. We describe the repopulation of the recipient's testes with c-Kit positive donor testicular cells, which resulted in the production of functional heterologous spermatozoa.Using manual semen collection, the first sperm production in the recipient males was observed about nine weeks after the transplantation. The full reproduction cycle was accomplished by artificial insemination of hens and hatching of chickens.  相似文献
3.
以黑丝羽乌骨鸡(BS)为供体,自来航鸡(WL)为受体,进行了BCs嵌合体制作技术研究。结果表明:(1)“黑羽”对“白羽”、“丝羽”对“片羽”为完全隐性,可以在供体与嵌合体测交中,后代是否出现这些特征作为种系嵌合体判断依据。(2)供体的其它表型,对受体属于完全或不完全显性,可以作为体细胞嵌合体判断依据。(3)通过改进嵌合体制作技术,嵌合体雏鸡的出壳率为40%(29/73),其中据羽色判断的嵌合体率为18%(13/73);以黑羽为依据选择体细胞嵌合体雏鸡,10只饲养至720d,其中60%(6/10)的嵌合体外观基本不变(其余的换羽后褪去黑羽);嵌合体鸡与供体测交,以黑羽、灰羽和丝羽判断,8只嵌合体鸡的种系传递率分别为2.5%-71.4%、5.5%~14.3%以及1.7%~10.5%。首次利用BS鸡资源,建立了多表现型嵌合体模型,为家鸡嵌合体技术深入研究提供了方便的检测方法。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号