首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

With the increased availability of high throughput data, such as DNA microarray data, researchers are capable of producing large amounts of biological data. During the analysis of such data often there is the need to further explore the similarity of genes not only with respect to their expression, but also with respect to their functional annotation which can be obtained from Gene Ontology (GO).

Results

We present the freely available software package GOSim, which allows to calculate the functional similarity of genes based on various information theoretic similarity concepts for GO terms. GOSim extends existing tools by providing additional lately developed functional similarity measures for genes. These can e.g. be used to cluster genes according to their biological function. Vice versa, they can also be used to evaluate the homogeneity of a given grouping of genes with respect to their GO annotation. GOSim hence provides the researcher with a flexible and powerful tool to combine knowledge stored in GO with experimental data. It can be seen as complementary to other tools that, for instance, search for significantly overrepresented GO terms within a given group of genes.

Conclusion

GOSim is implemented as a package for the statistical computing environment R and is distributed under GPL within the CRAN project.  相似文献   

2.

Background

Genetic and genomic data analyses are outputting large sets of genes. Functional comparison of these gene sets is a key part of the analysis, as it identifies their shared functions, and the functions that distinguish each set. The Gene Ontology (GO) initiative provides a unified reference for analyzing the genes molecular functions, biological processes and cellular components. Numerous semantic similarity measures have been developed to systematically quantify the weight of the GO terms shared by two genes. We studied how gene set comparisons can be improved by considering gene set particularity in addition to gene set similarity.

Results

We propose a new approach to compute gene set particularities based on the information conveyed by GO terms. A GO term informativeness can be computed using either its information content based on the term frequency in a corpus, or a function of the term''s distance to the root. We defined the semantic particularity of a set of GO terms Sg1 compared to another set of GO terms Sg2. We combined our particularity measure with a similarity measure to compare gene sets. We demonstrated that the combination of semantic similarity and semantic particularity measures was able to identify genes with particular functions from among similar genes. This differentiation was not recognized using only a semantic similarity measure.

Conclusion

Semantic particularity should be used in conjunction with semantic similarity to perform functional analysis of GO-annotated gene sets. The principle is generalizable to other ontologies.  相似文献   

3.
4.

Background

Communalities between large sets of genes obtained from high-throughput experiments are often identified by searching for enrichments of genes with the same Gene Ontology (GO) annotations. The GO analysis tools used for these enrichment analyses assume that GO terms are independent and the semantic distances between all parent–child terms are identical, which is not true in a biological sense. In addition these tools output lists of often redundant or too specific GO terms, which are difficult to interpret in the context of the biological question investigated by the user. Therefore, there is a demand for a robust and reliable method for gene categorization and enrichment analysis.

Results

We have developed Categorizer, a tool that classifies genes into user-defined groups (categories) and calculates p-values for the enrichment of the categories. Categorizer identifies the biologically best-fit category for each gene by taking advantage of a specialized semantic similarity measure for GO terms. We demonstrate that Categorizer provides improved categorization and enrichment results of genetic modifiers of Huntington’s disease compared to a classical GO Slim-based approach or categorizations using other semantic similarity measures.

Conclusion

Categorizer enables more accurate categorizations of genes than currently available methods. This new tool will help experimental and computational biologists analyzing genomic and proteomic data according to their specific needs in a more reliable manner.  相似文献   

5.
6.

Background  

Predictive classification on the base of gene expression profiles appeared recently as an attractive strategy for identifying the biological functions of genes. Gene Ontology (GO) provides a valuable source of knowledge for model training and validation. The increasing collection of microarray data represents a valuable source for generating functional hypotheses of uncharacterized genes.  相似文献   

7.

Background

Gene set analysis based on Gene Ontology (GO) can be a promising method for the analysis of differential expression patterns. However, current studies that focus on individual GO terms have limited analytical power, because the complex structure of GO introduces strong dependencies among the terms, and some genes that are annotated to a GO term cannot be found by statistically significant enrichment.

Results

We proposed a method for enriching clustered GO terms based on semantic similarity, namely cluster enrichment analysis based on GO (CeaGO), to extend the individual term analysis method. Using an Affymetrix HGU95aV2 chip dataset with simulated gene sets, we illustrated that CeaGO was sensitive enough to detect moderate expression changes. When compared to parent-based individual term analysis methods, the results showed that CeaGO may provide more accurate differentiation of gene expression results. When used with two acute leukemia (ALL and ALL/AML) microarray expression datasets, CeaGO correctly identified specifically enriched GO groups that were overlooked by other individual test methods.

Conclusion

By applying CeaGO to both simulated and real microarray data, we showed that this approach could enhance the interpretation of microarray experiments. CeaGO is currently available at http://chgc.sh.cn/en/software/CeaGO/.  相似文献   

8.
Wang J  Xie D  Lin H  Yang Z  Zhang Y 《Proteome science》2012,10(Z1):S18

Background

Many biological processes recognize in particular the importance of protein complexes, and various computational approaches have been developed to identify complexes from protein-protein interaction (PPI) networks. However, high false-positive rate of PPIs leads to challenging identification.

Results

A protein semantic similarity measure is proposed in this study, based on the ontology structure of Gene Ontology (GO) terms and GO annotations to estimate the reliability of interactions in PPI networks. Interaction pairs with low GO semantic similarity are removed from the network as unreliable interactions. Then, a cluster-expanding algorithm is used to detect complexes with core-attachment structure on filtered network. Our method is applied to three different yeast PPI networks. The effectiveness of our method is examined on two benchmark complex datasets. Experimental results show that our method performed better than other state-of-the-art approaches in most evaluation metrics.

Conclusions

The method detects protein complexes from large scale PPI networks by filtering GO semantic similarity. Removing interactions with low GO similarity significantly improves the performance of complex identification. The expanding strategy is also effective to identify attachment proteins of complexes.
  相似文献   

9.

Background  

A cluster analysis is the most commonly performed procedure (often regarded as a first step) on a set of gene expression profiles. In most cases, a post hoc analysis is done to see if the genes in the same clusters can be functionally correlated. While past successes of such analyses have often been reported in a number of microarray studies (most of which used the standard hierarchical clustering, UPGMA, with one minus the Pearson's correlation coefficient as a measure of dissimilarity), often times such groupings could be misleading. More importantly, a systematic evaluation of the entire set of clusters produced by such unsupervised procedures is necessary since they also contain genes that are seemingly unrelated or may have more than one common function. Here we quantify the performance of a given unsupervised clustering algorithm applied to a given microarray study in terms of its ability to produce biologically meaningful clusters using a reference set of functional classes. Such a reference set may come from prior biological knowledge specific to a microarray study or may be formed using the growing databases of gene ontologies (GO) for the annotated genes of the relevant species.  相似文献   

10.

Background

Over-representation analysis (ORA) detects enrichment of genes within biological categories. Gene Ontology (GO) domains are commonly used for gene/gene-product annotation. When ORA is employed, often times there are hundreds of statistically significant GO terms per gene set. Comparing enriched categories between a large number of analyses and identifying the term within the GO hierarchy with the most connections is challenging. Furthermore, ascertaining biological themes representative of the samples can be highly subjective from the interpretation of the enriched categories.

Results

We developed goSTAG for utilizing GO Subtrees to Tag and Annotate Genes that are part of a set. Given gene lists from microarray, RNA sequencing (RNA-Seq) or other genomic high-throughput technologies, goSTAG performs GO enrichment analysis and clusters the GO terms based on the p-values from the significance tests. GO subtrees are constructed for each cluster, and the term that has the most paths to the root within the subtree is used to tag and annotate the cluster as the biological theme. We tested goSTAG on a microarray gene expression data set of samples acquired from the bone marrow of rats exposed to cancer therapeutic drugs to determine whether the combination or the order of administration influenced bone marrow toxicity at the level of gene expression. Several clusters were labeled with GO biological processes (BPs) from the subtrees that are indicative of some of the prominent pathways modulated in bone marrow from animals treated with an oxaliplatin/topotecan combination. In particular, negative regulation of MAP kinase activity was the biological theme exclusively in the cluster associated with enrichment at 6 h after treatment with oxaliplatin followed by control. However, nucleoside triphosphate catabolic process was the GO BP labeled exclusively at 6 h after treatment with topotecan followed by control.

Conclusions

goSTAG converts gene lists from genomic analyses into biological themes by enriching biological categories and constructing GO subtrees from over-represented terms in the clusters. The terms with the most paths to the root in the subtree are used to represent the biological themes. goSTAG is developed in R as a Bioconductor package and is available at https://bioconductor.org/packages/goSTAG
  相似文献   

11.

Background

Regulation mechanisms between miRNAs and genes are complicated. To accomplish a biological function, a miRNA may regulate multiple target genes, and similarly a target gene may be regulated by multiple miRNAs. Wet-lab knowledge of co-regulating miRNAs is limited. This work introduces a computational method to group miRNAs of similar functions to identify co-regulating miRNAsfrom a similarity matrix of miRNAs.

Results

We define a novel information content of gene ontology (GO) to measure similarity between two sets of GO graphs corresponding to the two sets of target genes of two miRNAs. This between-graph similarity is then transferred as a functional similarity between the two miRNAs. Our definition of the information content is based on the size of a GO term’s descendants, but adjusted by a weight derived from its depth level and the GO relationships at its path to the root node or to the most informative common ancestor (MICA). Further, a self-tuning technique and the eigenvalues of the normalized Laplacian matrix are applied to determine the optimal parameters for the spectral clustering of the similarity matrix of the miRNAs.

Conclusions

Experimental results demonstrate that our method has better clustering performance than the existing edge-based, node-based or hybrid methods. Our method has also demonstrated a novel usefulness for the function annotation of new miRNAs, as reported in the detailed case studies.
  相似文献   

12.

Background  

Semantic similarity measures are useful to assess the physiological relevance of protein-protein interactions (PPIs). They quantify similarity between proteins based on their function using annotation systems like the Gene Ontology (GO). Proteins that interact in the cell are likely to be in similar locations or involved in similar biological processes compared to proteins that do not interact. Thus the more semantically similar the gene function annotations are among the interacting proteins, more likely the interaction is physiologically relevant. However, most semantic similarity measures used for PPI confidence assessment do not consider the unequal depth of term hierarchies in different classes of cellular location, molecular function, and biological process ontologies of GO and thus may over-or under-estimate similarity.  相似文献   

13.

Background  

Gene Ontology (GO) terms are often used to assess the results of microarray experiments. The most common way to do this is to perform Fisher's exact tests to find GO terms which are over-represented amongst the genes declared to be differentially expressed in the analysis of the microarray experiment. However, due to the high degree of dependence between GO terms, statistical testing is conservative, and interpretation is difficult.  相似文献   

14.

Background  

The Gene Ontology (GO) is a well known controlled vocabulary describing the biological process, molecular function and cellular component aspects of gene annotation. It has become a widely used knowledge source in bioinformatics for annotating genes and measuring their semantic similarity. These measures generally involve the GO graph structure, the information content of GO aspects, or a combination of both. However, only a few of the semantic similarity measures described so far can handle GO annotations differently according to their origin (i.e. their evidence codes).  相似文献   

15.
16.

Background  

Large-scale genomic studies often identify large gene lists, for example, the genes sharing the same expression patterns. The interpretation of these gene lists is generally achieved by extracting concepts overrepresented in the gene lists. This analysis often depends on manual annotation of genes based on controlled vocabularies, in particular, Gene Ontology (GO). However, the annotation of genes is a labor-intensive process; and the vocabularies are generally incomplete, leaving some important biological domains inadequately covered.  相似文献   

17.

Background  

The Gene Ontology (GO) is used to describe genes and gene products from many organisms. When used for functional annotation of microarray data, GO is often slimmed by editing so that only higher level terms remain. This practice is designed to improve the summarizing of experimental results by grouping high level terms and the statistical power of GO term enrichment analysis.  相似文献   

18.

Background  

Life processes are determined by the organism's genetic profile and multiple environmental variables. However the interaction between these factors is inherently non-linear [1]. Microarray data is one representation of the nonlinear interactions among genes and genes and environmental factors. Still most microarray studies use linear methods for the interpretation of nonlinear data. In this study, we apply Isomap, a nonlinear method of dimensionality reduction, to analyze three independent large Affymetrix high-density oligonucleotide microarray data sets.  相似文献   

19.

Background  

Independently derived expression profiles of the same biological condition often have few genes in common. In this study, we created populations of expression profiles from publicly available microarray datasets of cancer (breast, lymphoma and renal) samples linked to clinical information with an iterative machine learning algorithm. ROC curves were used to assess the prediction error of each profile for classification. We compared the prediction error of profiles correlated with molecular phenotype against profiles correlated with relapse-free status. Prediction error of profiles identified with supervised univariate feature selection algorithms were compared to profiles selected randomly from a) all genes on the microarray platform and b) a list of known disease-related genes (a priori selection). We also determined the relevance of expression profiles on test arrays from independent datasets, measured on either the same or different microarray platforms.  相似文献   

20.

Background  

DNA microarrays are popular tools for measuring gene expression of biological samples. This ever increasing popularity is ensuring that a large number of microarray studies are conducted, many of which with data publicly available for mining by other investigators. Under most circumstances, validation of differential expression of genes is performed on a gene to gene basis. Thus, it is not possible to generalize validation results to the remaining majority of non-validated genes or to evaluate the overall quality of these studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号