首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 245 毫秒
1.
细胞间通讯方式可分为间接与直接通讯方式,以体循环远程分泌、旁分泌和自分泌方式完成的调节方式为间接通讯,而以细胞间隙连接为途径进行的细胞间直接的信息交流为直接通讯.细胞间隙连接又称缝隙连接,是普遍存在于人和动物组织中的一种细胞连接形式.近年有一系列研究表明缝隙连接胞间通道的异常与糖尿病及其并发症的发生、发展密切相关,本文将就有关这方面的研究进展作一综述.  相似文献   

2.
细胞缝隙连接与心血管疾病   总被引:5,自引:0,他引:5  
Tao X  Zhang SH  Su DF 《生理科学进展》2001,32(4):371-377
目录一、细胞缝隙连接的形态和结构二、细胞缝隙连接的功能  (一 )参与信息的传递及神经冲动的传导  (二 )协调细胞间活动的一致性  (三 )参与细胞的分化生长与发育  (四 )缓冲毒性化学物质的毒害作用  (五 )通过周围细胞滋养受损细胞  (六 )参与局部的代谢功能三、细胞缝隙连接蛋白功能的调节四、缝隙连接和心血管疾病  (一 )心律失常  (二 )动脉粥样硬化  (三 )先天性心脏病  (四 )缺血性心脏病  (五 )心肌病细胞间通讯是一个在进化上很古老的功能 ,细胞间的通讯方式可分为间接与直接方式。以体循环远程分泌、旁分泌或自分泌方…  相似文献   

3.
间隙连接广泛分布于各种组织细胞中,由其构成的通道允许小分子信号物质在相邻细胞间直接传递,在细胞间的通讯方面起着非常重要的作用。间隙连接由连接蛋白(Cx)组成,目前已经发现Cx家族有20多个成员[1],它们在相邻细胞间组成同种或异种间隙连接,调控着细胞的增殖和分化。在哺乳动物卵泡发育过程中,卵母细胞与周围的颗粒细胞之间形成的缝隙连接,介导胞间通讯,对生殖细胞迁移、卵母细胞减数分裂能力恢复、颗粒细胞分层、卵泡成腔、黄体形成、促性腺激素信号传递有非常重要的调节作用。本文根据近年来相关的研究报道,对卵泡发育过程中间隙连接的作用进行综述。  相似文献   

4.
细胞缝隙连接的结构与功能   总被引:1,自引:0,他引:1  
简介细胞间直接通讯的结构基础──缝隙连接的分布、结构、通讯方式及其与肿瘤的关系。  相似文献   

5.
胃肠运动功能障碍是许多胃肠道疾病及其他疾病的重要临床表现,其发病率高达胃肠道疾病的70%以上。缝隙连接蛋白43(connexin 43,Cx43)是细胞间隙连接通讯中最重要的间隙连接蛋白,对胃肠道动力的形成和调节起着关键性作用。中西医治疗胃肠道疾病临床疗效显著,但其起效的分子机制尚未阐释清楚。本文从Cx43的细胞间隙连接通讯的角度,对Cx43在调节胃肠运动障碍机制中的研究进展作一综述,为进一步探究中西医调节胃肠运动障碍的机制研究奠定基础。  相似文献   

6.
在各种组织和器官中都存在允许相邻细胞的胞质区之间直接通讯的间隙连接,它们在广泛的生理过程中起关键作用。间隙连接是细胞间通道,由间隙连接蛋白组成,其中间隙连接蛋白43(Cx43)在各组织器官中广泛表达。研究发现细胞间隙连接通讯会受到冷热刺激的影响,并与Cx43表达相关。本篇综述主要介绍Cx43转录与翻译水平的调控以及它的降解途径,并对冷热刺激后Cx43表达变化的作用机制进行概述。  相似文献   

7.
利用微局域机械力刺激,快速实时观察机械力引起的细胞间钙波传递,系统地研究了BV-2小胶质细胞间钙通讯机制.结果表明,在细胞种植密度较小且彼此未接触的情况下,旁分泌途径可介导BV-2小胶质细胞间钙波传递.在细胞密度较大且相互接触的情况下,旁分泌和间隙连接两种途径可共同介导胞间钙波传递.更为有趣的是,在体外发现BV-2小胶质细胞间存在通道纳米管类似物连接,也可介导小胶质细胞间钙波传递.综上所述,小胶质细胞间钙波传递可通过旁分泌、间隙连接和通道纳米管类似物连接三种途径介导.  相似文献   

8.
外周神经胶质细胞缝隙连接的表达与功能调控   总被引:1,自引:0,他引:1  
缝隙连接是胞间通道的集合体,是相邻细胞间的跨膜通道。连接蛋白Cx29、Cx32和Cx46在施万细胞中表达,Cx43在施万细胞和卫星胶质细胞中均有表达,并形成功能性的缝隙连接通道或半通道。缝隙连接蛋白直接或间接参与细胞信号整合,借助连接蛋白磷酸化及定向突变研究,其分子调控机制逐步清晰。施万细胞和卫星胶质细胞中连接蛋白及其磷酸化的阐明,有助于解释其在外周神经胶质中的表达与功能调控。  相似文献   

9.
连接蛋白及细胞间连接通讯的调控   总被引:3,自引:0,他引:3  
由连接蛋白构成的缝隙连接是细胞间直接进行连接通讯的分子基础。连接蛋白是有十余个成员组成的较保守的大家族,具有共同的基因结构及4跨膜的分子结构,分子间的不同组合影响着缝隙连接的通透性及电传导性。本文还综述了细胞间连接通讯受低pH值、电压、膜流动性和磷酸化的调控的可能机制。  相似文献   

10.
用石蜡切片、超薄切片和冰冻蚀刻技术研究了东方蝾螈胚胎肌细胞发育过程中间隙连接的变化。间隙连接最初出现于原肠后期的体节中胚层细胞中,到原肠末期,体节中胚层细胞间的间隙连接数量骤增,从神经板期到鼻窝出现期,间隙连接数量保持在一个相当高的水平,肌效应期后,其数量明显下降,直到肌细胞发育成熟,神经-肌肉连接充分发育,间隙连接才消失。间隙连接大小的变化与数量的变化表现为平行的现象。此外,细胞融合之前,正是间隙连接的数量和大小达到最高峰的时间。这些结果说明细胞通讯与胚胎肌细胞发育密切相关。对细胞通讯在细胞决定和分化以及细胞融合中的可能作用进行了讨论。  相似文献   

11.
J D Young  Z A Cohn  N B Gilula 《Cell》1987,48(5):733-743
Gap junctions isolated from rat liver were incorporated into planar lipid bilayers. A channel activity that was directly dependent on voltage was recorded. Changes of pH and (Ca2+) had no direct effect on channel activity; however, they modulated the voltage-dependent gating of the gap junction channels differently. Single-channel fluctuations showed large scatter with peak amplitudes of 140 and 280 picoSiemmens in 0.1 M NaCl. The major protein of gap junctions (Mr of 27 kd) was also reconstituted into bilayers, giving channel properties similar to those of intact gap junctions. Polyclonal antibodies specific for this protein caused inhibition of the junctional conductance in bilayers. These data provide direct evidence that the 27 kd protein is the molecular species responsible for gap junction communication between cells.  相似文献   

12.
Gap junctions facilitate direct cytoplasmic communication between neighboring cells, facilitating the transfer of small molecular weight molecules involved in cell signaling and metabolism. Gap junction channels are formed by the joining of two hemichannels from adjacent cells, each composed of six oligomeric protein subunits called connexins. Of paramount importance to CNS homeostasis are astrocyte networks formed by gap junctions, which play a critical role in maintaining the homeostatic regulation of extracellular pH, K+, and glutamate levels. Inflammation is a hallmark of several diseases afflicting the CNS. Within the past several years, the number of publications reporting effects of cytokines and pathogenic stimuli on glial gap junction communication has increased dramatically. The purpose of this review is to discuss recent observations characterizing the consequences of inflammatory stimuli on homocellular gap junction coupling in astrocytes and microglia as well as changes in connexin expression during various CNS inflammatory conditions.  相似文献   

13.
Gap junction channels enable the direct flow of signaling molecules and metabolites between cells. Alveolar epithelial cells show great variability in the expression of gap junction proteins (connexins) as a function of cell phenotype and cell state. Differential connexin expression and control by alveolar epithelial cells have the potential to enable these cells to regulate the extent of intercellular coupling in response to cell stress and to regulate surfactant secretion. However, defining the precise signals transmitted through gap junction channels and the cross talk between gap junctions and other signaling pathways has proven difficult. Insights from what is known about roles for gap junctions in other systems in the context of the connexin expression pattern by lung cells can be used to predict potential roles for gap junctional communication between alveolar epithelial cells.  相似文献   

14.
Zhao W  Lin ZX  Zhang ZQ 《Cell research》2004,14(1):60-66
To examine the role of gap junctions in cell senescence, the changes of gap junctions in cisplatin-induced premature senescence of primary cultured fibroblasts were studied and compared with the replicative senescent human fibroblasts.Dye transfer assay for gap junction function and immunofluorescent staining for connexin 43 protein distribution were done respectively. Furthermore, cytofluorimetry and DAPI fluorescence staining were performed for cell cycle and apoptosis analysis, p53 gene expression level was detected with indirect immunofluorescence. We found that cisplatin(10mM) treatment could block cell growth cycle at G1 and induced premature senescence. The premature senescence changes included high frequency of apoptosis, elevation of p53 expression, loss of membranous gap junctions and reduction of dye-transfer capacity. These changes were comparable to the changes of replicative senescence of human fibroblasts. It was also concluded that cisplatin could induce premature senescence concomitant with inhibition of gap junctions in the fibroblasts. Loss of functional gap junctions from the cell membrane may account for the reduced intercellular communication in the premature senescent fibroblasts. The cell system we used may provide a model useful for the study of the gap junction thus promoting agents against premature senescence.  相似文献   

15.
Gap junction communication is an essential component in the mechanosensitive response of tenocytes. However, little is known about direct mechanoregulation of gap junction turnover and permeability. The present study tests the hypothesis that mechanical loading alters gap junction communication between tenocyte within tendon fascicles. Viable tenocytes within rat tail tendon fasicles were labelled with calcein-AM and subjected to a fluorescent loss induced by photobleaching (FLIP) protocol. A designated target cell within a row of tenocytes was continuously photobleached at 100% laser power whilst recording the fluorescent intensity of neighbouring cells. A mathematical compartment model was developed to estimate the intercellular communication between tenocytes based upon the experimental FLIP data. This produced a permeability parameter, k, which quantifies the degree of functioning gap functions between cells as confirmed by the complete inhibition of FLIP by the inhibitor 18α-glycyrrhentic acid. The application of 1N static tensile load for 10?min had no effect on gap junction communication. However, when loading was increased to 1?h, there was a statistically significant reduction in gap junction permeability. This coincided with suppression of connexin 43 protein expression in loaded samples as determined by confocal immunofluorescence. However, there was an upregulation of connexin 43 mRNA. These findings demonstrate that tenocytes remodel their gap junctions in response to alterations in mechanical loading with a complex mechanosensitive mechanism of breakdown and remodelling. This is therefore the first study to show that tenocyte gap junctions are not only important in transmitting mechanically activated signals but that mechanical loading directly regulates gap junction permeability.  相似文献   

16.
Tight junction barrier formation and gap junctional communication are two functions directly attributable to cell-cell contact sites. Epithelial and endothelial tight junctions are critical elements of the permeability barrier required to maintain discrete compartments in the lung. On the other hand, gap junctions enable a tissue to act as a cohesive unit by permitting metabolic coupling and enabling the direct transmission of small cytosolic signaling molecules from one cell to another. These components do not act in isolation since other junctional elements, such as adherens junctions, help regulate barrier function and gap junctional communication. Some fundamental elements related to regulation of pulmonary barrier function and gap junctional communication were presented in a Featured Topic session at the 2004 Experimental Biology Conference in Washington, DC, and are reviewed in this summary.  相似文献   

17.
Connexins and their channels in cell growth and cell death   总被引:7,自引:0,他引:7  
Direct communication between cells, mediated by gap junctions, is nowadays considered as an indispensable mechanism in the maintenance of cellular homeostasis. In fact, gap junctional intercellular communication is actively involved in virtually all aspects of the cellular life cycle, ranging from cell growth to cell death. For a long time, it was believed that this was merely a result of the capacity of gap junctions to control the direct intercellular exchange of essential cellular messengers. However, recent data show that the picture is more complicated than initially thought, as structural precursors of gap junctions, connexins and gap junction hemichannels, can affect the cellular homeostatic balance independently of gap junctional intercellular communication. In this paper, we summarize the current knowledge concerning the roles of connexins and their channels in the control of cellular homeostasis, with the emphasis on cell growth and cell death. We also briefly discuss the role of gap junctional intercellular communication in carcinogenesis and the potential use of connexins as tools for cancer therapy.  相似文献   

18.
Cells of almost all solid tissues are connected with gap junctions which permit the direct transfer of ions and small molecules, integral to regulating coordinated function in the tissue. The pancreatic islets of Langerhans are responsible for secreting the hormone insulin in response to glucose stimulation. Gap junctions are the only electrical contacts between the beta-cells in the tissue of these excitable islets. It is generally believed that they are responsible for synchrony of the membrane voltage oscillations among beta-cells, and thereby pulsatility of insulin secretion. Most attempts to understand connectivity in islets are often interpreted, bottom-up, in terms of measurements of gap junctional conductance. This does not, however, explain systematic changes, such as a diminished junctional conductance in type 2 diabetes. We attempt to address this deficit via the model presented here, which is a learning theory of gap junctional adaptation derived with analogy to neural systems. Here, gap junctions are modelled as bonds in a beta-cell network, that are altered according to homeostatic rules of plasticity. Our analysis reveals that it is nearly impossible to view gap junctions as homogeneous across a tissue. A modified view that accommodates heterogeneity of junction strengths in the islet can explain why, for example, a loss of gap junction conductance in diabetes is necessary for an increase in plasma insulin levels following hyperglycemia.  相似文献   

19.
Abstract

Gap junctions are a specialized group of cell-to-cell junctions that mediate direct intercellular communication between cells. They arise from the interaction of two hemichannels of adjacent cells, which in turn are composed of six connexin proteins. In liver, gap junctions are predominantly found in hepatocytes and play critical roles in virtually all phases of the hepatic life cycle, including cell growth, differentiation, liver-specific functionality and cell death. Liver gap junctions are directed through a broad variety of mechanisms ranging from epigenetic control of connexin expression to post-translational regulation of gap junction activity. This paper reviews established and novel aspects regarding the architecture, control and functional relevance of liver gap junctions.  相似文献   

20.
Gap junctions appear to be essential components of metazoan animals providing a means of direct means of communication between neighboring cells. They are sieve-like structures which allow cell–cell movement of cytosolic solutes below 1000 MW. The major role of gap junctions would appear to be homeostatic giving rise to groups of cells which act as functional units. Ductin is the major core component of gap junctions and recent structural data shows it to be a four alpha-helical bundle which fits particularly well into a low resolution model of the gap junction channel. Ductin is also the main membrane component of the vacuolar H+-ATPase that is found in all eukaryotes and it seems likely that the gap junction channel first evolved as a housing for the rotating spindle of these proton pumps. Because ductin protrudes little from the membrane, other proteins are required to bring cell surfaces close enough together to form gap junctions. Such proteins may include connexins, a large family of proteins found in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号