首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A structural event during the evolution of a myocardial infarction (MI) is left ventricular (LV) remodeling. The mechanisms that contribute to early changes in LV myocardial remodeling in the post-MI period remain poorly understood. Matrix metalloproteinases (MMPs) contribute to tissue remodeling in several disease states. Whether and to what degree MMP activation occurs within the myocardial interstitium after acute MI remains to be determined. Adult pigs (n = 15) were instrumented to measure regional myocardial function and interstitial MMP levels within regions served by the circumflex and left anterior descending arteries. Regional function was measured by sonomicrometry, and interstitial MMP levels were determined by selective microdialysis and zymography as well as by MMP interstitial fluorogenic activity. Measurements were performed at baseline and sequentially for up to 3 h after ligation of the obtuse marginals of the circumflex artery. Regional fractional shortening fell by over 50% in the MI region but remained unchanged in the remote region after coronary occlusion. Release of soluble MMPs, as revealed by zymographic activity of myocardial interstitial samples, increased by 2 h post-MI. The increased zymographic activity after MI was consistent with MMP-9. Myocardial interstitial MMP fluorogenic activity became detectable within the ischemic region as early as 10 min after coronary occlusion and significantly increased after 1 h post-MI. MMP fluorogenic activity remained unchanged from baseline values in the remote region. The present study demonstrated that myocardial MMP activation can occur within the MI region in the absence of reperfusion. These unique results suggest that MMP release and activation occurs within the ischemic myocardial interstitium in the early post-MI period.  相似文献   

2.
Osteopontin (OPN) plays an important role in left ventricular (LV) remodeling after myocardial infarction (MI) by promoting collagen synthesis and accumulation. This study tested the hypothesis that MMP inhibition modulates post-MI LV remodeling in mice lacking OPN. Wild-type (WT) and OPN knockout (KO) mice were treated daily with MMP inhibitor (PD166793, 30 mg/kg/day) starting 3 days post-MI. LV functional and structural remodeling was measured 14 days post-MI. Infarct size was similar in WT and KO groups with or without MMP inhibition. M-mode echocardiography showed greater increase in LV end-diastolic (LVEDD) and end-systolic diameters (LVESD) and decrease in percent fractional shortening (%FS) and ejection fraction in KO-MI versus WT-MI. MMP inhibition decreased LVEDD and LVESD, and increased %FS in both groups. Interestingly, the effect was more pronounced in KO-MI group versus WT-MI (P < 0.01). MMP inhibition significantly decreased post-MI LV dilation in KO-MI group as measured by Langendorff-perfusion analysis. MMP inhibition improved LV developed pressures in both MI groups. However, the improvement was significantly higher in KO-MI group versus WT-MI (P < 0.05). MMP inhibition increased heart weight-to-body weight ratio, myocyte cross-sectional area, fibrosis and septal wall thickness only in KO-MI. Percent apoptotic myocytes in the non-infarct area was not different between the treatment groups. Expression and activity of MMP-2 and MMP-9 in the non-infarct area was higher in KO-MI group 3 days post-MI. MMP inhibition reduced MMP-2 activity in KO-MI with no effect on the expression of TIMP-2 and TIMP-4 14 days post-MI. Thus, activation of MMPs contributes to reduced fibrosis and LV dysfunction in mice lacking OPN.  相似文献   

3.
Extracellular matrix (ECM) turnover is regulated by matrix metalloproteinases (MMPs) and plays an important role in cardiac remodeling. Previous studies from our lab demonstrated an increase in gelatinolytic-MMP-2 and -9 activities in endocardial tissue from ischemic cardiomyopathic (ICM) and idiopathic dilated cardiomyopathic (DCM) hearts. The signaling mechanism responsible for the left ventricular (LV) remodeling, however, is unclear. Administration of cardiac specific inhibitor of metalloproteinase (CIMP) prevented the activation of MMP-2 and -9 in ailing to failing myocardium. Activation of MMP-2 and -9 leads to induction of proteinase activated receptor-1 (PAR-1). We hypothesize that the early induction of MMP-9 is a key regulator for modulating intracellular signaling through activation of PAR and various downstream events which are implicated in development of cardiac fibrosis in an extracellular receptor mediated kinase-1 (ERK-1) and focal adhesion kinase (FAK) dependent manner. To test this hypothesis, explanted human heart tissues from ICM and DCM patients were obtained at the time of orthotopic cardiac transplants. Quantitative analysis of MMP-2 and -9 gelatinolytic activities was made by real-time quantitative zymography. Gel phosphorylation staining for PAR-1 showed a significant increase in ICM hearts. Western blot and RT-PCR analysis and in-situ labeling, showed significant increased expression of PAR-1, ERK-1and FAK in ICM and DCM. These observations suggest that the enhanced expression and potentially increased activity of LV myocardial MMP-9 triggers the signal cascade instigating cardiac remodeling. This early mechanism for the initiation of LV remodeling appears to have a role in end-stage human heart failure.  相似文献   

4.
Matrix metalloproteinases (MMPs) and the tissue inhibitors of MMPs (TIMPs) have been recognized to play a pivotal role in matrix remodeling following myocardial infarction (MI). The aims of the present study were to examine the expression profile of MMPs/TIMP-1 after MI and to determine whether angiotensin II receptor (ATR) blockade improves MMPs/TIMP-1 balance. Compared with sham-operated rats, in vivo MI-induced a significant elevation of MMP-2, MMP-3 and MMP-9 levels and a marked reduction of TIMP-1 and fibronectin (FN) expressions in infarcted left ventricular free wall (LVFW) and hypertrophic interventricular septum (IS) but not in non-infarcted right ventricle (RV). In addition, regional MI increased MMP-2, MMP-3 and MMP-9, while decreased TIMP-1 and FN in infarcted LVFW and hypertrophic IS compared with the non-infarcted RV. Compared with vehicle-treated MI rats, oral valsartan, but not PD123319, limited infarct size, normalized MMPs/TIMP-1 balance and restored FN level. The present findings might further our understanding of the regulatory mechanisms of valsartan in myocardial remodeling after MI.  相似文献   

5.
Matrix metalloproteinase-2 (MMP-2) is prominently overexpressed both after myocardial infarction (MI) and in heart failure. However, its pathophysiological significance in these conditions is still unclear. We thus examined the effects of targeted deletion of MMP-2 on post-MI left ventricular (LV) remodeling and failure. Anterior MI was produced in 10- to 12-wk-old male MMP-2 knockout (KO) and sibling wild-type (WT) mice by ligating the left coronary artery. By day 28, MI resulted in a significant increase in mortality in association with LV cavity dilatation and dysfunction. The MMP-2 KO mice had a significantly better survival rate than WT mice (56% vs. 85%, P < 0.05), despite a comparable infarct size (50 +/- 3% vs. 51 +/- 3%, P = not significant), heart rate, and arterial blood pressure. The KO mice had a significantly lower incidence of LV rupture (10% vs. 39%, P < 0.05), which occurred within 7 days of MI. The KO mice exerted less LV cavity dilatation and improved fractional shortening after MI by echocardiography. The LV zymographic MMP-2 level significantly increased in WT mice after coronary artery ligation; however, this was completely prevented in KO mice. In contrast, the increase in the LV zymographic MMP-9 level after MI was similar between KO and WT mice. MMP-2 activation is therefore considered to contribute to an early cardiac rupture as well as late LV remodeling after MI. The inhibition of MMP-2 activation may therefore be a potentially useful therapeutic strategy to manage post-MI hearts.  相似文献   

6.
Matrix metalloproteinases (MMPs) are zinc endopeptidases that degrade extracellular matrix (ECM) components during normal and pathogenic tissue remodeling. Inappropriate expression of these enzymes contributes to the development of vascular pathology, including atherosclerosis. MMP-9 is expressed in its active form in atherosclerotic lesions and is believed to play an important role in vascular remodeling, smooth muscle cell migration, and plaque instability. We demonstrate here that the liver X receptors (LXRs) LXRalpha and LXRbeta inhibit basal and cytokine-inducible expression of MMP-9. Treatment of murine peritoneal macrophages with the synthetic LXR agonists GW3965 or T1317 reduces MMP-9 mRNA expression and blunts its induction by pro-inflammatory stimuli including lipopolysaccharide, interleukin-1beta, and tumor necrosis factor alpha. In contrast, macrophage expression of MMP-12 and MMP-13 is not altered by LXR ligands. We further show that the ability of LXR ligands to regulate MMP-9 expression is strictly receptor-dependent and is not observed in macrophages obtained from LXRalphabeta null mice. Analysis of the 5'-flanking region of the MMP-9 gene indicates that LXR/RXR heterodimers do not bind directly to the MMP-9 promoter. Rather, activation of LXRs represses MMP-9 expression, at least in part through antagonism of the NFkappaB signaling pathway. These observations identify the regulation of macrophage MMP-9 expression as a mechanism whereby activation of LXRs may impact macrophage inflammatory responses.  相似文献   

7.
Tao ZY  Cavasin MA  Yang F  Liu YH  Yang XP 《Life sciences》2004,74(12):1561-1572
We previously found that male mice with myocardial infarction (MI) had a high rate of cardiac rupture, which generally occurred at 3 to 5 days after MI. Since matrix metalloproteinases (MMPs) play an important role in infarct healing, tissue repair and extracellular matrix (ECM) remodeling post-MI, we studied the temporal relationship of MMP expression and inflammatory response to cardiac rupture after acute MI. Male C57BL/6J mice were subjected to MI (induced by ligating the left anterior descending coronary artery) and killed 1, 2, 4, 7 or 14 days after MI. MMP-2 and MMP-9 activity in the heart were measured by zymography. Collagen content was measured by hydroxyproline assay. We found that after MI, MMP-9 activity increased as early as 1 day and reached a maximum by 2-4 days, associated with a similar increase in neutrophil and macrophage infiltration in the infarct area. MMP-2 started to increase rapidly within 4 days, reaching a maximum by 7 days and remaining high even at 14 days. Intense macrophage infiltration appeared by 4 days after MI and then gradually decreased within 7 to 14 days. Collagen content was unchanged until 4 days after MI, at which point it increased and remained high thereafter. Our data suggest that in mice, overexpression of MMP-2 and MMP-9 (possibly expressed mainly by neutrophils and macrophages) may lead to excessive ECM degradation in the early phase of MI, impairing infarct healing and aggravating early remodeling which in turn causes cardiac rupture.  相似文献   

8.
Endothelin (ET) A (ET(A)) receptors activate matrix metalloproteinases (MMP). Since endothelin-1 (ET) is increased in myocardium late postmyocardial infarction (MI), we hypothesized that stimulation of ET(A) receptors contributes to activation of myocardial MMPs late post-MI. Three days post-MI, rats were randomized to treatment with the ET(A)-selective receptor antagonist sitaxsentan (n = 12) or a control group (n = 12). Six weeks later, there were rightward shifts of the left ventricular (LV) end-diastolic and end-systolic pressure-volume relationships, as measured ex vivo by the isovolumic Langendorff technique. Both shifts were markedly attenuated by sitaxsentan. In LV myocardium remote from the infarct, the activities of MMP-1, MMP-2, and MMP-9 were increased in the post-MI group, and the increases were prevented by sitaxsentan treatment. Expression of tissue inhibitor of MMP-1 was decreased post-MI, and the decrease was prevented by sitaxsentan treatment. Chronic post-MI remodeling is associated with activation of MMPs in myocardium remote from the infarct. Inhibition of ET(A) receptors prevents MMP activation and LV dilation, suggesting that ET, acting via the ET(A) receptor, contributes to chronic post-MI remodeling by its effects on MMP activity.  相似文献   

9.
The cytokine tumor necrosis factor (TNF)-alpha has been causally linked to left ventricular (LV) remodeling, but the molecular basis for this effect is unknown. Matrix metalloproteinases (MMPs) have been implicated in cardiac remodeling and can be regulated by TNF-alpha. This study tested the central hypothesis that administration of a TNF-alpha blocking protein would prevent the induction of MMPs and alter the course of myocardial remodeling in developing LV failure. Adult dogs were randomly assigned to the following groups: 1) chronic pacing (250 beats/min, 28 days, n = 12), 2) chronic pacing with concomitant administration of a TNF-alpha blocking protein (TNF block) using a soluble p75 TNF receptor fusion protein (TNFR:Fc; administered at 0.5 mg/kg twice a week subcutaneously, n = 7), and 3) normal controls (n = 10). LV end-diastolic volume increased from control with chronic pacing (83 +/- 12 vs. 118 +/- 10 ml, P < 0.05) and was reduced with TNF block (97 +/- 9 ml, P < 0.05). MMP zymographic levels (92 kDa, pixels) increased from control with chronic pacing (36,848 +/- 9,593 vs. 87,247 +/- 12,912, P < 0.05) and was normalized by TNF block. Myocardial MMP-9 and MMP-13 levels by immunoblot increased with chronic pacing relative to controls (130 +/- 10% and 118 +/- 6%, P < 0.05) and was normalized by TNF block. These results provide evidence to suggest that TNF-alpha contributes to the myocardial remodeling process in evolving heart failure through the local induction of specific MMPs.  相似文献   

10.
11.
Vascular smooth muscle (VSM) cell migration is a critical step in the development of a neointima after angioplasty. Matrix metalloproteinases (MMPs) degrade the basement membrane and extracellular matrix, facilitating VSM cell migration. Recently, we demonstrated that nitric oxide (NO) inhibits interleukin-1 beta (IL-1 beta)-stimulated MMP-9 induction in rat aortic VSM cells. In this study, we examined the hypothesis that NO inhibits MMP-9 induction by attenuating superoxide generation and extracellular signal-regulated kinase (ERK) activation. Stimulation of VSM cells with IL-1 beta significantly (P < 0.05) increased superoxide production, ERK activation, and MMP-9 induction. Pretreatment of VSM cells with the NO donor DETA NONOate significantly (P < 0.05) decreased IL-1 beta-stimulated superoxide generation. In addition, pretreatment of VSM cells with a specific ERK pathway inhibitor, PD-98059, or DETA NONOate inhibited IL-1 beta-stimulated ERK activation and MMP-9 induction. Direct exposure of VSM cells to increased superoxide levels by treatment with xanthine/xanthine oxidase increased ERK activation and MMP-9 induction, whereas pretreatment of cells with PD-98059 significantly (P < 0.05) inhibited xanthine/xanthine oxidase-stimulated ERK activation and MMP-9 induction. We conclude that NO inhibits IL-1 beta-stimulated MMP-9 induction by inhibiting superoxide generation and subsequent ERK activation.  相似文献   

12.
The matrix metalloproteinases (MMPs) play a pivotal role in adverse left ventricular (LV) myocardial remodeling. The transmembrane protein extracellular MMP inducer (EMMPRIN) causes increased MMP expression in vitro, and elevated levels occur in patients with LV failure. However, the direct consequences of a prolonged increase in the myocardial expression of EMMPRIN in vivo remained unexplored. Cardiac-restricted EMMPRIN expression (EMMPRINexp) was constructed in mice using the full-length human EMMPRIN gene ligated to the myosin heavy chain promoter, which yielded approximately a twofold increase in EMMPRIN compared with that of the age/strain-matched wild-type (WT) mice; EMMPRINexp (n=27) and WT (n=33) mice were examined at 3.2+/-0.1 or at 13.3+/-0.5 mo of age (n=43 and 26, respectively). LV end-diastolic volume (EDV) was similar in young EMMPRINexp and WT mice (54+/-2 vs. 57+/-3 microl), but LV ejection fraction (EF) was reduced (51+/-1 vs. 57+/-1%; P<0.05). In old EMMPRINexp mice, LV EDV was increased compared with WT mice values (76+/-3 vs. 58+/-3 microl; P<0.05) and LV EF was significantly reduced (45+/-1 vs. 57+/-2%; P<0.05). In EMMPRINexp old mice, myocardial MMP-2 and membrane type-1 MMP levels were increased by >50% from WT values (P<0.05) and were accompanied by a twofold higher collagen content (P<0.05). Persistent myocardial EMMPRINexp in aging mice caused increased levels of both soluble and membrane type MMPs, fibrosis, and was associated with adverse LV remodeling. These findings suggest that EMMPRIN is an upstream signaling pathway that can play a mechanistic role in adverse remodeling within the myocardium.  相似文献   

13.
Matrix metalloproteinases (MMPs) are postulated to be necessary for neovascularization during wound healing. MMP-9 deletion alters remodeling postmyocardial infarction (post-MI), but whether and to what degree MMP-9 affects neovascularization post-MI is unknown. Neovascularization was evaluated in wild-type (WT; n = 63) and MMP-9 null (n = 55) mice at 7-days post-MI. Despite similar infarct sizes, MMP-9 deletion improved left ventricular function as evaluated by hemodynamic analysis. Blood vessel quantity and quality were evaluated by three independent studies. First, vessel density was increased in the infarct of MMP-9 null mice compared with WT, as quantified by Griffonia (Bandeiraea) simplicifolia lectin I (GSL-I) immunohistochemistry. Second, preexisting vessels, stained in vivo with FITC-labeled GSL-I pre-MI, were present in the viable but not MI region. Third, a technetium-99m-labeled peptide (NC100692), which selectively binds to activated alpha(v)beta3-integrin in angiogenic vessels, was injected into post-MI mice. Relative NC100692 activity in myocardial segments with diminished perfusion (0-40% nonischemic) was higher in MMP-9 null than in WT mice (383 +/- 162% vs. 250 +/- 118%, respectively; P = 0.002). The unique finding of this study was that MMP-9 deletion stimulated, rather than impaired, neovascularization in remodeling myocardium. Thus targeted strategies to inhibit MMP-9 early post-MI will likely not impair the angiogenic response.  相似文献   

14.
The membrane type-1 matrix metalloproteinase (MT1-MMP) is a unique member of the MMP family, but induction patterns and consequences of MT1-MMP overexpression (MT1-MMPexp), in a left ventricular (LV) remodeling process such as myocardial infarction (MI), have not been explored. MT1-MMP promoter activity (murine luciferase reporter) increased 20-fold at 3 days and 50-fold at 14 days post-MI. MI was then induced in mice with cardiac restricted MT1-MMPexp (n = 58) and wild type (WT, n = 60). Post-MI survival was reduced (67% versus 46%, p < 0.05), and LV ejection fraction was lower in the post-MI MT1-MMPexp mice compared with WT (41 ± 2 versus 32 ± 2%,p < 0.05). In the post-MI MT1-MMPexp mice, LV myocardial MMP activity, as assessed by radiotracer uptake, and MT1-MMP-specific proteolytic activity using a specific fluorogenic assay were both increased by 2-fold. LV collagen content was increased by nearly 2-fold in the post-MI MT1-MMPexp compared with WT. Using a validated fluorogenic construct, it was discovered that MT1-MMP proteolytically processed the pro-fibrotic molecule, latency-associated transforming growth factor-1 binding protein (LTBP-1), and MT1-MMP-specific LTBP-1 proteolytic activity was increased by 4-fold in the post-MI MT1-MMPexp group. Early and persistent MT1-MMP promoter activity occurred post-MI, and increased myocardial MT1-MMP levels resulted in poor survival, worsening of LV function, and significant fibrosis. A molecular mechanism for the adverse LV matrix remodeling with MT1-MMP induction is increased processing of pro-fibrotic signaling molecules. Thus, a proteolytically diverse portfolio exists for MT1-MMP within the myocardium and likely plays a mechanistic role in adverse LV remodeling.  相似文献   

15.
16.
Tenascin-C (TN-C) might aggravate left ventricular remodeling after myocardial infarction (MI). Our previous study demonstrated that ventricular remodeling after MI is linked with the degradation of fibronectin (FN). The aim of the present study was to determine whether cardiac extracellular matrix TN-C deposition after MI requires FN degradation. We found that treatment with angiotensin (ANG) II significantly down-regulated FN while remarkably up-regulated TN-C in co-cultured cardiomyocytes and fibroblasts. Inhibitors of matrix metalloproteinase (MMP)-2, MMP-3 or MMP-9 significantly attenuated ANG II-induced loss of FN and obviously blunted ANG II-induced re-expression of TN-C in co-cultured cells. Moreover, FN fragments dose-dependently induced the deposition of TN-C. In addition, MI induced a significant reduction of FN protein expression and a marked elevation of TN-C expression level at day 7 after MI compared with the sham group. The present findings suggest that cardiac TN-C matrix deposition after MI is induced by FN degradation, which is dependent on the activation of MMPs. These findings might contribute to gain mechanistic insights into the regulation of TN-C formation after MI.  相似文献   

17.
18.
Matrix metalloproteinase-mediated degradation of extracellular matrix is a crucial event for invasion and metastasis of malignant cells. The expressions of matrix metalloproteinases (MMPs) are regulated by different cytokines and growth factors. VEGF, a potent angiogenic cytokine, induces invasion of ovarian cancer cells through activation of MMPs. Here, we demonstrate that invasion and scattering in SKOV-3 cells were induced by VEGF through the activation of p38 MAPK and PI3K/AKT pathways. VEGF induced the expression of MMP-2, MMP-9, and MMP-13 and hence regulated the metastasis of SKOV-3 ovarian cancer cells, and the activities of these MMPs were reduced after inhibition of PI3K/AKT and p38 MAPK pathways. Interestingly, VEGF induced expression of ETS-1 factor, an important trans-regulator of different MMP genes. ETS-1 bound to both MMP-9 and MMP-13 promoters. Furthermore, VEGF acted through its receptor to perform the said functions. In addition, VEGF-induced MMP-9 and MMP-13 expression and in vitro cell invasion were significantly reduced after knockdown of ETS-1 gene. Again, VEGF-induced MMP-9 and MMP-13 promoter activities were down-regulated in ETS-1 siRNA-transfected cells. VEGF enriched ETS-1 in the nuclear fraction in a dose-dependent manner. VEGF-induced expression of ETS-1 and its nuclear localization were blocked by specific inhibitors of the PI3K and p38 MAPK pathways. Therefore, based on these observations, it is hypothesized that the activation of PI3K/AKT and p38 MAPK by VEGF results in ETS-1 gene expression, which activates MMP-9 and MMP-13, leading to the invasion and scattering of SKOV-3 cells. The study provides a mechanistic insight into the prometastatic functions of VEGF-induced expression of relevant MMPs.  相似文献   

19.
Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is a common and lethal form of muscular dystrophy. With progressive disease, most patients succumb to death from respiratory or heart failure, or both. However, the mechanisms, especially those governing cardiac inflammation and fibrosis in DMD, remain less understood. Matrix metalloproteinase (MMPs) are a group of extracellular matrix proteases involved in tissue remodeling in both physiologic and pathophysiologic conditions. Previous studies have shown that MMP-9 exacerbates myopathy in dystrophin-deficient mdx mice. However, the role and the mechanisms of action of MMP-9 in cardiac tissue and the biochemical mechanisms leading to increased levels of MMP-9 in mdx mice remain unknown. Our results demonstrate that the levels of MMP-9 are increased in the heart of mdx mice. Genetic ablation of MMP-9 attenuated cardiac injury, left ventricle dilation, and fibrosis in 1-y-old mdx mice. Echocardiography measurements showed improved heart function in Mmp9-deficient mdx mice. Deletion of the Mmp9 gene diminished the activation of ERK1/2 and Akt kinase in the heart of mdx mice. Ablation of MMP-9 also suppressed the expression of MMP-3 and MMP-12 in the heart of mdx mice. Finally, our experiments have revealed that osteopontin, an important immunomodulator, contributes to the increased amounts of MMP-9 in cardiac and skeletal muscle of mdx mice. This study provides a novel mechanism for development of cardiac dysfunction and suggests that MMP-9 and OPN are important therapeutic targets to mitigating cardiac abnormalities in patients with DMD.  相似文献   

20.
Left ventricular (LV) pressure (PO) or volume (VO) overload is accompanied by myocardial remodeling, but mechanisms that contribute to this progressive remodeling process remain unclear. The matrix metalloproteinases (MMPs) contribute to tissue remodeling in a number of disease states. This study tested the hypothesis that increased MMP expression and activity occur after the induction of an LV overload, which is accompanied by a loss of endogenous MMP inhibitory control. LV MMP zymographic activity and species abundance were measured in dogs under the following conditions: acute PO induced by ascending aortic balloon inflation (6 h, n = 9), prolonged PO by aortic banding (10 days, n = 5), acute VO through mitral regurgitation secondary to chordal rupture (6 h, n = 6), prolonged VO due to mitral regurgitation (14 days, n = 7), and sham controls (n = 11). MMP zymographic activity in the 92-kDa region, indicative of MMP-9 activity, increased over threefold in acute PO and VO and fell to control levels in prolonged PO and VO. The MMP-9 activity-to-abundance ratio increased by over fourfold with acute VO and twofold in acute PO, suggesting a loss of inhibitory control. Endogenous MMP inhibitor content was unchanged with either PO or VO. Interstitial collagenase (MMP-1) content decreased by 50% with acute VO but not with acute PO. Stromelysin (MMP-3) levels increased by 40% with acute VO and increased by 80% with prolonged PO. Although changes in LV myocardial MMP activity and inhibitory control occurred in both acute and prolonged PO and VO states, these changes were not identical. These results suggest that the type of overload stimulus may selectively influence myocardial MMP activity and expression, which in turn would affect the overall LV myocardial remodeling process in LV overload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号