首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
The properties of acetohydroxy acid synthase (AHAS, EC 4.1.3.18) from wild-type Chlorella emersonii (var. Emersonii, CCAP-211/11n) and two spontaneous sulfometuron methyl (SMM)-resistant mutants were examined. The AHAS from both mutants was resistant to SMM and cross-resistant to imazapyr (IM) and the triazolopyrimidine sulfonanilide herbicide XRD-498 (TP). The more-SMM-resistant mutant had AHAS with altered catalytic parameters (K m, specificity), but unchanged sensitivity to the feedback inhibitors valine and leucine. The second mutant enzyme was less sensitive to the feedback inhibitors, but had otherwise unchanged kinetic parameters. Inhibition-competition experiments indicated that the three herbicides (SMM, IM, TP) bind in a mutually exclusive manner, but that valine can bind simultaneously with SMM or TP. The three herbicide classes apparently bind to closely overlapping sites. We suggest that the results with C. emersonii and other organisms can all be explained if there are separate binding sites for herbicides, feedback inhibitors and substrates.Abbreviations AHAS acetohydroxy acid synthase - AL acetolactate - AHB acetohydroxybutyrate - IM imazapyr - TP triazolopyrimidine sulfonanilide herbicide XRD-498 - R enzyme specificity - SMM sulfometuron methyl This research was supported in part by the United States — Israel Binational Science Foundation (BSF), Jerusalem, Israel (Grant 86-00205) and the Fund for Basic Research, Israel Academy of Sciences.  相似文献   

2.
Excretion of 2-ketoisovaleric acid (KIV) was demonstrated in Streptomyces cinnamonensis mutants resistant to valine analogues 2-amino-3-chlorobutyrate, 2-aminobutyrate and norleucine, respectively. The highest KIV concentrations of 170–230 mg l−1 were found in cultivation liquids of norleucine-resistant strains. Biochemical analyses of the acetohydroxyacid synthase (AHAS), valine dehydrogenase (VDH) and branched chain amino acid aminotransferase activities revealed the deregulation of the valine-synthesizing pathway, resulting in KIV excretion. In the 2-amino-3-chlorobutyrate-resistant strain, the activity of AHAS increased 23- to 31-fold compared with the parental strain. The norleucine-resistant mutants combined both a 10- to 23-fold increase in AHAS activity and lack of efficient feedback regulation by valine. In the double 2-amino-3-chlorobutyrate plus norleucine-resistant mutant, the AHAS activity was only four to eight-fold higher, but release of feedbackregulation was conserved. Similarly, feedback regulation was inefficient in 2-aminobutyrate-resistant strains, however the AHAS activity was lower than in the parental strain. A strong induction of VDH was observed in all regulatory mutants.  相似文献   

3.
The unicellular red alga Porphyridium sp. is, like many bacteria, fungi and higher plants, sensitive to the sulfonylurea herbicide sulfometuron methyl (SMM). However, the minimal inhibitory concentration for SMM in Porphyridium (55 μM) is higher than in green plants. We isolated a spontaneous SMM-resistant mutant SMR1 of Porphyridium sp. by use of a double-layered agar technique. The mutation frequency and the similarity of the mutant's morphology and growth patterns to the parent strain strongly suggest that SMR1 is a single gene mutation. The activity of the enzyme acetohydroxy acid synthase (AHAS) in crude extracts of the mutant SMR1 is at least two orders of magnitude less sensitive to SMM than that of the parent strain, which indicates that AHAS is the target of SMM (as has been shown in a variety of organisms). We propose that such a mutation, the first isolated in a unicellular rhodophyte, would be a useful marker for genetic studies of Porphyridium. It may also be useful for maintaining unialgal cultures in large scale open ponds.  相似文献   

4.
Acetohydroxyacid synthase (AHAS) activity was studied in the green unicellular alga Chlorella emersonii. This activity and its regulation was compared in the algae grown autotrophically and heterotrophically on glucose in the dark. No evidence for the existence of more than one enzyme was found. The activity in crude extracts from either heterotrophically or autotrophically grown cells showed a Km for pyruvate of 9 millimolar, a 22-fold preference for 2-ketobutyrate over pyruvate as the second substrate, 50% inhibition by 0.5 millimolar valine, and 50% inhibition by 0.3 micromolar sulfometuron methyl (SMM). Spontaneous mutants of the alga resistant to SMM were isolated, which appeared to be single gene mutants containing SMM-resistant AHAS activity. Hence, AHAS appears to be the sole direct target site of SMM in C. emersonii. The fact that the mutants had equivalent SMM resistance under auto- and heterotrophic conditions further supports the conclusion that the same enzyme functions under both physiological regimes. The addition of valine and isoleucine leads to partial relief of SMM inhibition of biomass increase, but not of SMM inhibition of cell division.  相似文献   

5.
Effect of two photosynthetic inhibitor herbicides, atrazine (both purified and formulated) and [3-(3,4-dichlorophenyl)-1,1-dimethyl urea] (DCMU), on the growth, macromolecular contents, heterocyst frequency, photosynthetic O2 evolution and dark O2 uptake of wild type and multiple herbicide resistant (MHR) strain of diazotrophic cyanobacterium A. variabilis was studied. Cyanobacterial strains showed gradual inhibition in growth with increasing dosage of herbicides. Both wild type and MHR strain tolerated < 6.0 mg L(-1) of atrazine (purified), < 2.0 mg L(-1) of atrazine (formulated) and < 0.4 mg L(-1) of DCMU indicating similar level of herbicide tolerance. Atrazine (pure) (8.0 mg L(-1)) and 4.0 mg L(-1) of atrazine (formulated) were growth inhibitory concentrations (lethal) for both wild type and MHR strain indicating formulated atrazine was more toxic than the purified form. Comparatively lower concentrations of DCMU were found to be lethal for wild type and MHR strain, respectively. Thus, between the two herbicides tested DCMU was more growth toxic than atrazine. At sublethal dosages of herbicides, photosynthetic O2 evolution showed highest inhibition followed by chlorophyll a, phycobhiliproteins and heterocyst differentiation as compared to carotenoid, protein and respiratory O2 uptake.  相似文献   

6.
Parietochloris incisa is an oleaginous fresh water green microalga that accumulates an unusually high content of the valuable long-chain polyunsaturated fatty acid (LC-PUFA) arachidonic acid within triacylglycerols in cytoplasmic lipid bodies. Here, we describe cloning and mutagenesis of the P. incisa acetohydroxyacid synthase (PiAHAS) gene for use as an herbicide resistance selection marker for transformation. Use of an endogenous gene circumvents the risks and regulatory difficulties of cultivating antibiotic-resistant organisms. AHAS is present in plants and microorganisms where it catalyzes the first essential step in the synthesis of branched-chain amino acids. It is the target enzyme of the herbicide sulfometuron methyl (SMM), which effectively inhibits growth of bacteria and plants. Several point mutations of AHAS are known to confer herbicide resistance. We cloned the cDNA that encodes PiAHAS and introduced a W605S point mutation (PimAHAS). Catalytic activity and herbicide resistance of the wild-type and mutant proteins were characterized in the AHAS-deficient E. coli, BUM1 strain. Cloned PiAHAS wild-type and mutant genes complemented AHAS-deficient bacterial growth. Furthermore, bacteria expressing the mutant PiAHAS exhibited high resistance to SMM. Purified PiAHAS wild-type and mutant proteins were assayed for enzymatic activity and herbicide resistance. The W605S mutation was shown to cause a twofold decrease in enzymatic activity and in affinity for the Pyruvate substrate. However, the mutant exhibited 7 orders of magnitude higher resistance to the SMM herbicide than that of the wild type.  相似文献   

7.
The first step in the common pathway for the biosynthesis of branched-chain amino acids (BCAAs) is catalyzed by acetohydroxyacid synthase (AHAS). The roles of three well-conserved serine residues (S167, S506, and S539) in tobacco AHAS were determined using site-directed mutagenesis. The mutations S167F and S506F were found to be inactive and abolished the binding affinity for cofactor FAD. The Far-UV CD spectrum of the inactive mutants was similar to that of wild-type enzyme, indicating no major conformational changes in the secondary structure. However, the active mutants, S167R, S506A, S506R, S539A, S539F and S539R, showed lower specific activities. Further, a homology model of tobacco AHAS was generated based on the crystal structure of yeast AHAS. In the model, the S167 and S506 residues were identified near the FAD binding site, while the S539 residue was found to near the ThDP binding site. The S539 mutants, S539A and S539R, showed strong resistance to three classes of herbicides, NC-311 (a sulfonylurea), Cadre (an imidazolinone), and TP (a triazolopyrimidine). In contrast, the active S167 and S506 mutants did not show any significant resistance to the herbicides, with the exception of S506R, which showed strong resistance to all herbicides. Thus, our results suggest that the S167 and S506 residues are essential for catalytic activity by playing a role in the FAD binding site. The S539 residue was found to be near the ThDP with an essential role in the catalytic activity and specific mutants of this residue (S539A and S539R) showed strong herbicide resistance as well.  相似文献   

8.
乙酰羟酸合成酶(AHAS)是磺酰脲类和咪唑啉酮类等AHAS抑制剂类除草剂的作用靶标。获得抗此类除草剂的AHAS突变基因资源具有非常重要的理论和应用价值。本研究从抗甲磺隆菌株Klebsiella sp.HR11和甲磺隆敏感菌株Klebsiella pneumoniae MGH 78578中分别克隆到AHAS三种同工酶基因ilvBN、ilvGM和ilvIH。抗性菌株和敏感菌株AHAS三种同工酶基因在氨基酸水平上差异位点主要集中在ilvBN和ilvGM的大亚基上。将2株菌的ilvBN、ilvGM和ilvIH分别构建到表达载体pET29a(+)中,在Escherichia coli BL21(DE3)中进行表达,测得只有含菌株HR11 ilvBN和ilvGM的转化子细胞破碎液AHAS对各类AHAS抑制剂类除草剂具有较强的抗性,而含菌株HR11 ilvIH和菌株MGH78578 ilvBN、ilvGM和ilvIH的转化子细胞破碎液AHAS对各类AHAS抑制剂类除草剂敏感。  相似文献   

9.
Summary We have selected a tobacco cell line, SU-27D5, that is highly resistant to sulfonylurea and imidazolinone herbicides. This line was developed by selection first on a lethal concentration of cinosulfuron and then on increasing concentrations of primisulfuron, both sulfonylurea herbicides. SU-27D5 was tested against five sulfonylureas and one imidazolinone herbicide and was shown, in every case, to be two to three orders of magnitude more resistant than wild-type cells. The acetohydroxyacid synthase (AHAS) of SU-27D5 was 50- to 780-fold less sensitive than that of wild-type cells to herbicide inhibition. The specific activity of AHAS in the SU-27D5 cell lysate was 6 to 7 times greater than that in wild-type cells. Using Southern analysis, we showed that cell line SU-27D5 had amplified its SuRB AHAS gene about 20-fold while maintaining a normal diploid complement of the SuRA AHAS gene. Genomic clones of both AHAS genes were isolated and used to transform wild-type tobacco protoplasts. SuRB clones gave rise to herbicide-resistant transformants, whereas SuRA clones did not. DNA sequencing showed that all SuRB clones contained a point mutation at nucleotide 588 that converted amino acid 196 of AHAS from proline to serine. In contrast, no mutations were found in the SuRA clones. The stability of SuRB gene amplification was variable in the absence of selection. In one experiment, the withdrawal of selection reduced the copy number of the amplified SuRB gene to the normal level within 30 days. In another experiment, amplification remained stable after extended cultivation on herbicide-free medium. This is the first report of amplification of a mutant herbicide target gene that resulted in broad and strong herbicide resistance.  相似文献   

10.
Acetohydroxyacid synthase (AHAS, EC 4.1.3.18) catalyses the first step in branched-chain amino acid biosynthesis and is the target for sulfonylurea and imidazolinone herbicides, which act as potent and specific inhibitors. Mutants of the enzyme have been identified that are resistant to particular herbicides. However, the selectivity of these mutants towards various sulfonylureas and imidazolinones has not been determined systematically. Now that the structure of the yeast enzyme is known, both in the absence and presence of a bound herbicide, a detailed understanding of the molecular interactions between the enzyme and its inhibitors becomes possible. Here we construct 10 active mutants of yeast AHAS, purify the enzymes and determine their sensitivity to six sulfonylureas and three imidazolinones. An additional three active mutants were constructed with a view to increasing imidazolinone sensitivity. These three variants were purified and tested for their sensitivity to the imidazolinones only. Substantial differences are observed in the sensitivity of the 13 mutants to the various inhibitors and these differences are interpreted in terms of the structure of the herbicide-binding site on the enzyme.  相似文献   

11.
Acetohydroxy-acid synthases (AHAS) of two mutant strains Streptomyces cinnamonensis ACB-NLR-2 and BVR-18 were chosen for this study for their apparent activation by valine, which regularly acts as an allosteric inhibitor. Sequencing the ilvB genes coding for the AHAS catalytic subunit revealed two distant changes in the mutants, ΔQ217 and E139A, respectively. Homology modeling was used to propose the structural changes caused by those mutations. In the mutant strain ACB-NLR-2 (resistant to 2-amino-3-chlorobutyrate and norleucine), deletion of Q217 affected a helix in ß-domain, distant from the active center. As no mutation was found in the regulatory subunit of this strain, ΔQ217 in IlvB was supposed to be responsible for the observed valine activation, probably via changed properties on the proposed regulatory-catalytic subunit interface. In mutant strain BVR-18 (resistant to 2-oxobutyrate), substitution E139A occurred in a conservative loop near the active center. In vitro AHAS activity assay with the enzyme reconstituted from the wild-type regulatory and BVR-18 catalytic subunits proved that the substitution in the catalytic subunit led to the apparent activation of AHAS by valine. We suggest that the conservative loop participated in a conformational change transfer to the active center during the allosteric regulation.  相似文献   

12.
13.
Protoplasts from two green pigment mutants of Porphyridium sp. (UTEX 637) containing a low phycoerythrin level were fused by exposure to polyethylene glycol (MW 6000) combined with a short heat shock (45° C, 5 min). Following regeneration on agar plates, red colonies arose in which complementation of the phycoerythrin deficiency had occurred. The complementation frequency was estimated to be 0.2%. Eight progeny showing red pigmentation were isolated and purified by consecutive transfers on agar plates. Characterization of the fusion progeny revealed that their phycobiliprotein and chlorophyll contents per cell were higher than those of their parental mutant strains and, in most strains, similar to that of the wild type. The fusion products proved to be stable over many growth cycles. The DNA content of the wild type and of the parental mutant strains was about 0.05 pg-cell?1. Fusion progeny strains showed a variable DNA content: a few fusants contained the same amount of DNA as the wild type and the parental strains, while others had about 50% more DNA per cell. The DNA content of one of the progeny strains (CF1c) was double that of the wild type (0.1 pg. cell?1). Cells of this fusion progeny contained one nucleus per cell, which suggests that nuclear fusion and the formation of a stable diploid followed cell fusion. Analysis of phycobilisome components of CF1c revealed complementation of linker polypeptides associated with phycoerythrin (γ subunits). CF1c contained, like the wild-type strain, four linker polypeptides; all of these were absent in one parental strain and one was absent in the second. To the best of our knowledge, this is the first report of protoplast fusion, formation of somatic hybrids, and the apparent completion of a parasexual cycle in a red microalga.  相似文献   

14.
Electron transfer rates to P700+ have been determined in wild-type and three interposon mutants (psaE-, ndhF-, and psaE- ndhF-) of Synechococcus sp. PCC 7002. All three mutants grew significantly more slowly than wild type at low light intensities, and each failed to grow photoheterotrophically in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and a metabolizable carbon source. The kinetics of P700+ reduction were similar in the wild-type and mutant whole cells in the absence of DCMU. In the presence of DCMU, the P700+ reduction rate in the psaE mutant was significantly slower than in the wild type. In the presence of DCMU and potassium cyanide, added to inhibit the outflow of electrons through cytochrome oxidase, P700+ reduction rates increased for both the psaE- and ndhF- strains. The reduction rates for these two mutants were nonetheless slower than that observed for the wild-type strain. The further addition of methyl viologen caused the rate of P700+ reduction in the wild type to become as slow as that for the psaE mutant in the absence of methyl viologen. Given the ability of methyl viologen to intercept electrons from the acceptor side of photosystem I, this response reveals a lesion in cyclic electron flow in the psaE mutant. In the presence of DCMU, the rate of P700+ reduction in the psaE ndhF double mutant was very slow and nearly identical with that for the wild-type strain in the presence of 2,4-dibromo-3-methyl-6-isopropyl-p-benzoquinone, a condition under which physiological electron donation to P700+ should be completely inhibited. These results suggest that NdhF- and PsaE-dependent electron donation to P700+ occurs only via plastoquinone and/or cytochrome b6/f and indicate that there are three major electron sources for P700+ reduction in this cyanobacterium. We conclude that, although PsaE is not required for linear electron flow to NADP+, it is an essential component in the cyclic electron transport pathway around photosystem I.  相似文献   

15.
Acetohydroxy acid synthase (AHAS) catalyzes the first common step in the biosynthesis pathway of the branch chain amino acids in plants and microorganisms. A great deal of interest has been focused on AHAS since it was identified as the target of several classes of potent herbicides. In an effort to produce a mutant usable in the development of an herbicide-resistant transgenic plant, two consecutive aspartic acid residues, which are very likely positioned next to the enzyme-bound herbicide sulfonylurea as the homologous residues in AHAS from yeast, were selected for this study. Four single-point mutants and two double mutants were constructed, and designated D374A, D374E, D375A, D375E, D374A/D375A, and D374E/D375E. All mutants were active, but the D374A mutant exhibited substrate inhibition at high concentrations. The D374E mutant also evidenced a profound reduction with regard to catalytic efficiency. The mutation of D375A increased the K(m) value for pyruvate nearly 10-fold. In contrast, the D375E mutant reduced this value by more than 3-fold. The double mutants exhibited synergistic reduction in catalytic efficiencies. All mutants constructed in this study proved to be strongly resistant to the herbicide sulfonylurea Londax. The double mutants and the mutants with the D375 residue were also strongly cross-resistant to the herbicide triazolopyrimidine TP. However, only the D374A mutant proved to be strongly resistant to imidazolinone Cadre. The data presented here indicate that the two residues, D374 and D375, are located at a common binding site for the herbicides sulfonylurea and triazolopyrimidine. D375E may be a valuable mutant for the development of herbicide-resistant transgenic plants.  相似文献   

16.
Wild biotypes of cultivated sunflower (Helianthus annuus L.) are weeds in corn (Zea mays L.), soybean (Glycine max L.), and other crops in North America, and are commonly controlled by applying acetohydroxyacid synthase (AHAS)-inhibiting herbicides. Biotypes resistant to two classes of AHAS-inhibiting herbicides—imidazolinones (IMIs) or sulfonylureas (SUs)—have been discovered in wild sunflower populations (ANN-PUR and ANN-KAN) treated with imazethapyr or chlorsulfuron, respectively. The goals of the present study were to isolate AHAS genes from sunflower, identify mutations in AHAS genes conferring herbicide resistance in ANN-PUR and ANN-KAN, and develop tools for marker-assisted selection (MAS) of herbicide resistance genes in sunflower. Three AHAS genes (AHAS1, AHAS2, and AHAS3) were identified, cloned, and sequenced from herbicide-resistant (mutant) and -susceptible (wild type) genotypes. We identified 48 single-nucleotide polymorphisms (SNPs) in AHAS1, a single six-base pair insertion-deletion in AHAS2, and a single SNP in AHAS3. No DNA polymorphisms were found in AHAS2 among elite inbred lines. AHAS1 from imazethapyr-resistant inbreds harbored a C-to-T mutation in codon 205 (Arabidopsis thaliana codon nomenclature), conferring resistance to IMI herbicides, whereas AHAS1 from chlorsulfuron-resistant inbreds harbored a C-to-T mutation in codon 197, conferring resistance to SU herbicides. SNP and single-strand conformational polymorphism markers for AHAS1, AHAS2, and AHAS3 were developed and genetically mapped. AHAS1, AHAS2, and AHAS3 mapped to linkage groups 2 (AHAS3), 6 (AHAS2), and 9 (AHAS1). The C/T SNP in codon 205 of AHAS1 cosegregated with a partially dominant gene for resistance to IMI herbicides in two mutant × wild-type populations. The molecular breeding tools described herein create the basis for rapidly identifying new mutations in AHAS and performing MAS for herbicide resistance genes in sunflower.  相似文献   

17.
The metabolic effects of inhibitors of two enzymes in the pathway for biosynthesis of branched-chain amino acids were examined in Salmonella typhimurium mutant strain TV105, expressing a single isozyme of acetohydroxy acid synthase (AHAS), AHAS isozyme II. One inhibitor was the sulfonylurea herbicide sulfometuron methyl (SMM), which inhibits this isozyme and AHAS of other organisms, and the other was N-isopropyl oxalylhydroxamate (IpOHA), which inhibits ketol-acid reductoisomerase (KARI). The effects of the inhibitors on growth, levels of several enzymes of the pathway, and levels of intermediates of the pathway were measured. The intracellular concentration of the AHAS substrate 2-ketobutyrate increased on addition of SMM, but a lack of correlation between increased ketobutyrate and growth inhibition suggests that the former is not the immediate cause of the latter. The levels of the keto acid precursor of valine, but not of the precursor of isoleucine, were drastically decreased by SMM, and valine, but not isoleucine, partially overcame SMM inhibition. This apparent stronger effect of SMM on the flux into the valine arm, as opposed to the isoleucine arm, of the branched-chain amino acid pathway is explained by the kinetics of the AHAS reaction, as well as by the different roles of pyruvate, ketobutyrate, and the valine precursor in metabolism. The organization of the pathway thus potentiates the inhibitory effect of SMM. IpOHA has strong initial effects at lower concentrations than does SMM and leads to increases both in the acetohydroxy acid substrates of KARI and, surprisingly, in ketobutyrate. Valine completely protected strain TV105 from IpOHA at the MIC. A number of explanations for this effect can be ruled out, so that some unknown arrangement of the enzymes involved must be suggested. IpOHA led to initial cessation of growth, with partial recovery after a time whose duration increased with the inhibitor concentration. The recovery is apparently due to induction of new KARI synthesis, as well as disappearance of IpOHA from the medium.  相似文献   

18.
Staphylococcus aureus mutants resistant to the nonionic detergent Triton X-100, isolated from the wild-type strain H and the autolysin-deficient strain RUS3, could grow and divide in broth containing 5% (vol/vol) Triton X-100, while growth of the parental strains was markedly inhibited above the critical micellar concentration (0.02%) of the detergent. Growth-inhibitory concentrations of Triton X-100 killed wild-type cells without demonstrable cellular lysis. Triton X-100 stimulated autolysin activity of S. aureus cells under nongrowing conditions, and this lytic response was markedly reduced in energy-poisoned cells. In contrast, the detergent had no effect on the activity of autolysins in cell-free systems, and growth in the presence of Triton X-100 did not alter either the cellular autolysin activity or the susceptibility of cell walls to exogenous lytic enzymes. Treatment with either Triton X-100 or penicillin G in the growth medium stimulated release of predominantly acylated intracellular lipoteichoic acid and sensitized staphylococci to Triton X-100-induced autolysis. There was no significant difference in the cell wall and membrane compositions or Triton X-100 binding between the parental strains and the resistant mutants. The resistant mutant TXR1, derived from S. aureus H, had a higher level of L-alpha-glycerophosphate dehydrogenase activity, and its oxygen uptake was more resistant to inhibition by a submicellar concentration (0.008%) of Triton X-100. Growth in the presence of subinhibitory concentrations of Triton X-100 rendered S. aureus H cells phenotypically resistant to the detergent and greatly stimulated the level of oxygen uptake. Membranes isolated from such cells exhibited enhanced activity of the respiratory enzymes succinic dehydrogenase and L-alpha-glycerophosphate dehydrogenase.  相似文献   

19.
The acetohydroxyacid synthase (AHAS), which is involved in the biosynthesis of branched-chain amino acids (BCAAs), is the target of several classes of herbicides. The catalytic (CSU) and regulatory subunits (RSU) of Mycobacterium tuberculosis AHAS (MtbAHAS) were cloned, expressed, and purified to homogeneity. A homology model of MtbAHAS CSU showed three residues (L141, F147 and W516) at the sulfonylurea (SU) herbicide binding site. The residues were mutated and the variant enzymes characterized with respect to its catalytic properties and sensitivity to two SU herbicides. All the tested mutants showed a decrease in Vmax compared to the wild-type protein. The mutants (F147A, F147R, and W516R) showed strong resistance to the two SU herbicides tested, indicating that the compounds related to these herbicides which target these critical residues, may serve as potent and specific anti-tuberculosis drugs. Furthermore, among the mutants of RSU (S27A, L89A and R101A), the S27A mutation caused 56-fold decrease in Vmax of the holoenzyme, whereas the L89A and R101A showed 4- and 12-fold decrease, respectively. The holoenzymes with S27A and L89A showed resistance to leucine. These results reveal characteristics of SU herbicide-resistant mutants of the CSU, and catalytically important residues of the RSU in MtbAHAS.  相似文献   

20.
Acetohydroxyacid synthase (AHAS), the first enzyme unique to the biosynthesis of isoleucine, leucine, and valine, is the target enzyme for several classes of herbicides. The AHAS gene from Arabidopsis thaliana, including the chloroplast transit peptide, was cloned into the bacterial expression plasmid pKK233-2. The resulting plasmid was used to transform an AHAS-deficient Escherichia coli strain MF2000. The growth of the MF2000 strain of E. coli was complemented by the functional expression of the Arabidopsis AHAS. The AHAS protein was processed to a molecular mass of 65 kilodaltons that was similar to the mature protein isolated from Arabidopsis seedlings. The AHAS activity extracted from the transformed E. coli cells was inhibited by imidazolinone and sulfonylurea herbicides. AHAS activity extracted from Arabidopsis is inhibited by valine and leucine; however, this activity was insensitive to these feedback inhibitors when extracted from the transformed E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号