首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of low temperature (8 degrees C) on the hydraulic conductivity of young roots of a chilling-sensitive (cucumber, Cucumis sativus L.) and a chilling-resistant (figleaf gourd, Cucurbita ficifolia Bouche) crop have been measured at the levels of whole root systems (root hydraulic conductivity, Lp(r)) and of individual cortical cells (cell hydraulic conductivity, Lp). Exposure of roots to low temperature (LRT) for up to 6 d caused a stronger suberization of the endodermis in cucumber compared with figleaf gourd, but no development of exodermal Casparian bands in either species. Changes in anatomy after 6 d of LRT treatment corresponded with a reduction in hydrostatic root Lp(r) of cucumber roots by a factor of 24, and by a factor of 2 in figleaf gourd. In figleaf gourd, there was a reduction only in hydrostatic Lp(r) but not in osmotic Lp(r) suggesting that the activity of water channels was not much affected by LRT treatment in this species. Changes in cell Lp in response to chilling and recovery were similar to the root levels, although they were more intense at the root level. Activation energies (E(a)) and Q10 of water flow as measured at the cell level were high in cucumber (E(a)=109+/-13 kJ mol(-1); Q(10)=4.8+/-0.7; n=6-10 cells), but small in figleaf gourd (E(a)=11+/-2 kJ mol(-1); Q10=1.2+/-0.1; n=6-10 cells). Roots of figleaf gourd recovered better from LRT treatment than those of cucumber. In figleaf gourd, recovery (at both the root and cell level) often resulted in Lp and Lp(r) values which were even bigger than the original, i.e. there was an overshoot in hydraulic conductivity. These effects were larger for osmotic (representing the cell-to-cell passage of water) than for hydrostatic Lp(r). After a short-term (1 d) exposure to 8 degrees C followed by 1 d at 20 degrees C, hydrostatic Lp(r) of cucumber nearly recovered and that of figleaf gourd still remained higher due to the overshoot. By contrast, osmotic Lp(r) and cell Lp in both species remained high by a factor of 3 compared with the control, possibly due to an increased activity of water channels. After preconditioning of roots at LRT, increased hydraulic conductivity was completely inhibited by HgCl2 at both the root and cell levels. Different from figleaf gourd, recovery from chilling was not complete in cucumber after longer exposure to LRT. It is concluded that at LRT, both changes in the activity of aquaporins (AQPs) and alterations of root anatomy determine the water uptake in both species. The high temperature dependence of cell Lp in cucumber suggests conformational changes of AQPs during LRT treatment which result in channel closure and in a strong gating of AQP activity by low temperature. This mechanism is thought to be different from that in figleaf gourd where AQPs reacted in the conventional way, i.e. low temperature affected the mobility of water molecules in AQPs rather than their open/closed state, and Q(10) was low.  相似文献   

2.
Water uptake by roots: effects of water deficit   总被引:35,自引:0,他引:35  
The variable hydraulic conductivity of roots (Lp(r)) is explained in terms of a composite transport model. It is shown how the complex, composite anatomical structure of roots results in a composite transport of both water and solutes. In the model, the parallel apoplastic and cell-to-cell (symplastic and transcellular) pathways play an important role as well as the different tissues and structures arranged in series within the root cylinder (epidermis, exodermis, cortex, endodermis, stelar parenchyma). The roles of Casparian bands and suberin lamellae in the root's endo- and exodermis are discussed. Depending on the developmental state of these apoplastic barriers, the overall hydraulic resistance of roots is either more evenly distributed across the root cylinder (young unstressed roots) or is concentrated in certain layers (exo- and endodermis in older stressed roots). The reason for the variability of root Lp(r), is that hydraulic forces cause a dominating apoplastic flow of water around protoplasts, even in the endodermis and exodermis. In the absence of transpiration, water flow is osmotic in nature which causes a high resistance as water passes across many membranes on its passage across the root cylinder. The model allows for a high capability of roots to take up water in the presence of high rates of transpiration (high demands for water from the shoot). By contrast, the hydraulic conductance is low, when transpiration is switched off. Overall, this results in a non-linear relationship between water flow and forces (gradients of hydrostatic and osmotic pressure) which is otherwise hard to explain. The model allows for special root characteristics such as a high hydraulic conductivity (water permeability) in the presence of a low permeability of nutrient ions once taken up into the stele by active processes. Low root reflection coefficients are in line with the idea of some apoplastic bypasses for water within the root cylinder. According to the composite transport model, the switch from the hydraulic to the osmotic mode is purely physical. In the presence of heavily suberized roots, the apoplastic component of water flow may be too small. Under these conditions, a regulation of radial water flow by water channels dominates. Since water channels are under metabolic control, this component represents an 'active' element of regulation. Composite transport allows for an optimization of the water balance of the shoot in addition to the well-known phenomena involved in the regulation of water flow (gas exchange) across stomata. The model is employed to explain the responses of plants to water deficit and other stresses. During water deficit, the cohesion-tension mechanism of the ascent of sap in the xylem plays an important role. Results are summarized which prove the validity of the coehesion/tension theory. Effects of the stress hormone abscisic acid (ABA) are presented. They show that there is an apoplastic component of the flow of ABA in the root which contributes to the ABA signal in the xylem. On the other hand, (+)-cis-trans-ABA specifically affects both the cell level (water channel activity) and water flow driven by gradients in osmotic pressure at the root level which is in agreement with the composite transport model. Hydraulic water flow in the presence of gradients in hydrostatic pressure remains unchanged. The results agree with the composite transport model and resemble earlier findings of high salinity obtained for the cell (Lp) and root (Lp(r)) level. They are in line with known effects of nutrient deprivation on root Lp(r )and the diurnal rhythm of root Lp(r )recently found in roots of LOTUS.  相似文献   

3.
Cold acclimation process plays a vital role in the survival of chilling- and freezing-tolerant plants subjected to cold temperature stress. However, it remains elusive whether a cold acclimation process enhances root water uptake (a component of chilling tolerance) in chilling-sensitive crops such as rice. By analyzing the root hydraulic conductivity under cold stress for a prolonged time, we found that cold stress induced a gradual increase in root osmotic hydraulic conductivity [Lp(r(os))]. Compared with the control treatment (roots and shoots at 25°C), low root temperature (LRT) treatment (roots at 10°C; shoots at 25°C) dramatically reduced Lp(r(os)) within 1 h. However, Lp(r(os)) gradually increased during prolonged LRT treatment and it reached 10-fold higher values at day 5. Moreover, a coordinated up-regulation of root aquaporin gene expression, particularly OsPIP2;5, was observed during LRT treatment. Further, comparison of aquaporin gene expression under root-only chilling (LRT) and whole-plant chilling conditions, and in the roots of intact plants vs. shootless plants, suggests that a shoot to root signal is necessary for inducing the expression of aquaporin genes in the root. Collectively, these results demonstrate that a cold acclimation process for root water uptake functions in rice and is possibly regulated through aquaporins.  相似文献   

4.
The role of root temperature T(R) in regulating the water-uptake capability of rice roots and the possible relationship with aquaporins were investigated. The root hydraulic conductivity Lp(r) decreased with decreasing T(R) in a measured temperature range between 10 degrees C and 35 degrees C. A single break point (T(RC) = 15 degrees C) was detected in the Arrhenius plot for steady-state Lp(r). The temperature dependency of Lp(r) represented by activation energy was low (28 kJ mol(-1)) above T(RC), but the value is slightly higher than that for the water viscosity. Addition of an aquaporin inhibitor, HgCl(2), into root medium reduced osmotic exudation by 97% at 25 degrees C, signifying that aquaporins play a major role in regulating water uptake. Below T(RC), Lp(r) declined precipitously with decreasing T(R) (E(a) = 204 kJ mol(-1)). When T(R) is higher than T(RC), the transient time for reaching the steady-state of Lp(r) after the immediate change in T(R) (from 25 degrees C) was estimated as 10 min, while it was prolonged up to 2-3 h when T(R) < T(RC). The Lp(r) was completely recovered to the initial levels when T(R) was returned back to 25 degrees C. Immunoblot analysis using specific antibodies for the major aquaporin members of PIPs and TIPs in rice roots revealed that there were no significant changes in the abundance of aquaporins during 5 h of low temperature treatment. Considering this result and the significant inhibition of water-uptake by the aquaporin inhibitor, we hypothesize that the decrease in Lp(r) when T(R) < T(RC) was regulated by the activity of aquaporins rather than their abundance.  相似文献   

5.
Hydrostatic pressure relaxations with the root pressure probe are commonly used for measuring the hydraulic conductivity (Lp(r)) of roots. We compared the Lp(r) of roots from species with different root hydraulic properties (Lupinus angustifolius L. 'Merrit', Lupinus luteus L. 'Wodjil', Triticum aestivum L. 'Kulin' and Zea mays L. 'Pacific DK 477') using pressure relaxations, a pressure clamp and osmotic gradients to induce water flow across the root. Only the pressure clamp measures water flow under steady-state conditions. Lp(r) determined by pressure relaxations was two- to threefold greater than Lp(r) from pressure clamps and was independent of the direction of water flow. Lp(r) (pressure clamp) was two- to fourfold higher than for Lp(r) (osmotic) for all species except Triticum aestivum where Lp(r) (pressure clamp) and Lp(r) (osmotic) were not significantly different. A novel technique was developed to measure the propagation of pressure through roots to investigate the cause of the differences in Lp(r). Root segments were connected between two pressure probes so that when root pressure (P(r)) was manipulated by one probe, the other probe recorded changes in P(r). Pressure relaxations did not induce the expected kinetics in pressure in the probe at the other end of the root when axial hydraulic conductance, and probe and root capacitances were accounted for. An electric circuit model of the root was constructed that included an additional capacitance in the root loaded by a series of resistances. This accounted for the double exponential kinetics for intact roots in pressure relaxation experiments as well as the reduced response observed with the double probe experiments. Although there were potential errors with all the techniques, we considered that the measurement of Lp(r) using the pressure clamp was the most unambiguous for small pressure changes, and provided that sufficient time was allowed for pressure propagation through the root. The differences in Lp(r) from different methods of measurement have implications for the models describing water transport through roots and the potential role of aquaporins.  相似文献   

6.
Ranathunge K  Steudle E  Lafitte R 《Planta》2003,217(2):193-205
A new pressure-perfusion technique was used to measure hydraulic and osmotic properties of the outer part of roots (OPR) of 30-day-old rice plants (lowland cultivar: IR64, and upland cultivar: Azucena). The OPR comprised rhizodermis, exodermis, sclerenchyma and one cortical cell layer. The technique involved perfusion of aerenchyma of segments from two different root zones (20-50 mm and 50-100 mm from the tip) at precise rates using aerated nutrient solution. The hydraulic conductivity of the OPR (Lp(OPR)=1.2x10(-6) m s(-1) MPa(-1)) was larger by a factor of 30 than the overall hydraulic conductivity (Lp(r)=4x10(-8) m s(-1) MPa(-1)) as measured by pressure chamber and root pressure probe. Low reflection coefficients were obtained for mannitol and NaCl for the OPR (sigma(sOPR)=0.14 and 0.09, respectively). The diffusional water permeability ( P(dOPR)) estimated from isobaric flow of heavy water was smaller by three orders of magnitude than the hydraulic conductivity (Lp(OPR)/ P(fOPR)). Although detailed root anatomy showed well-defined Casparian bands and suberin lamellae in the exodermis, the findings strongly indicate a predominantly apoplastic water flow in the OPR. The Lp(OPR) of heat-killed root segments increased by a factor of only 2, which is in line with the conclusion of a dominating apoplastic water flow. The hydraulic resistance of the OPR was not limiting the passage of water across the root cylinder. Estimations of the hydraulic properties of aerenchyma suggested that the endodermis was rate-limiting the water flow, although the aerenchyma may contribute to the overall resistance. The resistance of the aerenchyma was relatively low, because mono-layered cortical septa crossing the aerenchyma ('spokes') short-circuited the air space between the stele and the OPR. Spokes form hydraulic bridges that act like wicks. Low diffusional water permeabilities of the OPR suggest that radial oxygen losses from aerenchyma to medium are also low. It is concluded that in rice roots, water uptake and oxygen retention are optimized in such a way that hydraulic water flow can be kept high in the presence of a low efflux of oxygen which is diffusional in nature.  相似文献   

7.
Abscisic acid and water transport in sunflowers   总被引:5,自引:0,他引:5  
The role of abscisic acid (ABA) in the transport of water and ions from the root to the shoot of sunflower plants (Helianthus annuus) was investigated by application of ABA either to the root medium or to the apical bud. The exudation at the hypocotyl stump of decapitated seedlings was measured with and without hydrostatic pressure (0–0.3 MPa) applied to the root. All ABA concentrations tested (10-10–10-4 mol·l-1) promoted exudation. Maximal amounts of exudate (200% of control) were obtained with ABA at 10-6·mol·l-1 and an externally applied pressure of 0.1 MPa. The effect was rapid and long-lasting, and involved promotion of ion release to the xylem (during the first hours) as well as an increase in hydraulic conductivity. Abscisic acid applied to the apical bud had effects similar to those of the rootapplied hormone. Increased rates of exudation were also obtained after osmotic stress was applied to the root; this treatment increased the endogenous level of ABA in the root as well as in the shoot. Water potentials of the hypocotyls of intact plants increased when the roots were treated with ABA at 5°C, whereas stomatal resistances were lowered. The results are consistent with the view that ABA controls the water status of the plant not only by regulating stomatal transpiration, but also by regulating the hydraulic conductivity of the root.Abbreviations and symbols ABA abscisic acid - Tv volume flow - Lp hydraulic conductivity - PEG polyethyleneglycol - water potential - osmotic potential - osmotic value - P hydrostatic pressure  相似文献   

8.
Water transport across root systems of young cucumber (Cucumis sativus L.) seedlings was measured following exposure to low temperature (LT, 8-13 degrees C) for varying periods of time. In addition, the amount of water transported through the stems was evaluated using a heat-balance sap-flow gauge. Following LT treatment, hydrogen peroxide was localized cytochemically in root tissue by the oxidation of cerium (III) chloride. The effects of hydrogen peroxide on the hydraulic conductivity of single cells (Lp) in root tissues, and on the H+-ATPase activity of isolated root plasma membrane, have been worked out. Cytochemical evidence suggested that exposure of roots to LT stress caused a release of hydrogen peroxide in the millimolar range in the vicinity of plasma membranes. In response to a low root temperature (8 degrees C), the hydraulic conductivity of the root (Lp(r)) decreased by a factor of 4, and the half-times of water exchange increased by a factor of 5-6. Decreasing root temperatures from 25-13 degrees C increased the half-times of water exchange in a cell by a factor of 6-9. The measurement of axial water transport with a heat-balance sap-flow gauge showed that only a small amount of water was transported when 8 degrees C was imposed on cucumber roots. Lp and the H+-ATPase activity of the isolated root plasma membrane were very sensitive to externally applied hydrogen peroxide at a concentration of 1-16 mM. These observations suggest that the accumulation of hydrogen peroxide appears to mediate decreases in water transport in cucumber roots under low temperature.  相似文献   

9.
Prior to an assessment of the role of aquaporins in root water uptake, the main path of water movement in different types of root and driving forces during day and night need to be known. In the present study on hydroponically grown barley (Hordeum vulgare L.) the two main root types of 14- to 17-d-old plants were analysed for hydraulic conductivity in dependence of the main driving force (hydrostatic, osmotic). Seminal roots contributed 92% and adventitious roots 8% to plant water uptake. The lower contribution of adventitious compared with seminal roots was associated with a smaller surface area and number of roots per plant and a lower axial hydraulic conductance, and occurred despite a less-developed endodermis. The radial hydraulic conductivity of the two types of root was similar and depended little on the prevailing driving force, suggesting that water uptake occurred along a pathway that involved crossing of membrane(s). Exudation experiments showed that osmotic forces were sufficient to support night-time transpiration, yet transpiration experiments and cuticle permeance data questioned the significance of osmotic forces. During the day, 90% of water uptake was driven by a tension of about -0.15 MPa.  相似文献   

10.
The effects of puncturing the endodermis of young maize roots (Zea mays L.) on their transport properties were measured using the root pressure probe. Small holes with a diameter of 18 to 60 [mu]m were created 70 to 90 mm from the tips of the roots by pushing fine glass tubes radially into them. Such wounds injured about 10-2 to 10-3% of the total surface area of the endodermis, which, in these hydroponically grown roots, had developed a Casparian band but no suberin lamellae. The small injury to the endodermis caused the original root pressure, which varied from 0.08 to 0.19 MPa, to decrease rapidly (half-time = 10-100 s) and substantially to a new steady-state value between 0.02 and 0.07 MPa. The radial hydraulic conductivity (Lpr) of control (uninjured) roots determined using hydrostatic pressure gradients as driving forces was larger by a factor of 10 than that determined using osmotic gradients (averages: Lpr [hydrostatic] = 2.7 x 10-7 m s-1 MPa-1; Lpr [osmotic] = 2.2 x 10-8 m s-1 MPa-1; osmotic solute: NaCl). Puncturing the endodermis did not result in measurable increases in hydraulic conductivities measured by either method. Thus, the endodermis was not rate-limiting root Lpr: apparently the hydraulic resistance of roots was more evenly distributed over the entire root tissue. However, puncturing the endodermis did substantially change the reflection ([sigma]sr) and permeability (Psr) coefficients of roots for NaCl, indicating that the endodermis represented a considerable barrier to the flow of nutrient ions. Values of [sigma]sr decreased from 0.64 to 0.41 (average) and Psr increased by a factor of 2.6, i.e. from 3.8 x 10-9 to 10.1 x 10.-9 m s-1(average). The roots recovered from puncturing after a time and regained root pressure. Measurable increases in root pressure became apparent as soon as 0.5 to 1 h after puncturing, and original or higher root pressures were attained 1.5 to 20 h after injury. However, after recovery roots often did not maintain a stable root pressure, and no further osmotic experiments could be performed with them. The Casparian band of the endodermis is discontinuous at the root tip, where the endodermis has not yet matured, and at sites of developing lateral roots. Measurements of the cross-sectional area of the apoplasmic bypass at the root tip yielded an area of 0.031% of the total surface area of the endodermis. An additional 0.049% was associated with lateral root primordia. These areas are larger than the artificial bypasses created by wounding in this study and may provide pathways for a "natural bypass flow" of water and solutes across the intact root. If there were such a pathway, either in these areas or across the Casparian band itself, roots would have to be treated as a system composed of two parallel pathways (a cell-to-cell and an apoplasmic path). It is demonstrated that this "composite transport model of the root" allows integration of several transport properties of roots that are otherwise difficult to understand, namely (a) the differences between osmotic and hydrostatic water flow, (b) the dependence of root hydraulic resistance on the driving force or water flow across the root, and (c) low reflection coefficients of roots.  相似文献   

11.
Barley HvPIP2;1 is a plasma membrane aquaporin and its expression was down-regulated after salt stress in barley [Katsuhara et al. (2002) Plant Cell Physiol. 43: 885]. We produced and analyzed transgenic rice plants over-expressing barley HvPIP2;1 in the present study. Over-expression of HvPIP2;1 increased (1) radial hydraulic conductivity of roots (Lp(r)) to 140%, and (2) the mass ratio of shoot to root up to 150%. In these transgenic rice plants under salt stress of 100 mM NaCl, growth reduction was greater than in non-transgenic plants. A decrease in shoot water content (from 79% to 61%) and reduction of root mass or shoot mass (both less than 40% of non-stressed plants) were observed in transgenic plants under salt stress for 2 weeks. These results indicated that over-expression of HvPIP2;1 makes rice plants sensitive to 100 mM NaCl. The possible involvement of aquaporins in salt tolerance is discussed.  相似文献   

12.
Thermal and Water Relations of Roots of Desert Succulents   总被引:6,自引:0,他引:6  
Two succulent perennials from the Sonoran Desert, Agave desertiEngelm. and Ferocactus acanthodes (Lem.) Britton and Rose, loselittle water through their roots during drought, yet respondrapidly to light rainfall. Their roots tend to be shallow, althoughabsent from the upper 20 mm or so of the soil. During 12–15d after a rainfall, new root production increased total rootlength by 47 per cent to 740 m for A. deserti and by 27 percent to 230 m for F. acanthodes; root dry weight then averagedonly 15 per cent of shoot dry weight. The annual carbon allocatedto dry weight of new roots required 11 per cent of shoot carbondioxide uptake for A. deserti and 19 per cent for F. acanthodes.Elongation of new roots was greatest near a soil temperatureof 30°C, and lethal temperature extremes (causing a 50 percent decrease in root parenchyma cells taking up stain) were56°C and -7°C. Soil temperatures annually exceeded themeasured tolerance to high temperature at depths less than 20mm, probably explaining the lack of roots in this zone. Attached roots immersed in solutions with osmotic potentialsabove -2·6 MPa could produce new lateral roots, with50 per cent of maximum elongation occurring near -1·4MPa for both species. Non-droughted roots lost water when immersedin solutions with osmotic potentials below -0·8 MPa,and root hydraulic conductance decreased markedly below about-1·2 MPa. Pressure-volume curves indicated that, fora given change in water potential, non-droughted roots lostthree to five times more water than droughted roots, non-droughtedleaves, or non-droughted stems. Hence, such roots, which couldbe produced in response to a rainfall, will lose the most tissuewater with the onset of drought, the resulting shrinkage beingaccompanied by reduced root hydraulic conductance, less contactwith drying soil, and less water loss from the plant to thesoil. Agave deserti, Ferocactus acanthodes, roots, soil, temperature, water stress, drought, Crassulacean acid metabolism, succulents  相似文献   

13.
Transroot osmotic water flux (Jos) and radial hydraulic conductivity (Lpr) in onion roots were greatly increased by three means; infiltration of roots by pressurization, repetition of osmosis and chilling at 5 degrees C. Jos was strongly reduced by the water channel inhibitor HgCl2 (91%) and the K+ channel inhibitor nonyltriethylammonium (C9, 75%), which actually made the membrane potential of root cells less sensitive to K+. C9 decreased the rate of turgor reduction induced by sorbitol solution to the same extent as HgCl2. Thus, C9 is assumed to decrease the hydraulic conductivity (Lp) of the plasma membrane by blocking water channels, although possible inhibition of the plasmodesmata of the root symplast by C9 cannot be excluded. Onion roots transported water from the tip to the base in the absence of the osmotic gradient. This non-osmotic water flux (Jnos) was equivalent to Jos induced by 0.029 M sorbitol. Jnos increased when Jos was increased by repetition of osmosis and decreased when Jos was decreased by either HgCl2 or by C9. The correlation between Jnos and Jos suggests that non-osmotic water transport occurs via the same pathways as those for osmotic water transport.  相似文献   

14.
Water relation parameters including elastic modulus (epsilon), half-times of water exchange (T(w)(1/2)), hydraulic conductivity and turgor pressure (P) were measured in individual root cortical and cotyledon midrib cells in intact figleaf gourd (Cucurbita ficifolia) seedlings, using a cell pressure probe. Transpiration rates (E) of cotyledons were also measured using a steady-state porometer. The seedlings were exposed to low ambient (approximately 10 micromol m(-2) s(-1)) or high supplemental irradiance (approximately 300 micromol m(-2) s(-1) PPF density) at low (8 degrees C) or warm (22 degrees C) root temperatures. When exposed to low irradiance, all the water relation parameters of cortical cells remained similar at both root temperatures. The exposure of cotyledons to supplemental light at warm root temperatures, however, resulted in a two- to three-fold increase in T(w)(1/2) values accompanied with the reduced hydraulic conductivity in both root cortical (Lp) and cotyledon midrib cells (Lp(c)). Low root temperature (LRT) further reduced Lp(c) and E, whether it was measured under low or high irradiance levels. The reductions of Lp as the result of respective light and LRT treatments were prevented by the application of 1 microM ABA. Midrib cells required higher concentrations of ABA (2 microM) in order to prevent the reduction in Lp(c). When the exposure of cotyledons to light was accompanied by LRT, however, ABA proved ineffective in reversing the inhibition of Lp. LRT combined with high irradiance triggered a drastic 10-fold reduction in water permeability of cortical and midrib cells and increased epsilon and T(w)(1/2) values. Measurement of E indicated that the increased water demand by the transpiring plants was fulfilled by an increase in the apoplastic pathway as principal water flow route. The importance of water transport regulation by transpiration affecting the hydraulic conductivity of the roots is discussed.  相似文献   

15.
Summary Excised tomato roots (Lycopersicon esculentum Mill. cv Bonny Best) were cultured in the presence of mannitol to determine the effects of varying degrees of mild water deficit on their developmental growth. It was found that over the 7-d culture period, the cultured roots could regulate their own developmental responses to the water deficit such that elongation of the primary root axis was favored over that of the lateral roots. Higher degrees of water deficit proportionately decreased lateral root number and density, but lateral root primordia (visualized by clearing roots in chromium trioxide) continued to be formed in water-stressed roots. Measurements of water and osmotic (solute) potentials of the root tips showed that the cultured roots osmoregulated and did not suffer a loss in turgor pressure as a result of the mannitol treatments. However, reciprocal transfer experiments showed that root cultures were unable to resume growth after removal from water deficit conditions, thus indicating a probable requirement for the shoot for complete recovery.  相似文献   

16.
氮磷亏缺对玉米根系水流导度的影响   总被引:12,自引:0,他引:12  
在人工气候室水培条件下,从单根和整株根系两个层次研究了N、P营养与玉米(Zea mays L.)根系水流导度(root hydraulic conductivity,Lpr)间的关系。结果表明:表型抗旱的杂交种F1代户单4号和母本天四的单根水导和整株根系水导均高于不抗旱的父本478,其中天四的单根水导最高,而户单4号的整株根系水导最高。N、P亏缺均使玉米单根水导和整株根系水导降低,但与N亏块相比,P亏缺的植株具有较高的整株根系水导和较低的单根水导。整株根系的水导更能反映植物根系的输水性能。  相似文献   

17.
Azaizeh H  Steudle E 《Plant physiology》1991,97(3):1136-1145
The root pressure probe was used to determine the effects of salinity on the hydraulic properties of primary roots of maize (Zea mays L. cv Halamish). Maize seedlings were grown in nutrient solutions modified by additions of NaCl and/or extra CaCl2 so that the seedlings received one of four treatments: Control, plus 100 millimolar NaCl, plus 10 millimolar CaCl2, plus 100 millimolar NaCl plus 10 millimolar CaCl2. The hydraulic conductivities (Lpr) of primary root segments were determined by applying gradients of hydrostatic and osmotic pressure across the root cylinder. Exosmotic hydrostatic Lpr for the different treatments were 2.8, 1.7, 2.8, and 3.4·10−7 meters per second per megapascals and the endosmotic hydrostatic Lpr were 2.4, 1.5, 2.7, and 2.3·10−7 meters per second per megapascals, respectively. Exosmotic Lpr of the osmotic experiments were 0.55, 0.38, 0.68, and 0.60·10−7 meters per second per megapascals and the endosmotic Lpr were 0.53, 0.21, 0.56, and 0.54·10−7 meters per second per megapascals, respectively. The osmotic Lpr was significantly smaller (4-5 times) than hydrostatic Lpr. However, both hydrostatic and osmotic Lpr experiments showed that salinization of the growth media at regular (0.5 millimolar) calcium levels decreased the Lpr significantly (30-60%). Addition of extra calcium (10 millimolar) to the salinized media caused ameliorative effects on Lpr. The low Lpr values may partially explain the reduction in root growth rates caused by salinity. High calcium levels in the salinized media increased the relative availability of water needed for growth. The mean reflection coefficients of the roots using NaCl were between 0.64 and 0.73 and were not significantly different for the different treatments. The mean values of the root permeability coefficients to NaCl of the different treatments were between 2.2 and 3.5·10−9 meters per second and were significantly different only in one of four treatments. Cutting the roots successively from the tip and measuring the changes in the hydraulic resistance of the root as well as staining of root cross-sections obtained at various distances from the root tip revealed that salinized roots had mature xylem elements closer to the tip (5-10 millimeters) compared with the controls (30 millimeters). Our results demonstrate that salinity has adverse effects on water transport and that extra calcium can, in part, compensate for these effects.  相似文献   

18.
Water uptake by plant roots: an integration of views   总被引:20,自引:0,他引:20  
Steudle  Ernst 《Plant and Soil》2000,226(1):45-56
A COMPOSITE TRANSPORT MODEL is presented which explains the variability in the ability of roots to take up water and responses of water uptake to different factors. The model is based on detailed measurements of 'root hydraulics' both at the level of excised roots (root hydraulic conductivity, Lpr) and root cells (membrane level; cell Lp) using pressure probes and other techniques. The composite transport model integrates apoplastic and cellular components of radial water flow across the root cylinder. It explains why the hydraulic conductivity of roots changes in response to the nature (osmotic vs. hydraulic) and intensity of water flow. The model provides an explanation of the adaptation of plants to conditions of drought and other stresses by allowing for a `coarse regulation of water uptake' according to the demands from the shoot which is favorable to the plant. Coarse regulation is physical in nature, but strongly depends on root anatomy, e.g. on the existence of apoplastic barriers in the exo- and endodermis. Composite transport is based on the composite structure of roots. A `fine regulation' results from the activity of water channels (aquaporins) in root cell membranes which is assumed to be under metabolic and other control.  相似文献   

19.
The effect of salinity and calcium levels on water flows and on hydraulic parameters of individual cortical cells of excised roots of young maize (Zea mays L. cv Halamish) plants have been measured using the cell pressure probe. Maize seedlings were grown in one-third strength Hoagland solution modified by additions of NaCl and/or extra calcium so that the seedlings received one of four treatments: control; +100 millimolar NaCl; +10 millimolar CaCl2; +100 millimolar NaCl + 10 millimolar CaCl2. From the hydrostatic and osmotic relaxations of turgor, the hydraulic conductivity (Lp) and the reflection coefficient (σs) of cortical cells of different root layers were determined. Mean Lp values in the different layers (first to third, fourth to sixth, seventh to ninth) of the four different treatments ranged from 11.8 to 14.5 (Control), 2.5 to 3.8 (+NaCl), 6.9 to 8.7 (+CaCl2), and 6.6 to 7.2 · 10−7 meter per second per megapascal (+NaCl + CaCl2). These results indicate that salinization of the growth media at regular calcium levels (0.5 millimolar) decreased Lp significantly (three to six times). The addition of extra calcium (10 millimolar) to the salinized media produced compensating effects. Mean cell σs values of NaCl ranged from 1.08 to 1.16, 1.15 to 1.22, 0.94 to 1.00, and 1.32 to 1.46 in different root cell layers of the four different treatments, respectively. Some of these σs values were probably overestimated due to an underestimation of the elastic modulus of cells, σs values of close to unity were in line with the fact that root cell membranes were practically not permeable to NaCl. However, the root cylinder exhibited some permeability to NaCl as was demonstrated by the root pressure probe measurements that resulted in σsr of less than unity. Compared with the controls, salinity and calcium increased the root cell diameter. Salinized seedlings grown at regular calcium levels resulted in shorter cell length compared with control (by a factor of 2). The results demonstrate that NaCl has adverse effects on water transport parameters of root cells. Extra calcium could, in part, compensate for these effects. The data suggest a considerable apoplasmic water flow in the root cortex. However, the cell-to-cell path also contributed to the overall water transport in maize roots and appeared to be responsible for the decrease in root hydraulic conductivity reported earlier (Azaizeh H, Steudle E [1991] Plant Physiol 97: 1136-1145). Accordingly, the effect of high salinity on the cell Lp was much larger than that on root Lpr.  相似文献   

20.
Precipitates of insoluble inorganic salts were used to clog apoplastic pores in cell walls of the outer part of rice roots (OPR) in two rice cultivars (lowland cv. IR64 and upland cv. Azucena). Aerenchyma of two different root zones (20–50 and 50–100 mm from the apex) was perfused with 1 m m potassium ferrocyanide (K4[Fe(CN)6]) while the whole root segments were bathed in 0.5 m m copper sulphate (CuSO4) medium. In another experiment, salts were applied on opposite sides of the OPR. The copper-ferrocyanide precipitation technique resembles the famous osmotic experiments of the German botanist Wilhelm Pfeffer, in which he used them with clay diaphragms. Precipitates were observed on the side where ferrocyanide was applied, suggesting that Cu2+ and SO42– were passing the barrier including the Casparian bands of the exodermis much faster than ferrocyanide. There was a patchiness in the formation of precipitates, correlated with the maturation of the exodermis. The intensity of copper ferrocyanide staining decreased along developing rice roots. No precipitates were observed in mature parts beyond 70–80 mm from the root apex, except for sites around the emergence of secondary roots, which were fairly leaky to both water and ions. Blockage of the apoplastic pores with precipitates caused a three- to four-fold reduction of hydraulic conductivity of the OPR (LpOPR). The reflection coefficient of the OPR (σsOPR) increased in response to the blockage with precipitates. The osmotic versus diffusive water permeability ratios of the OPR (PfOPR/PdOPR) were around 600 for immature and 1200 for mature root segments. Treatment significantly affected the bulk rather than the diffusive water flow and caused a three- to five-fold reduction of the PfOPR/PdOPR ratios. Results indicated that despite the existence of an exodermis with Casparian bands, most of the water moved around cells rather than using the cell-to-cell passage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号