首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.

Background

The host response to influenza A infections is strongly influenced by host genetic factors. Animal models of genetically diverse mouse strains are well suited to identify host genes involved in severe pathology, viral replication and immune responses. Here, we have utilized a dual RNAseq approach that allowed us to investigate both viral and host gene expression in the same individual mouse after H1N1 infection.

Results

We performed a detailed expression analysis to identify (i) correlations between changes in expression of host and virus genes, (ii) host genes involved in viral replication, and (iii) genes showing differential expression between two mouse strains that strongly differ in resistance to influenza infections. These genes may be key players involved in regulating the differences in pathogenesis and host defense mechanisms after influenza A infections. Expression levels of influenza segments correlated well with the viral load and may thus be used as surrogates for conventional viral load measurements. Furthermore, we investigated the functional role of two genes, Reg3g and Irf7, in knock-out mice and found that deletion of the Irf7 gene renders the host highly susceptible to H1N1 infection.

Conclusions

Using RNAseq analysis we identified novel genes important for viral replication or the host defense. This study adds further important knowledge to host-pathogen-interactions and suggests additional candidates that are crucial for host susceptibility or survival during influenza A infections.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1867-8) contains supplementary material, which is available to authorized users.  相似文献   

4.

Rationale

During the recent H1N1 outbreak, obese patients had worsened lung injury and increased mortality. We used a murine model of influenza A pneumonia to test the hypothesis that leptin receptor deficiency might explain the enhanced mortality in obese patients.

Methods

We infected wild-type, obese mice globally deficient in the leptin receptor (db/db) and non-obese mice with tissue specific deletion of the leptin receptor in the lung epithelium (SPC-Cre/LepRfl/fl) or macrophages and alveolar type II cells (LysM-Cre/Leprfl/fl) with influenza A virus (A/WSN/33 [H1N1]) (500 and 1500 pfu/mouse) and measured mortality, viral clearance and several markers of lung injury severity.

Results

The clearance of influenza A virus from the lungs of mice was impaired in obese mice globally deficient in the leptin receptor (db/db) compared to normal weight wild-type mice. In contrast, non-obese, SP-C-Cre+/+/LepRfl/fl and LysM-Cre+/+/LepRfl/fl had improved viral clearance after influenza A infection. In obese mice, mortality was increased compared with wild-type mice, while the SP-C-Cre+/+/LepRfl/fl and LysM-Cre+/+/LepRfl /fl mice exhibited improved survival.

Conclusions

Global loss of the leptin receptor results in reduced viral clearance and worse outcomes following influenza A infection. These findings are not the result of the loss of leptin signaling in lung epithelial cells or macrophages. Our results suggest that factors associated with obesity or with leptin signaling in non-myeloid populations such as natural killer and T cells may be associated with worsened outcomes following influenza A infection.  相似文献   

5.

Background

Double-stranded RNA dependent protein kinase (PKR) is a key regulator of the anti-viral innate immune response in mammalian cells. PKR activity is regulated by a 58 kilo Dalton cellular inhibitor (P58IPK), which is present in inactive state as a complex with Hsp40 under normal conditions. In case of influenza A virus (IAV) infection, P58IPK is known to dissociate from Hsp40 and inhibit PKR activation. However the influenza virus component responsible for PKR inhibition through P58IPK activation was hitherto unknown.

Principal Findings

Human heat shock 40 protein (Hsp40) was identified as an interacting partner of Influenza A virus nucleoprotein (IAV NP) using a yeast two-hybrid screen. This interaction was confirmed by co-immunoprecipitation studies from mammalian cells transfected with IAV NP expressing plasmid. Further, the IAV NP-Hsp40 interaction was validated in mammalian cells infected with various seasonal and pandemic strains of influenza viruses. Cellular localization studies showed that NP and Hsp40 co-localize primarily in the nucleus. During IAV infection in mammalian cells, expression of NP coincided with the dissociation of P58IPK from Hsp40 and decrease PKR phosphorylation. We observed that, plasmid based expression of NP in mammalian cells leads to decrease in PKR phosphorylation. Furthermore, inhibition of NP expression during influenza virus replication led to PKR activation and concomitant increase in eIF2α phosphorylation. Inhibition of NP expression also led to reduced IRF3 phosphorylation, enhanced IFN β production and concomitant reduction of virus replication. Taken together our data suggest that NP is the viral factor responsible for P58IPK activation and subsequent inhibition of PKR-mediated host response during IAV infection.

Significance

Our findings demonstrate a novel role of IAV NP in inhibiting PKR-mediated anti-viral host response and help us understand P58IPK mediated inhibition of PKR activity during IAV infection.  相似文献   

6.

Background

Influenza A virus (IVA) exploits diverse cellular gene products to support its replication in the host. The significance of the regulatory (β) subunit of casein kinase 2 (CK2β) in various cellular mechanisms is well established, but less is known about its potential role in IVA replication. We studied the role of CK2β in IVA-infected A549 human epithelial lung cells.

Results

Activation of CK2β was observed in A549 cells during virus binding and internalization but appeared to be constrained as replication began. We used small interfering RNAs (siRNAs) targeting CK2β mRNA to silence CK2β protein expression in A549 cells without affecting expression of the CK2α subunit. CK2β gene silencing led to increased virus titers, consistent with the inhibition of CK2β during IVA replication. Notably, virus titers increased significantly when CK2β siRNA-transfected cells were inoculated at a lower multiplicity of infection. Virus titers also increased in cells treated with a specific CK2 inhibitor but decreased in cells treated with a CK2β stimulator. CK2β absence did not impair nuclear export of viral ribonucleoprotein complexes (6 h and 8 h after inoculation) or viral polymerase activity (analyzed in a minigenome system). The enhancement of virus titers by CK2β siRNA reflects increased cell susceptibility to influenza virus infection resulting in accelerated virus entry and higher viral protein content.

Conclusion

This study demonstrates the role of cellular CK2β protein in the viral biology. Our results are the first to demonstrate a functional link between siRNA-mediated inhibition of the CK2β protein and regulation of influenza A virus replication in infected cells. Overall, the data suggest that expression and activation of CK2β inhibits influenza virus replication by regulating the virus entry process and viral protein synthesis.  相似文献   

7.

Background

Striped skunks (Mephitis mephitis) are susceptible to infection with some influenza A viruses. However, the viral shedding capability of this peri-domestic mammal and its potential role in influenza A virus ecology are largely undetermined.

Methodology/Principal Findings

Striped skunks were experimentally infected with a low pathogenic (LP) H4N6 avian influenza virus (AIV) and monitored for 20 days post infection (DPI). All of the skunks exposed to H4N6 AIV shed large quantities of viral RNA, as detected by real-time RT-PCR and confirmed for live virus with virus isolation, from nasal washes and oral swabs (maximum ≤106.02 PCR EID50 equivalent/mL and ≤105.19 PCR EID50 equivalent/mL, respectively). Some evidence of potential fecal shedding was also noted. Following necropsy on 20 DPI, viral RNA was detected in the nasal turbinates of one individual. All treatment animals yielded evidence of a serological response by 20 DPI.

Conclusions/Significance

These results indicate that striped skunks have the potential to shed large quantities of viral RNA through the oral and nasal routes following exposure to a LP AIV. Considering the peri-domestic nature of these animals, along with the duration of shedding observed in this species, their presence on poultry and waterfowl operations could influence influenza A virus epidemiology. For example, this species could introduce a virus to a naive poultry flock or act as a trafficking mechanism of AIV to and from an infected poultry flock to naive flocks or wild bird populations.  相似文献   

8.

Background  

A major determinant of influenza infection is the presence of virus receptors on susceptible host cells to which the viral haemagglutinin is able to bind. Avian viruses preferentially bind to sialic acid α2,3-galactose (SAα2,3-Gal) linked receptors, whereas human strains bind to sialic acid α2,6-galactose (SAα2,6-Gal) linked receptors. To date, there has been no detailed account published on the distribution of SA receptors in the pig, a model host that is susceptible to avian and human influenza subtypes, thus with potential for virus reassortment. We examined the relative expression and spatial distribution of SAα2,3-GalG(1-3)GalNAc and SAα2,6-Gal receptors in the major organs from normal post-weaned pigs by binding with lectins Maackia amurensis agglutinins (MAA II) and Sambucus nigra agglutinin (SNA) respectively.  相似文献   

9.

Background

Influenza A virus can infect a variety of different hosts and therefore has to adapt to different host temperatures for its efficient viral replication. Influenza virus codes for an RNA polymerase of 3 subunits: PB1, PB2 and PA. It is well known that the PB2 subunit is involved in temperature sensitivity, such as cold adaptation. On the other hand the role of the PA subunit in thermal sensitivity is still poorly understood.

Methodology/Principal Findings

To test which polymerase subunit(s) were involved in thermal stress we reconstituted artificial hybrids of influenza RNA polymerase in ribonucleoprotein (RNP) complexes and measured steady-state levels of mRNA, cRNA and vRNA at different temperatures. The PA subunit was involved in modulating RNP activity under thermal stress. Residue 114 of the PA subunit was an important determinant of this activity.

Conclusions/Significance

These findings suggested that influenza A virus may acquire an RNA polymerase adapted to different body temperatures of the host by reassortment of the RNA polymerase genes.  相似文献   

10.
11.

Background

Influenza virus has antigen drift and antigen shift effect, vaccination with some influenza vaccine might not induce sufficient immunity for host to the threat of other influenza virus strains. S-OIV H1N1 and H5N1 influenza vaccines in single-dose immunization were evaluated in mice for cross protection to the challenge of A/California/7/2009 H1N1 or NIBRG-14 H5N1 virus.

Results

Both H1N1 and H5N1 induced significant homologous IgG, HAI, and microneutralization antibody responses in the mice, while only vaccines plus adjuvant produced significant heterogeneous IgG and HAI antibody responses. Both alum and MPLA adjuvants significantly reduced the S-OIV H1N1 vaccine dose required to elicit protective HAI antibody titers from 0.05 μg to 0.001 μg. Vaccines alone did not protect mice from challenge with heterogeneous influenza virus, while H5N1 vaccine plus alum and MPLA adjuvants did. Mouse body weight loss was also less significant in the presence of adjuvant than in the vaccine without adjuvant. Furthermore, both H1N1 and H5N1 lung viral titers of immunized mice were significantly reduced post challenge with homologous viruses.

Conclusion

Only in the presence of MPLA adjuvant could the H5N1 vaccine significantly reduce mouse lung viral titers post H1N1 virus challenge, and not vice versa. MPLA adjuvant induced cross protection with a single dose vaccination to the challenge of heterogeneous influenza virus in mice. Lung viral titer seemed to be a better indicator compared to IgG, neutralization antibody, and HAI titer to predict survival of mice infected with influenza virus.  相似文献   

12.
13.

Background  

Many details in cell culture-derived influenza vaccine production are still poorly understood and approaches for process optimization mainly remain empirical. More insights on mammalian cell metabolism after a viral infection could give hints on limitations and cell-specific virus production capacities. A detailed metabolic characterization of an influenza infected adherent cell line (MDCK) was carried out based on extracellular and intracellular measurements of metabolite concentrations.  相似文献   

14.

Background

Majority of influenza A viruses reside and circulate among animal populations, seldom infecting humans due to host range restriction. Yet when some avian strains do acquire the ability to overcome species barrier, they might become adapted to humans, replicating efficiently and causing diseases, leading to potential pandemic. With the huge influenza A virus reservoir in wild birds, it is a cause for concern when a new influenza strain emerges with the ability to cross host species barrier, as shown in light of the recent H7N9 outbreak in China. Several influenza proteins have been shown to be major determinants in host tropism. Further understanding and determining host tropism would be important in identifying zoonotic influenza virus strains capable of crossing species barrier and infecting humans.

Results

In this study, computational models for 11 influenza proteins have been constructed using the machine learning algorithm random forest for prediction of host tropism. The prediction models were trained on influenza protein sequences isolated from both avian and human samples, which were transformed into amino acid physicochemical properties feature vectors. The results were highly accurate prediction models (ACC>96.57; AUC>0.980; MCC>0.916) capable of determining host tropism of individual influenza proteins. In addition, features from all 11 proteins were used to construct a combined model to predict host tropism of influenza virus strains. This would help assess a novel influenza strain's host range capability.

Conclusions

From the prediction models constructed, all achieved high prediction performance, indicating clear distinctions in both avian and human proteins. When used together as a host tropism prediction system, zoonotic strains could potentially be identified based on different protein prediction results. Understanding and predicting host tropism of influenza proteins lay an important foundation for future work in constructing computation models capable of directly predicting interspecies transmission of influenza viruses. The models are available for prediction at http://fluleap.bic.nus.edu.sg.
  相似文献   

15.

Rationale

HMG-CoA reductase inhibitors such as rosuvastatin may have immunomodulatory and anti-inflammatory effects that may reduce the severity of influenza A infection. We hypothesized that rosuvastatin would decrease viral replication, attenuate lung injury, and improve mortality following influenza A infection in mice.

Methods

C57Bl/6 mice were treated daily with rosuvastatin (10 mg/kg/day) supplemented in chow (or control chow) beginning three days prior to infection with either A//Udorn/72 [H3N2] or A/WSN/33 [H1N1] influenza A virus (1×105 pfu/mouse). Plaque assays were used to examine the effect of rosuvastatin on viral replication in vitro and in the lungs of infected mice. We measured cell count with differential, protein and cytokines in the bronchoalveolar lavage (BAL) fluid, histologic evidence of lung injury, and wet-to-dry ratio on Day 1, 2, 4, and 6. We also recorded daily weights and mortality.

Results

The administration of rosuvastatin had no effect on viral clearance of influenza A after infection. Weight loss, lung inflammation and lung injury severity were similar in the rosuvastatin and control treated mice. In the mice infected with influenza A (A/WSN/33), mortality was unaffected by treatment with rosuvastatin.

Conclusions

Statins did not alter the replication of influenza A in vitro or enhance its clearance from the lung in vivo. Statins neither attenuated the severity of influenza A-induced lung injury nor had an effect on influenza A-related mortality. Our data suggest that the association between HMG CoA reductase inhibitors and improved outcomes in patients with sepsis and pneumonia are not attributable to their effects on influenza A infection.  相似文献   

16.

Background

Avian origin canine influenza virus was reported in Korea. The dog to dog contact transmission of the avian origin canine influenza virus (CIV) H3N2 and CIV H3N8 was shown by experimental contact transmission. This study was focused on viral excretion and fever in order to elucidate the epidemiological associations which might be helpful to control the disease transmissions in CIV outbreak in dogs.

Methods

An influenza seronegative 10-week-old Beagle dog was experimentally inoculated with the canine influenza virus A/canine/01/2007, subtype H3N2. Eight hours after inoculation, the infected dog was cohoused with seven uninfected Beagle dogs. Clinical signs including fever were recorded for 14 days post inoculation.

Results

The infected dog and four of seven contact dogs in the study showed clinical signs (sneezing, nasal discharge and coughing) during the study. Viral shedding occurred in all of the animals tested and began on 1 to 6 DPI in dogs with clinical signs. Elevated body temperatures above 39.5°C (geometric mean temperature of 39.86°C±0.49) were observed in all symptomatic dogs. The mean viral titer during fever was 2.99 log EID50/ml, which was significantly higher than the viral titer detected in the non fever.

Conclusions

The data show that contact dogs with a canine influenza infected dog shed different levels of virus in their nasal excretions and demonstrate that clinical signs, including fever, significantly correlate with the viral shedding.  相似文献   

17.

Background  

Two nuclear localization sequences (NLS) in influenza A virus nucleoprotein (NP) have been demonstrated to be critical for nuclear import of NP and viral ribonucleoprotein complexes. However, a deletion mutant lacking these two signals was still able to localize to the nucleus suggesting the presence of yet another (a third) potential NLS in the NP protein. In order to identify the nature of this potential NLS signal in the NP of a WS/33L influenza virus A strain, we utilized the tools of bioinformatics coupled with functional experimental analyses in the present study.  相似文献   

18.
19.

Background

Neutrophils have been shown to play a role in host defence against highly virulent and mouse-adapted strains of influenza virus, however it is not clear if an effective neutrophil response is an important factor moderating disease severity during infection with other virus strains. In this study, we have examined the role of neutrophils during infection of mice with influenza virus strain HKx31, a virus strain of the H3N2 subtype and of moderate virulence for mice, to determine the role of neutrophils in the early phase of infection and in clearance of influenza virus from the respiratory tract during the later phase of infection.

Methods

The anti-Gr-1 monoclonal antibody (mAb) RB6-8C5 was used to (i) identify neutrophils in the upper (nasal tissues) and lower (lung) respiratory tract of uninfected and influenza virus-infected mice, and (ii) deplete neutrophils prior to and during influenza virus infection of mice.

Results

Neutrophils were rapidly recruited to the upper and lower airways following influenza virus infection. We demonstrated that use of mAb RB6-8C5 to deplete C57BL/6 (B6) mice of neutrophils is complicated by the ability of this mAb to bind directly to virus-specific CD8+ T cells. Thus, we investigated the role of neutrophils in both the early and later phases of infection using CD8+ T cell-deficient B6.TAP-/- mice. Infection of B6.TAP-/- mice with a low dose of influenza virus did not induce clinical disease in control animals, however RB6-8C5 treatment led to profound weight loss, severe clinical disease and enhanced virus replication throughout the respiratory tract.

Conclusion

Neutrophils play a critical role in limiting influenza virus replication during the early and later phases of infection. Furthermore, a virus strain of moderate virulence can induce severe clinical disease in the absence of an effective neutrophil response.  相似文献   

20.

Background

The threat of recurring influenza pandemics caused by new viral strains and the occurrence of escape mutants necessitate the search for potent therapeutic targets. The dependence of viruses on cellular factors provides a weak-spot in the viral multiplication strategy and a means to interfere with viral multiplication.

Results

Using a motif-based search strategy for antiviral targets we identified caveolin-1 (Cav-1) as a putative cellular interaction partner of human influenza A viruses, including the pandemic influenza A virus (H1N1) strains of swine origin circulating from spring 2009 on. The influence of Cav-1 on human influenza A/PR/8/34 (H1N1) virus replication was determined in inhibition and competition experiments. RNAi-mediated Cav-1 knock-down as well as transfection of a dominant-negative Cav-1 mutant results in a decrease in virus titre in infected Madin-Darby canine kidney cells (MDCK), a cell line commonly used in basic influenza research as well as in virus vaccine production. To understand the molecular basis of the phenomenon we focussed on the putative caveolin-1 binding domain (CBD) located in the lumenal, juxtamembranal portion of the M2 matrix protein which has been identified in the motif-based search. Pull-down assays and co-immunoprecipitation experiments showed that caveolin-1 binds to M2. The data suggest, that Cav-1 modulates influenza virus A replication presumably based on M2/Cav-1 interaction.

Conclusion

As Cav-1 is involved in the human influenza A virus life cycle, the multifunctional protein and its interaction with M2 protein of human influenza A viruses represent a promising starting point for the search for antiviral agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号