首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究比较了湖南会同林区毛竹、杉木人工林生态系统碳含量和碳贮量分配特征,结果表明,15年生杉木各器官碳含量在47.15%~50.43%之间,不同器官碳含量高低依次为树干、树叶、树皮、树枝、树根;毛竹不同器官碳含量波动在44.51%~49.91%,各器官碳含量高低依次为竹鞭、竹枝、竹叶、竹干、竹蔸、竹根,但是毛竹不同器官碳含量与年龄之间没有明显变化规律。林地土壤3个层次(60cm深)碳素含量为0.746%~2.390%,各层次碳素含量分布不均,表层(0~20cm)土壤碳素含量和碳贮量最高。毛竹、杉木人工林生态系统碳贮量分别为166.34tC·hm-2和150.19tC·hm-2,并且其碳贮量空间分布格局基本一致,土壤层是主要部分,其次为乔木层,林下植被层和凋落物层所占比例最小。其中,毛竹林土壤层有机碳贮量占83.92%,乔木层占15.38%,林下植被和凋落物层分别占0.38%和0.32%;杉木人工林土壤层碳贮量占62.03%,乔木层占34.99%,林下植被和凋落物层分别占0.70%和2.28%。另外,碳贮量在两个树种各器官中的分配,基本与各自的生物量成正比例关系。从植被年固定碳量来看,毛竹林为9.94tC·hm-2·a-1,相当于年固定CO2量为36.44tCO2·hm-2·a-1,是杉木林的1.39倍。  相似文献   

2.
森林演替在南亚热带森林生态系统碳吸存中的作用   总被引:27,自引:4,他引:23  
研究了鼎湖山南亚热带森林同一演替系列中3个不同演替阶段(马尾松针叶林、马尾松荷木混交林和季风常绿阔叶林)生态系统碳贮量和分配格局特征,并探讨了该地区森林演替过程中生态系统碳吸存潜力和速度。结果表明:(1)针叶林各组分碳素含量高于阔叶林对应组分的碳素含量(后者是前者的72.0%~94.5%)。两个森林植物碳素含量,不同层次比较,均为乔木层>灌木层>草本层,不同器官比较,以根或干最高。(2)乔木层生物量随森林演替进展而增加。针叶林、混交林和阔叶林乔木层生物量分别为:143.5t/hm2、270.1t/hm2和407.8t/hm2,其中大部分由干和皮组成(各器官占乔木层生物量的比例平均为:叶2.8%、枝19.3%、干和皮混合57.0%、根20.9%)。林下层生物量为4.23~14.10t/hm2,是乔木层的1.0%~9.8%,随森林演替进展而减少。(3)土壤容重随深度增加而增加,但随森林演替进展而减少。与土壤容重相反,土壤有机碳含量随深度增加而明显减少,但随森林演替进展而增加。(4)3种类型森林生态系统碳总贮量分别为135.8t/hm2、215.1t/hm2和259.7t/hm2。生态系统碳贮量在各组分的格局十分相似,植被、土壤和凋落物层所占比例均分别约为67.6%、30.2%和2.2%。与其它地带森林比较,鼎湖山保护区森林植被与土壤碳贮量之比和表层(0~20cm)的土壤碳占整个  相似文献   

3.
退耕还林地桦木林生态系统碳素密度、贮量与空间分布   总被引:7,自引:0,他引:7  
对退耕还林5年生的桦木林生物量、碳素密度、碳贮量及其空间分布进行测定。结果表明,桦木各器官的碳素密度在0.4519~0.5137gC.g-1,排列顺序为枝>干>叶>根颈>粗根>中根>细根;死地被物层的碳素含量为0.3953gC.g-1,土壤平均碳素密度为0.0150gC.g-1,随土层深度的增加,各层次土壤碳素密度呈逐渐减少的趋势;桦木林生态系统总的碳贮量为127.9298tC.hm-2,其中乔木层为21.9282tC.hm-2,占整个生态系统的17.14%,死地被物为0.3401tC.hm-2,占0.27%,林地土壤(0~60cm)为105.6615tC.hm-2,占82.59%;桦木各器官的碳贮量与其生物量成正比例的关系,树干的生物量最大,其碳贮量也最大,占乔木层碳贮量的57.33%;5年生桦木林年净生产力为8.9912t.hm-2.a-1,有机碳年固定量为4.4537tC.hm-2.a-1。较之退耕前,桦木林生态系统碳贮量增加15.4797t.hm-2。  相似文献   

4.
中亚热带四种森林凋落物及碳氮贮量比较   总被引:6,自引:0,他引:6  
路翔  项文化  任辉  彭长辉 《生态学杂志》2012,31(9):2234-2240
在湖南省长沙县大山冲省级森林公园内,选择立地条件基本一致的4种森林类型为研究对象,于2011年12月(凋落物高峰期)对森林凋落物现存量及其碳、氮贮量进行调查.结果表明:4种森林凋落物现存量大小依次为青冈-石栎林(12.04±3.60)t·hm-2>马尾松-石栎林(11.65±2.15) t·hm-2>南酸枣林(9.12±2.30)t·hm-2>杉木林(8.92±1.80)t·hm-2;凋落叶在凋落物未分解层中所占比例最高,凋落果在4种林分中比例最小(<5%),凋落物各分解亚层现存量规律性不明显;4种森林凋落物C含量的变化范围为177.90 ~ 581.34 g·kg-1,N含量的变化范围为5.18~15.48 g· kg-1,C含量变化随凋落物分解程度的加深而下降,且变化极显著( P<0.0001);凋落物半分解层和已分解层现存量在总凋落物现存量中所占比例与C/N呈负相关;4种森林凋落物C贮量为3.37 ~ 5.69t·hm-2,N贮量为81.52 ~152.18 kg·hm-2;马尾松-石栎针阔叶混交林由于凋落物分解较慢,凋落物现存量较大,林下凋落物层C、N贮量最高.  相似文献   

5.
鼎湖山马尾松林生态系统碳素分配和贮量的研究   总被引:36,自引:1,他引:35  
方运霆  莫江明 《广西植物》2002,22(4):305-310
鼎湖山马尾松林中 ,马尾松各器官碳含量平均为 5 4.46%,灌木层植物 48.1 0 %,草本层植物40 .2 1 %,地表现存凋落物层 5 4.40 %,以上各组分总平均为 49.2 9%。土壤碳密度为 7.3 7kg· m- 2 (深 1 0 0cm)。生态系统各组分碳贮量分别为 :乔木层 68.876t·hm- 2 ,林下植物层 6.0 3 0 t· hm- 2 ,凋落物层 5 .892 t·hm- 2 ,土壤层 73 .70 5 t· hm- 2。根据研究结果 ,还对广东省马尾松林的现有碳贮量和碳吸存潜力进行了估算和讨论。  相似文献   

6.
樟树人工林生态系统碳素贮量与分布研究   总被引:38,自引:5,他引:33  
对 1 8年生樟树人工林生物量、碳素含量、贮量及其空间分布进行测定。结果表明 ,樟树各器官的碳素含量为 4 2 1 2 %~ 5 5 4 2 % ,排列顺序为树叶 >树枝 >树根 >树干 >树皮。林冠上层与下层叶的碳素含量比中层叶的碳素含量低 ,但差别不大 ;下层枝条碳素含量明显比上、中层枝条高。灌木层植物的碳素含量平均为 5 1 30 % ,草本植物为 4 8 90 % ,死地被物层为4 0 89%。土壤的碳素含量为 1 2 5 % ,随土层深度的增加 ,各层次土壤碳素含量逐渐减少。樟树林生态系统总的碳贮量为 2 0 0 4 4× 1 0 3 kgC·hm-2 ,其中乔木层为 4 5 0 1× 1 0 3 kgC·hm-2 ,占整个生态系统总贮量的 2 2 4 5 % ,灌木层为 2 2 9× 1 0 3 kgC·hm-2 ,占 1 1 4 % ,草本层为 1 0 9×1 0 3 kg·C·hm-2 ,占 0 5 5 % ,死地被物层为 5 0 8× 1 0 3 kg·C·hm-2 ,占 2 5 4 % ,林地土壤 (0~ 1m)的碳贮量为 1 4 6 97× 1 0 3 kg·C·hm-2 ,占 73 32 %。樟树各器官的碳素贮量与其生物量成正比例关系 ,树干的生物量最大 ,其碳贮量也最高 ,占乔木层碳贮量的 4 0 0 6 %。樟树碳贮量的垂直分布随高度的增加而减少 ,在 8~ 1 0m区段出现明显增加的现象。樟树林年净生产力为9 5 5× 1 0 3 kg·hm-2 ·a-1 ,碳的年净固定量为 4 98×  相似文献   

7.
研究比较了湖南会同林区毛竹、杉木人工林生态系统碳含量和碳贮量分配特征,结果表明, 15年生杉木各器官碳含量在47.15%~50.43%之间,不同器官碳含量高低依次为树干、树叶、树皮、树枝、树根;毛竹不同器官碳含量波动在44.51%~4991%,各器官碳含量高低依次为竹鞭、竹枝、 竹叶、竹干、竹蔸、竹根,但是毛竹不同器官碳含量与年龄之间没有明显变化规律。林地土壤3个层次(60cm深)碳素含量为0.746%~2.390%,各层次碳素含量分布不均,表层(0~20cm)土壤碳素含量和碳贮量最高。毛竹、杉木人工林生态系统碳贮量分别为166.34tC•hm-2和150.19tC•hm-2,并且其碳贮量空间分布格局基本一致, 土壤层是主要部分,其次为乔木层,林下植被层和凋落物层所占比例最小。其中,毛竹林土壤层有机碳贮量占83.92%,乔木层占15.38%,林下植被和凋落物层分别占0.38%和0.32%;杉木人工林土壤层碳贮量占62.03%,乔木层占34.99%,林下植被和凋落物层分别占0.70%和2.28%。另外,碳贮量在两个树种各器官中的分配,基本与各自的生物量成正比例关系。从植被年固定碳量来看,毛竹林为9.94 tC•hm-2•a-1,相当于年固定CO2量为36.44 tCO2•hm-2•a-1,是杉木林的1.39倍。  相似文献   

8.
长沙市区马尾松人工林生态系统碳储量及其空间分布   总被引:3,自引:0,他引:3  
巫涛  彭重华  田大伦  闫文德 《生态学报》2012,32(13):4034-4042
采用样方法和取样法,研究了长沙市区13年生马尾松林生态系统碳含量、碳储量及其空间分布特征。结果表明:马尾松林木各器官平均碳含量为511.17 g/kg,从高到低排列顺序为叶>干>根>皮>枝;林下灌木层、草本层、枯落物层的平均碳含量分别为531.66、465.53、393.92g/kg。林地土壤层有机碳含量为9.40—24.73 g/kg,各层次碳素含量分布不均,表层(0—15cm)土壤碳素含量较高,并随土壤深度的增加而逐渐下降。生态系统碳库的空间分布序列为土壤层>植被层>枯落物层。植被层的碳储量为34.50t/hm2,占整个生态系统碳总储量的21.57%;乔木层碳储量占整个生态系统的20.27%,占植被层碳储量的93.97%。乔木层碳储量中,树干的碳储量最高,占乔木层碳储量的65.52%,其次为根,占乔木层碳储量的19.15%,树皮最少,仅占2.10%;枯落物层碳储量为3.81 t/hm2,仅占整个生态系统碳储量的2.38%;林地土壤层(0—60cm)碳储量相当可观,为121.62 t/hm2,占系统碳储量的76.05%。马尾松林年净生产力为4.88 t.hm-.2a-1,有机碳年净固定量为2.50 t.hm-.2a-1,折合成CO2的量为9.16 t.hm-.2a-1。  相似文献   

9.
西南桦纯林与西南桦×红椎混交林碳贮量比较   总被引:1,自引:0,他引:1  
何友均  覃林  李智勇  邵梅香  梁星云  谭玲 《生态学报》2012,32(23):7586-7594
用乡土树种培育优质大径材已成为南亚热带满足林产品需求和生态保护的重要途径,如何通过优化森林经营模式提高人工林生态系统碳储量已成为关注的重点.对广西凭祥伏波林场13年生西南桦纯林、12年生西南桦×红椎混交林生态系统的碳素密度、碳贮量及其分布特征进行了比较研究.结果表明:(1)西南桦与红椎不同器官碳素密度变化范围分别为481.11-600.79 g/kg和451.24-543.42 g/kg,与中国南亚热带地区其他树种的碳素密度接近.相同树种不同器官之间以及不同树种相同器官之间的碳素密度差异显著(P<0.05).西南桦纯林与西南桦×红椎混交林灌木层的平均碳素密度分别为437.15 g/kg和436.98g/kg,混交林草本层平均碳素密度比纯林高,差异性显著(P<0.05).西南桦纯林土壤各层碳素密度均高于西南桦×红椎混交林,但差异不显著(P>0.05).(2)西南桦×红椎混交林乔木层碳贮量(29.144 t/hm2)略高于西南桦纯林(28.541 t/hm2),混交林生态系统碳储量(276.486 t/hm2)比纯林生态系统碳储量(305.514 t/hm2)低.西南桦纯林、西南桦×红椎混交林植被层碳贮量分别占其生态系统碳贮量的9.64%和10.58%,凋落物层分别占生态系统碳储量的0.19%和0.56%.(3)西南桦纯林和西南桦×红椎混交林土壤碳贮存主要集中在0-20cm土层,且随土层深度增加而减少.西南桦纯林土壤层(0-60cm)碳贮量(275.488 t/hm2)明显高于西南桦×红椎混交林土壤层(0-60cm)碳贮量(245.688 t/hm2),分别占其生态系统碳贮量的90.17%和88.86%.(4)西南桦×红椎混交林乔木层碳素年净固定量(2.428 t·hm-2·a-1)高于西南桦纯林乔木层碳素年净固定量(2.196 t·hm-2·a-1),表明混交林比纯林的碳固定速度快.  相似文献   

10.
米老排人工林碳素积累特征及其分配格局   总被引:1,自引:0,他引:1  
在生物量调查的基础上,对桂西南地区28年生米老排人工林生态系统的碳素积累特征及分配格局进行了研究.结果表明:米老排各器官碳含量在522.8~560.2 g·kg-1,大小排序为:树叶(560.2 g·kg-1)>树干(542.8 g·kg-1)>树根(530.9 g·kg-1)>树皮(530.8 g·kg-1)>树枝(522.8 g·kg-1);土壤碳含量以表土层最高,且随土层深度的增加而降低;米老排人工林乔木层碳贮量为147.90 t·hm-2,其中,树干占乔木层碳贮量的63.72%;米老排人工林生态系统碳贮量为285.36 t·hm-2,各组分的分配顺序为乔木层>土壤层>凋落物层>灌木层>草本层;植被层碳贮量为土壤层(0~100 cm)的1.1倍.  相似文献   

11.
葡萄园生态系统是农业生态系统的重要组成部分, 集中连片栽培的葡萄园具有重要的生态价值。开展葡萄园生态系统碳源/汇的研究, 是完整探讨葡萄园生态系统碳循环必不可少的内容。随着葡萄生态学研究的进一步深入, 如何直观地揭示葡萄园生态系统碳循环规律和碳汇功能已经成为葡萄生态学领域关注的热点问题。研究发现, 葡萄园生态系统固定大量碳, 将碳封存在葡萄果实等一年生器官、主干等多年生器官以及土壤碳库中。葡萄园生态系统碳输入量大于碳输出量, 是碳汇; 土壤是葡萄园生态系统最大的碳库, 占总碳储量的70%, 尤其是土藤界面; 覆盖和免耕作为葡萄园的碳减排策略, 可以减少碳排放, 提高葡萄园土壤肥力。基于此, 为了阐明葡萄园生态系统的碳汇价值, 该文围绕葡萄生态学最新研究进展, 系统回顾了葡萄园生态系统中碳循环规律、碳汇研究进展及碳减排策略, 为葡萄生态学的研究提供理论基础, 并对本领域未来的研究方向和应用前景进行展望。  相似文献   

12.
孙忠林  王传宽 《生态学报》2014,34(15):4133-4141
可溶性碳(Dissolved carbon,DC)和颗粒碳(particulate carbon,PC)通量作为森林生态系统碳收支的重要组分,在森林固碳功能的评价和模型预测中具有重要意义,但常因认识不足、测定困难等而在森林碳汇研究中被忽略。综述了森林生态系统DC和PC的组成、作用、相关生态过程及其影响因子,并展望了该领域应该优先考虑的研究问题。森林生态系统DC和PC主要包括可溶性有机碳、可溶性无机碳和颗粒有机碳,主要来源于生态系统的净初级生产量。DC和PC是森林土壤的活性碳库,主要以大气沉降、穿透雨和凋落物的形式输入森林土壤系统,并通过土壤呼吸、侧向运输及渗透流失的方式输出生态系统。从局域尺度看,DC和PC通量受根系分泌、细根分解、微生物周转等生物过程的影响较大;从区域尺度看,它们受土壤和植被特性、生态过程耦联关系、气候因子以及全球变化的综合影响。该领域应该优先考虑:(1)探索不同时空尺度下森林生态系统DC和PC通量的控制因子及其耦联关系,揭示其中的驱动机理;(2)探索DC和PC与其它森林生态系统碳组分的相互关系及转化,阐明DC和PC通量与其它养分之间潜在的生态化学计量关系;(3)探索全球变化,特别是人类活动(如森林经营)和极端干扰事件(如林火、旱涝、冰冻、冻融交替等)对森林生态系统DC和PC通量的影响。  相似文献   

13.
云南省农田生态系统碳足迹时空变化及其影响因素   总被引:4,自引:0,他引:4  
李明琦  刘世梁  武雪  孙永秀  侯笑云  赵爽 《生态学报》2018,38(24):8822-8834
农田碳足迹研究对农田生态系统管理与农业可持续发展具有重要意义,也可表征农田扩展的生态影响程度。利用县域尺度统计数据与空间分析,对云南省农田生态系统近30年的碳足迹的时空演变进行研究。结果表明:1985—2015年期间,云南省农田生态系统碳排放年均增幅为13.9%,化肥施用引起的碳排放贡献率最大,为56%,2015年的化肥单位面积碳排放达到331.6kg/hm2。云南省农田生态系统碳吸收年均增幅为3.04%,稻谷的碳吸收比例最大,为41%,然而,玉米的碳吸收的增幅最大,为8.76%。云南省农田生态系统存在碳生态盈余,且碳足迹总体呈现增长趋势,年均增长率为16.8%,单位面积碳足迹随年份增加不断增长。从空间上看,云南省农田生态系统碳排放、碳吸收在空间上均呈东南高、西北低的分布格局,而碳足迹在空间上呈现东西部高、中部低的分布格局,三者的空间差异和变化幅度差异都较大。  相似文献   

14.
采用室内土壤培养法,比较分析了湖南省会同地区常绿阔叶林、杉木纯林土壤有机碳的矿化速率和累计矿化量,分析了有机碳矿化量与土壤活性有机碳初始含量的关系。结果表明:常绿阔叶林土壤有机碳矿化速率和累计矿化量均显著高于杉木纯林。在培养的第21天,在培养温度为9℃和28℃条件下,常绿阔叶林0~10和10~20cm土层的土壤有机碳累计矿化量为杉木纯林的1.7~2.7倍。常绿阔叶林土壤有机碳矿化释放的CO2-C分配比例高于杉木纯林。林地土壤有机碳矿化量受土壤微生物碳、可溶性有机碳初始含量的影响(P<0.01)。土壤有机碳矿化使土壤微生物碳增加而可溶性有机碳下降,但变化幅度均不大。温度从9℃升高到28℃后,林地土壤有机碳矿化速率提高3.1~4.5倍;2林地有机碳矿化对温度的敏感性无显著差异。  相似文献   

15.
Aims Shrub recovery is recognized as an important cause of the increase of carbon stocks in China, and yet there are great uncertainties in the carbon sink capacities of shrubs. Our objectives were to estimate carbon density and its spatial distribution in alpine shrubs.
Methods Eight sites in Potentilla fruticosa dominated shrublands across Qinghai, China were investigated. Plant biomass and carbon content in leaves, branches and stems, and roots were measured to analyze the biomass allocation and carbon density.
Important findings Mean carbon densities in biological carbon, litter, soil and whole ecosystem of P. fruticosa shrublands were 5088.54, 542.1, 35903.76 and 41534.4 kg·hm-2, respectively. Carbon density in the shrub layer was more than 68% of the biological carbon density of the whole ecosystem and was mainly distributed in roots (49.5%-56.1%). Carbon density of the herbaceous layer was 22.5% of the biological carbon density of the whole ecosystem and was also mainly distributed in roots (59.6%-75.1%). The biological carbon density of P. fruticosa shrublands (5.08 t·hm-2) was lower than the average carbon density of shrub communities in China (10. 88 t·hm-2). Soil carbon density contributed the largest proportion (85.8%) of total carbon density in P. fruticosa shrublands.  相似文献   

16.
秦岭山地碳中和空间服务范围及其模拟预测   总被引:1,自引:0,他引:1  
马新萍  李晶  余玉洋  邓晨晖 《生态学报》2022,42(23):9431-9441
在当前碳中和背景下,秦岭山地碳中和的量化及其空间服务范围的测算对于碳中和合理规划和快速实现具有重要意义。采用IUEMS (Intelligent Urban Ecosystem Management System)系统对秦岭山地的固碳量进行核算,利用DMSP/OLS (Defense Meteorological Satellite Program/Operational Linescan System)和NPP-VIIRS (Net Primary Productivity-Visible infrared Imaging Radiometer)夜间灯光数据和各地市的能源消耗数据通过模型拟合对秦岭山地碳排放量进行空间量化,基于固碳量和碳排放量得到秦岭山地空间碳中和量。利用PLUS (Patch-generating Land Use Simulation Model)模型模拟了2030和2050年的碳中和空间分布,结合常见气体扩散系数计算得到常温常压下秦岭山地碳中和对周边区域的服务范围。结果表明:2000-2020年秦岭山地固碳量呈现上升的趋势,大部分区域不同时间尺度上的固碳速率呈正向趋势,空间上秦岭山地中西部区域固碳量整体较大;对秦岭固碳量影响较大的地形特征为海拔1200m左右、斜坡、半阳坡和半阴坡;研究区内碳排放量空间上整体较低,碳排放低值区面积占到了秦岭总面积的90%,碳排放较大区域主要位于秦岭北坡的城区区域,时间上碳排放量最大值为先增加后减少的变化趋势;2000-2050年秦岭山地碳汇服务范围为174-262.63km,服务范围在空间上呈逐渐扩大趋势,2030年后其扩大程度将略有减少。  相似文献   

17.
鼎湖山森林土壤活性碳及惰性碳沿海拔梯度的变化   总被引:6,自引:0,他引:6  
向慧敏  温达志  张玲玲  李炯 《生态学报》2015,35(18):6089-6099
对鼎湖山3个不同海拔高度下的沟谷雨林(LA)、低地常绿阔叶林(MA)和山地常绿阔叶林(UA)的土壤活性碳库和惰性碳库进行了研究。结果表明:(1)土壤总碳库仅在30—45 cm土层中存在显著差异且碳库大小随着海拔的增加而增加。(2)土壤微生物生物量碳(MBC)碳库在0—15 cm是LA和MA显著大于UA,在30—45 cm是MA和UA显著高于LA,在45—60 cm土层中MA最大。水溶性碳(WSOC)和颗粒碳(POC)碳库均不随海拔高度而改变。WSOC碳库占总碳库的百分比仅在30—45cm土层中存在差异且大小顺序为:LAUAMA,POC碳库占总碳库的百分比仅在土层15—30 cm上存在显著差异且MA比值最大。易氧化性碳(ROC)碳库及占总碳库百分比都是在表层土壤(0—15 cm)中产生显著变化,且UA极显著地大于LA和MA。(3)惰性碳(RC)碳库仅在深层土壤中存在显著差异且MA中RC碳库最大,UA次之,LA最小。RC碳库占总碳库比值仅在表层土壤0—15 cm存在显著差异且UA最大。表层土壤中ROC碳库和RC碳库占总碳库百分比的增加是导致中高海拔森林土壤总碳库最大的主要原因。(4)不同海拔高度上森林土壤理化性质与土壤碳库组成存在显著相关,土壤理化性质的改变是引起不同海拔高度森林土壤碳库组成变化的重要原因。  相似文献   

18.
城市土壤碳循环与碳固持研究综述   总被引:4,自引:0,他引:4  
罗上华  毛齐正  马克明  邬建国 《生态学报》2012,32(22):7177-7189
城市化过程带来的土地利用变化和环境污染是全球变化的重要方面,城市为人们了解人类与自然复合生态系统对全球变化的影响及其对全球变化的响应过程提供一个独特的"天然实验室"。陆地生态系统碳循环是全球变化研究的热点领域之一,然而,人们对城市在全球碳循环中的作用和影响知之甚少,城市土壤碳循环研究处于起步阶段。介绍了城市土壤的主要特性和碳循环特征,指出强烈的人为作用是其最突出的特点;综述了城市土壤碳库、碳通量和碳固持研究方面取得的进展;探讨了城市化过程中土地利用变化、土壤中生物及土壤管护措施、城市小气候、大气污染沉降和土壤污染等对土壤碳循环的影响;提出未来城市碳循环研究需要开展长期系统监测、深化城市土壤碳循环机制研究、创新研究范式和研究方法、并将研究成果与城市景观规划与设计相结合,提升城市土壤碳管理能力。  相似文献   

19.
土壤有机碳分组方法及其在农田生态系统研究中的应用   总被引:20,自引:2,他引:18  
Zhang G  Cao ZP  Hu CJ 《应用生态学报》2011,22(7):1921-1930
农田土壤有机碳成分复杂,活性有机碳对管理措施具有敏感性,而惰性有机碳具有固碳作用.碳分组技术主要包括物理技术、化学技术和生物学技术.物理分组的依据是密度、粒径大小和空间分布,可分离出有机碳的活性组分和惰性组分.化学分组基于土壤有机碳在各种提取剂中的溶解性、水解性和化学反应性从而分离出各种组分:溶解性有机碳是生物可代谢有机碳,包括有机酸、酚类和糖类等;酸水解方法可将有机碳分成活性和惰性成分;利用KMnO4模拟酶氧化可分离出活性碳和非活性碳.利用生物技术可测定出微生物生物量碳和潜在可矿化碳.在不同农田管理措施下,有机碳组分的化学组成和库容会发生不同变化,对土壤有机碳沉积速率产生不同影响.为了探明土壤有机碳组分与碳沉积之间的定性或定量关系,今后应该加强对各种分组方法的标准化研究,探索不同分组方法的整合应用,针对不同农田管理措施,总结出适合的有机碳分组方法或联合分组方法.  相似文献   

20.
The rate of change in atmospheric CO2 is significantly affected by the terrestrial carbon sink, but the size and spatial distribution of this sink, and the extent to which it can be enhanced to mitigate climate change are highly uncertain. We combined carbon stock (CS) and eddy covariance (EC) flux measurements that were collected over a period of 15 years (2001–2016) in a 55 year old 30 km2 pine forest growing at the semiarid timberline (with no irrigating or fertilization). The objective was to constrain estimates of the carbon (C) storage potential in forest plantations in such semiarid lands, which cover ~18% of the global land area. The forest accumulated 145–160 g C m?2 year?1 over the study period based on the EC and CS approaches, with a mean value of 152.5 ± 30.1 g C m?2 year?1 indicating 20% uncertainty in carbon uptake estimates. Current total stocks are estimated at 7,943 ± 323 g C/m2 and 372 g N/m2. Carbon accumulated mostly in the soil (~71% and 29% for soil and standing biomass carbon, respectively) with long soil carbon turnover time (59 years). Regardless of unexpected disturbances beyond those already observed at the study site, the results support a considerable carbon sink potential in semiarid soils and forest plantations, and imply that afforestation of even 10% of semiarid land area under conditions similar to that of the study site, could sequester ~0.4 Pg C/year over several decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号