首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 357 毫秒
1.
Coating of liposomes with polyethylene-glycol (PEG) by incorporation in the liposome bilayer of PEG-derivatized lipids results in inhibition of liposome uptake by the reticulo-endothelial system and significant prolongation of liposome residence time in the blood stream. Parallel developments in drug loading technology have improved the efficiency and stability of drug entrapment in liposomes, particularly with regard to cationic amphiphiles such as anthracyclines. An example of this new generation of liposomes is a formulation of pegylated liposomal doxorubicin known as Doxil® or Caelyx®, whose clinical pharmacokinetic profile is characterized by slow plasma clearance and small volume of distribution. A hallmark of these long-circulating liposomal drug carriers is their enhanced accumulation in tumors. The mechanism underlying this passive targeting effect is the phenomenon known as enhanced permeability and retention (EPR) which has been described in a broad variety of experimental tumor types. Further to the passive targeting effect, the liposome drug delivery platform offers the possibility of grafting tumor-specific ligands on the liposome membrane for active targeting to tumor cells, and potentially intracellular drug delivery. The pros and cons of the liposome platform in cancer targeting are discussed vis-à-vis nontargeted drugs, using as an example a liposome drug delivery system targeted to the folate receptor.  相似文献   

2.
One method for improving cancer treatment is the use of nanoparticle drugs functionalized with targeting ligands that recognize receptors expressed selectively by tumor cells. In theory such targeting ligands should specifically deliver the nanoparticle drug to the tumor, increasing drug concentration in the tumor and delivering the drug to its site of action within the tumor tissue. However, the leaky vasculature of tumors combined with a poor lymphatic system allows the passive accumulation, and subsequent retention, of nanosized materials in tumors. Furthermore, a large nanoparticle size may impede tumor penetration. As such, the role of active targeting in nanoparticle delivery is controversial, and it is difficult to predict how a targeted nanoparticle drug will behave in vivo. Here we report in vivo studies for αvβ6-specific H2009.1 peptide targeted liposomal doxorubicin, which increased liposomal delivery and toxicity to lung cancer cells in vitro. We systematically varied ligand affinity, ligand density, ligand stability, liposome dosage, and tumor models to assess the role of active targeting of liposomes to αvβ6. In direct contrast to the in vitro results, we demonstrate no difference in in vivo targeting or efficacy for H2009.1 tetrameric peptide liposomal doxorubicin, compared to control peptide and no peptide liposomes. Examining liposome accumulation and distribution within the tumor demonstrates that the liposome, and not the H2009.1 peptide, drives tumor accumulation, and that both targeted H2009.1 and untargeted liposomes remain in perivascular regions, with little tumor penetration. Thus H2009.1 targeted liposomes fail to improve drug efficacy because the liposome drug platform prevents the H2009.1 peptide from both actively targeting the tumor and binding to tumor cells throughout the tumor tissue. Therefore, using a high affinity and high specificity ligand targeting an over-expressed tumor biomarker does not guarantee enhanced efficacy of a liposomal drug. These results highlight the complexity of in vivo targeting.  相似文献   

3.
作为药物递送载体,脂质体(LPs)由于免疫原性低、稳定性好、毒性低和成本低而被认为是有前途的纳米药物递送系统。然而,LPs的靶向递送效果并不理想,往往会对正常的机体细胞造成伤害,因此,如何优化LPs药物,使其具有靶向性仍然是当前研究的重点。本文结合近年来国内外相关研究进展,重点介绍了多肽、抗体、糖类、配体,以及核酸适配体等靶向修饰物对LPs功能的影响,并归纳总结了各种靶向修饰目前存在的优势与挑战,以期对LPs给药系统的进一步研究提供科学参考及新药研发提供理论依据。  相似文献   

4.
Liposomes have been widely used delivery systems, particularly relevant to the development of cancer therapeutics. Numerous liposome-based drugs are in the clinic or in clinical trials today against multiple tumor types; however, systematic studies of liposome interactions with solid or metastatic tumor nodules are scarce. This study is describing the in vitro interaction between liposomes and avascular human prostate (LNCaP-LN3) tumor spheroids. The ability of fluorescently labelled liposomal delivery systems of varying physicochemical characteristics to penetrate within multicellular tumor spheroids has been investigated by confocal laser scanning microscopy. A variety of liposome characteristics and experimental parameters were investigated, including lipid bilayer composition, duration of liposome-spheroid interaction, mean liposome size, steric stabilization of liposomes. Electrostatic binding between cationic liposomes and spheroids was very efficient; however, it impeded any significant penetration of the vesicles within deeper layers of the tumor spheroid. Small unilamellar liposomes of neutral surface character did not bind as efficiently but exhibited enhanced penetrative transport capabilities closer to the tumor core. Polymer-coated (sterically stabilised) liposomes exhibited almost no interaction with the spheroid, indicating that their limited diffusion within avascular tissues may be a limiting step for their use against micrometastases. Multicellular tumor spheroids were used as models of solid tumor interstitium relevant to delivery systems able to extravasate from the microcapillaries or as models of prevascularized micrometastases. This study illustrates that interactions between liposomes and other drug delivery systems with multicellular tumor spheroids can offer critically important information with respect to optimizing solid or micrometastatic tumor delivery and targeting strategies.  相似文献   

5.
Liposomes have been widely used delivery systems, particularly relevant to the development of cancer therapeutics. Numerous liposome-based drugs are in the clinic or in clinical trials today against multiple tumor types; however, systematic studies of liposome interactions with solid or metastatic tumor nodules are scarce. This study is describing the in vitro interaction between liposomes and avascular human prostate (LNCaP-LN3) tumor spheroids. The ability of fluorescently labelled liposomal delivery systems of varying physicochemical characteristics to penetrate within multicellular tumor spheroids has been investigated by confocal laser scanning microscopy. A variety of liposome characteristics and experimental parameters were investigated, including lipid bilayer composition, duration of liposome-spheroid interaction, mean liposome size, steric stabilization of liposomes. Electrostatic binding between cationic liposomes and spheroids was very efficient; however, it impeded any significant penetration of the vesicles within deeper layers of the tumor spheroid. Small unilamellar liposomes of neutral surface character did not bind as efficiently but exhibited enhanced penetrative transport capabilities closer to the tumor core. Polymer-coated (sterically stabilised) liposomes exhibited almost no interaction with the spheroid, indicating that their limited diffusion within avascular tissues may be a limiting step for their use against micrometastases. Multicellular tumor spheroids were used as models of solid tumor interstitium relevant to delivery systems able to extravasate from the microcapillaries or as models of prevascularized micrometastases. This study illustrates that interactions between liposomes and other drug delivery systems with multicellular tumor spheroids can offer critically important information with respect to optimizing solid or micrometastatic tumor delivery and targeting strategies.  相似文献   

6.
Abstract

Improving tumor delivery of lipophilic drugs through identifying advanced drug carrier systems with efficient carrier potency is of high importance. We have performed an investigative approach to identify parameters that affect liposomes’ ability to effectively deliver lipophilic camptothecin (CPT) to target cells. CPT is a potent anticancer drug, but its undesired physiological properties are impairing its therapeutic use. In this study, we have identified parameters influencing incorporation and retention of lipophilic CPT in liposomes, evaluating the effect of lipid composition, lipid chemical structure (head and tail group variations, polymer inclusion), zeta potential and anisotropy. Polyethyleneglycol (PEG) surface decoration was included to avoid liposome fusing and increase the potential for prolonged in vivo circulation time. The in vitro effect of the different carrier formulations on cell cytotoxicity was compared and the effect of active targeting of one of the formulations was evaluated. We found that a combination of liposome surface charge, lipid headgroup and carbon chain unsaturation affect CPT incorporation. Retention in liposomes was highly dependent on the liposomal surroundings and liposome zeta potential. Inclusion of lipid tethered PEG provided stability and prevented liposome fusing. PEGylation negatively affected CPT incorporation while improving retention. In vitro cell culture testing demonstrated that all formulations increased CPT potency compared to free CPT, while cationic formulations proved significantly more toxic to cancer cells that healthy cells. Finally, antibody mediated targeting of one liposome formulation further enhanced the selectivity towards targeted cancer cells, rendering normal cells fully viable after 1 hour exposure to targeted liposomes.  相似文献   

7.
The objective of this study was to develop an efficient tumor vasculature targeted liposome delivery system for combretastatin A4, a novel antivascular agent. Liposomes composed of hydrogenated soybean phosphatidylcholine (HSPC), cholesterol, distearoyl phosphoethanolamine-polyethylene-glycol-2000 conjugate (DSPE-PEG), and DSPE-PEG-maleimide were prepared by the lipid film hydration and extrusion process. Cyclic RGD (Arg-Gly-Asp) peptides with affinity for αvβ3-integrins expressed on tumor vascular endothelial cells were coupled to the distal end of PEG on the liposomes sterically stabilized with PEG (long circulating liposomes, LCL). The liposome delivery system was characterized in terms of size, lamellarity, ligand density, drug loading, and leakage properties. Targeting nature of the delivery system was evaluated in vitro using cultured human umbilical vein endothelial cells (HUVEC). Electron microscopic observations of the formulations revealed presence of small unilamellar liposomes of ∼120 nm in diameter. High performance liquid chromatography determination of ligand coupling to the liposome surface indicated that more than 99% of the RGD peptides were reacted with maleimide groups on the liposome surface. Up to 3 mg/mL of stable liposomal combretastatin A4 loading was achieved with ∼80% of this being entrapped within the liposomes. In the in vitro cell culture studies, targeted liposomes showed significantly higher binding to their target cells than non-targeted liposomes, presumably through specific interaction of the RGD with its receptors on the cell surface. It was concluded that the targeting properties of the prepared delivery system would potentially improve the therapeutic benefits of combretastatin A4 compared with nontargeted liposomes or solution dosage forms.  相似文献   

8.
Targeted drug delivery systems for cancer improves anti-tumor efficacy and reduces systemic toxicity by restricting availability of cytotoxic drugs within tumors. Targeting moieties, such as natural ligands (folic acid, transferrin, and biotin) which are overexpressed on tumors, have been used to enhance liposome-encapsulated drug accumulation within tumors and resulted in better control. In this report, we explored the scope of targeting ligand folic acid, which is incorporated in liposome systems using folic acid-modified cholesterol (CPF), enabled highly selective tumor-targeted delivery of liposome-encapsulated doxorubicin and resulted in increased cytotoxicity within tumors. Folate-tagged poloxamer-coated liposomes (FDL) were found to have significantly higher cellular uptake than conventional poloxamer-coated liposomes (DL), as confirmed by fluorometric analysis in B16F10 melanoma cells. Biodistribution study of the radiolabeled liposomal system indicated the significantly higher tumor uptake of FDL as compared to DL. Anti-tumor activity of FDL against murine B16F10 melanoma tumor-bearing mice revealed that FDL inhibited tumor growth more efficiently than the DL. Taken together, the results demonstrated the significant potential of the folate-conjugated nanoliposomal system for drug delivery to tumors.  相似文献   

9.
Tumor specific drug delivery has become increasingly interesting in cancer therapy, as the use of chemotherapeutics is often limited due to severe side effects. Conventional drug delivery systems have shown low efficiency and a continuous search for more advanced drug delivery principles is therefore of great importance. In the first part of this review, we present current strategies in the drug delivery field, focusing on site-specific triggered drug release from liposomes in cancerous tissue. Currently marketed drug delivery systems lack the ability to actively release the carried drug and rely on passive diffusion or slow non-specific degradation of the liposomal carrier. To obtain elevated tumor-to-normal tissue drug ratios, it is important to develop drug delivery strategies where the liposomal carriers are actively degraded specifically in the tumor tissue. Many promising strategies have emerged ranging from externally triggered light- and thermosensitive liposomes to receptor targeted, pH- and enzymatically triggered liposomes relying on an endogenous trigger mechanism in the cancerous tissue. However, even though several of these strategies were introduced three decades ago, none of them have yet led to marketed drugs and are still far from achieving this goal. The most advanced and prospective technologies are probably the prodrug strategies where non-toxic drugs are carried and activated specifically in the malignant tissue by overexpressed enzymes. In the second part of this paper, we review our own work, exploiting secretory phospholipase A2 as a site-specific trigger and prodrug activator in cancer therapy. We present novel prodrug lipids together with biophysical investigations of liposome systems, constituted by these new lipids and demonstrate their degradability by secretory phospholipase A2. We furthermore give examples of the biological performance of the enzymatically degradable liposomes as advanced drug delivery systems.  相似文献   

10.
Polymer-coated liposomes can act as versatile drug-delivery systems due to long vascular circulation time and passive targeting by leaky blood vessels in diseased tissue. We present an experimental model system illustrating a new principle for improved and programmable drug-delivery, which takes advantage of an elevated activity of secretory phospholipase A(2) (PLA(2)) at the diseased target tissue. The secretory PLA(2) hydrolyses a lipid-based proenhancer in the carrier liposome, producing lyso-phospholipids and free fatty acids, which are shown in a synergistic way to lead to enhanced liposome destabilization and drug release at the same time as the permeability of the target membrane is enhanced. Moreover, the proposed system can be made thermosensitive and offers a rational way for developing smart liposome-based drug delivery systems. This can be achieved by incorporating specific lipid-based proenhancers or prodestabilisers into the liposome carrier, which automatically becomes activated by PLA(2) only at the diseased target sites, such as inflamed or cancerous tissue.  相似文献   

11.
Context: Surface-modified pH-sensitive liposomal system may be useful for intracellular delivery of chemotherapeutics.

Objective: Achieving site-specific targeting with over-expressed hyaluronic acid (HA) receptors along with using pH sensitive liposome carrier for intracellular drug delivery was the aim of this study.

Materials and methods: Stealth HA-targeted pH-sensitive liposomes (SL-pH-HA) were developed and evaluated to achieve effective intracellular delivery of doxorubicin (DOX) vis–a-vis enhanced antitumor activity.

Results: The in vitro release studies demonstrated that the release of DOX from SL-pH-HA was pH-dependent, i.e. faster at mildly acidic pH ~5, compared to physiological pH ~7.4. SLpH-HA was evaluated for their cytotoxicity potential on CD44 receptor expressing MCF-7 cells. The half maximal inhibitory concentration (IC50) of SL-pH-HA and SL-HA were about 1.9 and 2.5?μM, respectively, after 48?h of incubation. The quantitative uptake study revealed higher localization of targeted liposomes in the receptor positive cells, which was further confirmed by fluorescent microscopy. The antitumor efficacy of the DOX-loaded HA-targeted pH-sensitive liposomes was also verified in a tumor xenograft mouse model.

Discussion: DOX was efficiently delivered to the tumor site by active targeting via HA and CD44 receptor interaction. The major side-effect of conventional DOX formulation, i.e. cardiotoxicity was also estimated by measuring serum enzyme levels of LDH and CPK and found to be minimized with developed formulation. Overall, HA targeted pH-sensitive liposomes were significantly more potent than the non-targeted liposomes in cells expressing high levels of CD44.

Conclusion: Results strongly implies the promise of such liposomal system as an intracellular drug delivery carrier developed for potential anticancer treatment.  相似文献   

12.
Liposome formulations with prolonged circulation time have recently been developed as a potential sustained-release drug delivery system. Data shown in this report indicate that such formulations can also be used to prolong the circulation time of proteins and peptides by conjugating them to the surface of liposomes. Increase of the circulation halflife ranged from 2- to 150-fold depending on the protein/lipid ratio of the liposomal formulation, liposome size, and the lipid composition of liposomes. Since the proteins/peptides localize on the liposome surface, instead of being entrapped inside the liposomes, they are directly available for binding to its receptor molecules and express the biological activity. This strategy has been successfully applied to two proteins with known fast clearance rate, i.e. asialofetuin and ricin A-chain. The biological activities of both proteins are preserved when they are formulated in liposomes. Incorporation of a peptide, i.e. a-factor of the yeast Saccharomyces cerevisiae, into the liposome membrane also significantly enhanced the circulation time of the peptide.  相似文献   

13.
Many barriers to drug delivery into a tumor site require careful consideration when designing a new drug. In this study, the adhesive targeting and drug specificity of modified liposomal vesicles on human-scar-producing cells, keloid fibroblasts, were investigated. Keloids express abundant levels of mucopolysaccharides and receptor tyrosine kinase (RTK). In this report, the structural properties, drug release kinetics, and therapeutic availability of silk-fibroin-coated, emodin-loaded liposomes (SF-ELP), compared with uncoated, emodin-loaded liposomes (ELP), were investigated. SF-ELP had a highly organized lamellae structure, which contributed to 55% of the liposomal diameter. This modified liposomal structure decreased emodin release rates by changing the release kinetics from a swelling and diffusional process to a purely diffusional process, probably due to steric hindrance. SF-ELP also increased adhesion targeting to keloid fibroblasts. Increased retention of SF-ELP is most likely due to the interaction of the fibrous protein coating around the ELP with the pericellular molecules around the cell. SF-ELP also decreased survival rate of keloids that expressed high levels of RTK. These results demonstrated that SF-ELP enhanced emodin delivery by improved diffusion kinetics and specific cell targeting.  相似文献   

14.
脂质体作为一种药物载体广泛应用于肿瘤药物输送中。配体修饰的靶向脂质体,其靶向配体分子在脂质体表面修饰的构象和密度等参数,对脂质体本身的特性及其体内的靶向效果,有很大的影响。但有关其中的具体相互关系,以及可能的最优条件,国内外文献都尚无定论。据此我们建立了多肽靶向脂质体表面配体修饰的分析方法,并通过影像学手段来研究不同靶向肽含量对脂质体在荷瘤裸鼠中的靶向行为的影响。首先采用孵育插入法将带有多肽的脂质分子插入脂质体表面,用分子筛色谱法分离修饰后的脂质体和未插入的多肽脂质,再用HPLC-ELSD定量各脂质成分,得到多肽靶向脂质体表面的靶向肽密度。而后将修饰有不同密度靶向多肽的荧光脂质体经荷瘤小鼠尾静脉注射,分别在给药前后各时间点对小鼠进行扫描,对扫描得到的图像进行处理并计算AUC、T1/2和MRT等相关药代动力学参数。结果表明,随着脂质体表面多肽密度的增加,即多肽密度大于1.298%的靶向脂质体,其肿瘤部位的荧光AUC、T1/2和MRT都较未修饰的隐形脂质体有所提高,显示其在肿瘤组织中的聚集量增多、停留时间延长,针对肿瘤细胞的特异性作用机制得以彰显。  相似文献   

15.
Small-sized liposomes have several advantages as drug delivery systems, and the ethanol injection method is a suitable technique to obtain the spontaneous formation of liposomes having a small average radius. In this paper, we show that liposomal drug formulations can be prepared in situ, by simply injecting a drug-containing lipid(s) organic solution into an aqueous solution. Several parameters should be optimized in order to obtain a final suitable formulation, and this paper is devoted to such an investigation. Firstly, we study the liposome size distributions determined by dynamic light scattering (DLS), as function of the lipid concentration and composition, as well as the organic and aqueous phases content. This was carried out, firstly, by focusing on POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) then on the novel L-carnitine derivative PUCE (palmitoyl-(R)-carnitine undecyl ester chloride), showing that it is possible to obtain monomodal size distributions of rather small vesicles. In particular, depending on the conditions, it was possible to achieve a population of liposomes with a mean size of 100 nm, when a 50 mM POPC ethanol solution was injected in pure water; in the case of 50 mM PUCE the mean size was around 30 nm, when injected in saline (0.9% NaCl). The novel anticancer drug Gimatecan, a camptothecin derivative, was used as an example of lipophilic drug loading by the injection method. Conditions could be found, under which the resultant liposome size distributions were not affected by the presence of Gimatecan, in the case of POPC as well as in the case of PUCE. To increase the overall camptothecin concentration in the final liposomal dispersion, the novel technique of "multiple injection method" was used, and up to a final 5 times larger amount of liposomal drug could be reached by maintaining approximately the same size distribution. Once prepared, the physical and chemical stability of the liposome formulations was satisfactory within 24, as judged by DLS analysis and HPLC quantitation of lipids and drug. The Gimatecan-containing liposomes formulations were also tested for in vitro and in vivo activity, against the human nonsmall cell lung carcinoma NCI-H460 and a murine Lewis lung carcinoma 3 LL cell lines. In the in vitro tests, we did not observe any improvement or reduction of the Gimatecan pharmacological effect by the liposomal delivery system. More interestingly, in the in vivo Lewis lung carcinoma model, the intravenously administration of liposomal Gimatecan formulation showed a mild but significant increase of Tumor Volume Inhibition with respect to the oral no-liposomal formulation (92% vs. 86 %, respectively; p < 0.05). Finally, our study showed that the liposomal formulation was able to realize a delivery system of a water-insoluble drug, providing a Gimatecan formulation for intravenous administration with a preserved antitumoral activity.  相似文献   

16.
Small‐sized liposomes have several advantages as drug delivery systems, and the ethanol injection method is a suitable technique to obtain the spontaneous formation of liposomes having a small average radius. In this paper, we show that liposomal drug formulations can be prepared in situ, by simply injecting a drug‐containing lipid(s) organic solution into an aqueous solution. Several parameters should be optimized in order to obtain a final suitable formulation, and this paper is devoted to such an investigation. Firstly, we study the liposome size distributions determined by dynamic light scattering (DLS), as function of the lipid concentration and composition, as well as the organic and aqueous phases content. This was carried out, firstly, by focusing on POPC (1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phosphocholine) then on the novel L‐carnitine derivative PUCE (palmitoyl‐(R)‐carnitine undecyl ester chloride), showing that it is possible to obtain monomodal size distributions of rather small vesicles. In particular, depending on the conditions, it was possible to achieve a population of liposomes with a mean size of 100 nm, when a 50 mM POPC ethanol solution was injected in pure water; in the case of 50 mM PUCE the mean size was around 30 nm, when injected in saline (0.9% NaCl). The novel anticancer drug Gimatecan, a camptothecin derivative, was used as an example of lipophilic drug loading by the injection method. Conditions could be found, under which the resultant liposome size distributions were not affected by the presence of Gimatecan, in the case of POPC as well as in the case of PUCE. To increase the overall camptothecin concentration in the final liposomal dispersion, the novel technique of “multiple injection method” was used, and up to a final 5 times larger amount of liposomal drug could be reached by maintaining approximately the same size distribution. Once prepared, the physical and chemical stability of the liposome formulations was satisfactory within 24, as judged by DLS analysis and HPLC quantitation of lipids and drug. The Gimatecan‐containing liposomes formulations were also tested for in vitro and in vivo activity, against the human nonsmall cell lung carcinoma NCI‐H460 and a murine Lewis lung carcinoma 3 LL cell lines. In the in vitro tests, we did not observe any improvement or reduction of the Gimatecan pharmacological effect by the liposomal delivery system. More interestingly, in the in vivo Lewis lung carcinoma model, the intravenously administration of liposomal Gimatecan formulation showed a mild but significant increase of Tumor Volume Inhibition with respect to the oral no‐liposomal formulation (92% vs. 86 %, respectively; p < 0.05). Finally, our study showed that the liposomal formulation was able to realize a delivery system of a water‐insoluble drug, providing a Gimatecan formulation for intravenous administration with a preserved antitumoral activity.  相似文献   

17.
18.
The treatment of glioma has become a great challenge because of the existence of brain barrier (BB). In order to develop an efficient brain targeting drug delivery system to greatly improve the brain permeability of anti-cancer drugs, a novel brain-targeted glucose-vitamin C (Glu-Vc) derivative was designed and synthesized as liposome ligand for preparing liposome to effectively deliver paclitaxel (PTX). The liposome was prepared and its particle size, zeta potential, encapsulation efficiency, release profile, stability, hemolysis and cytotoxicity were also characterized. What’s more, the cellular uptake of CFPE-labeled Glu-Vc-Lip on GLUT1- and SVCT2-overexpressed C6 cells was 4.79-, 1.95-, 4.00- and 1.53-fold higher than that of Lip, Glu-Lip, Vc-Lip and Glu?+?Vc-Lip. Also, the Glu-Vc modified liposomes showed superior targeting ability in vivo evaluation compared with naked paclitaxel, non-coated, singly-modified and co-modified by physical blending liposomes. The relative uptake efficiency was enhanced by 7.53 fold to that of naked paclitaxel, while the concentration efficiency was up to 7.89 times. What’s more, the Glu-Vc modified liposomes also displayed the maximum accumulation of DiD-loaded liposomes at tumor sites with the strongest fluorescence in the brain in vivo imaging. Our results suggest that chemical modification of liposomes with warheads of glucose and vitamin C represents a promising and efficient strategy for the development of brain-specific liposomes drug delivery system by utilizing the endogenous transportation mechanism of the warheads.  相似文献   

19.
Polymer-coated liposomes can act as versatile drug-delivery systems due to long vascular circulation time and passive targeting by leaky blood vessels in diseased tissue. We present an experimental model system illustrating a new principle for improved and programmable drug-delivery, which takes advantage of an elevated activity of secretory phospholipase A2 (PLA2) at the diseased target tissue. The secretory PLA2 hydrolyses a lipid-based proenhancer in the carrier liposome, producing lyso-phospholipids and free fatty acids, which are shown in a synergistic way to lead to enhanced liposome destabilization and drug release at the same time as the permeability of the target membrane is enhanced. Moreover, the proposed system can be made thermosensitive and offers a rational way for developing smart liposome-based drug delivery systems. This can be achieved by incorporating specific lipid-based proenhancers or prodestabilisers into the liposome carrier, which automatically becomes activated by PLA2 only at the diseased target sites, such as inflamed or cancerous tissue.  相似文献   

20.
肝细胞靶向pH敏脂质体的制备及性质分析   总被引:3,自引:0,他引:3  
为了制备具有肝细胞特异靶向性和pH敏感性的脂质体,设计并合成了四种带有半乳糖残基的导向分子,与具有pH敏感性的DC-chol/DOPE混合制备脂质体,通过质粒转染实验、受体竞争抑制实验和红细胞溶血等实验选出最佳转染活性的十八醇-半乳糖甙(18-gal)脂质体,并证明其具有肝细胞特异受体介导的靶向性和pH敏感性,且细胞毒性较小,可以作为一种潜在的肝细胞靶向转运系统得到进一步发展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号