首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
本文旨在根据前期研究建立的恒河猴感染动物模型,对同期研制的肠道病毒71型(EV71)实验性灭活疫苗免疫动物进行全面的免疫保护性评价。评价指标包括病毒攻击后动物体内病毒载量及病理学变化,根据所得结果进行实验性疫苗免疫后动物在病毒攻击中的感染动力学分析。3个疫苗剂量(20、80、320EU)免疫的恒河猴均出现不同效价的中和抗体,80EU和320EU剂量组在二次免疫后第6周抗体效价达1∶128~1∶256,经104.5CCID50病毒鼻腔攻击后均未检出阳性病毒载量。20EU剂量组中,淋巴器官、中枢神经系统及其他主要脏器均出现比对照组低但仍为阳性的病毒增殖现象。病理学方面,各剂量组免疫恒河猴的中枢神经系统以及肺等器官均未出现相关病理损伤。本实验在确定该疫苗对恒河猴有效保护性的同时,亦为明确EV71灭活疫苗免疫剂量提供了直接的实验依据。  相似文献   

2.
本文在前期工作基础上,进一步对肠道病毒71型(EV71)从恒河婴猴的感染个体向其他未感染个体传播的可能性及相关生物学特性做了初步分析.通过喷雾形式经呼吸道感染1~2月龄恒河婴猴(A组);在观察临床症状同时,于感染后第7天,取该组动物粪便处理后,将上清液以喷雾形式经呼吸道感染新的婴猴个体(B组),随后对该次代感染个体进行...  相似文献   

3.
对安徽省实验猕猴中心的安徽恒河猴进行了微生物(包括病毒和病原菌)和寄生虫检测。对恒河猴的病毒检测结果发现,猕猴疱疹病毒1型(BV)和猴痘病毒(SPV)抗体的阳性率分别为20.7%(6/29)和10.0%(2/20),20只恒河猴中没有发现猴反转录D型病毒(SRV)、猴免疫缺陷病毒(SIV)和猴T细胞趋向性病毒Ⅰ型(STLV—1)的抗体。5只受检的人工繁育的安徽恒河猴没有感染沙门菌、皮肤病原真菌、志贺菌和结核分枝杆菌的这四种病原菌。肉眼检测恒河猴体表,未发现体外寄生虫。39份人工繁殖的恒河猴粪便样品的总寄生虫感染率为38.5%,检测到溶组织内阿米巴和5种蠕虫(粪类圆线虫、猴结节线虫、绦虫、钩虫、蛔虫),感染率最高的是粪类圆线虫和猴结节线虫。本次调查表明,安徽恒河猴无特殊疾病,健康状况基本良好,可以建立普通级的实验恒河猴,实现安徽恒河猴的实验动物化。  相似文献   

4.
目的确定SHIV1157ipd3N4静脉途径感染中国恒河猴的有效病毒浓度,明确SHIV1157ipd3N4感染实验猴体内病毒复制和免疫损伤情况。方法 10只正常中国恒河猴分成6组,分别用10倍系列稀释的病毒液1 mL静脉感染,测定血浆病毒载量,CD4+/CD8+,CD4+T淋巴细胞绝对数,分析感染后恒河猴体内病毒复制和免疫损伤情况。结果 5TCID50/mL以上浓度的SHIV1157ipd3N4能通过静脉途径感染中国恒河猴。结论该实验的成功进行为SHIV/中国恒河猴疾病及评价模型的建立奠定了良好的基础,为今后使用此模型评价抗病毒药物或疫苗提供了条件。  相似文献   

5.
机体受人免疫缺陷病毒(HIV)感染后,如果能产生有效的特异性免疫反应就可以有效控制病毒复制,进而减少病毒的进一步危害。这里,我们首先用化学灭活S1V诱导的树突细胞,然后将树突细胞作为疫苗注入已感染SlV的恒河猴体内,结果使恒河猴体内产生了有效的持续性的S1V特异性细胞免疫和体液免疫。  相似文献   

6.
目的建立人工繁殖恒河猴婴猴生长发育指标的标准数据库。方法随机对90只人工饲养繁殖的恒河猴(从100d至1周岁)进行体重、身长、尾长、前肢长、后肢长发育指标测定。结果测定后的数据,经统计学分析和绘制生长曲线图,发现人工饲养条件下的恒河猴(1周岁前),其生长发育指标基本均匀一致,只有个别出现发育迟缓或发育不良现象。随时间推移,雄性生长速度要快于雌性。结论所建立的恒河猴婴猴正常生长发育生理指标,为提高人工饲养繁育恒河猴技术和不断改善恒河猴营养与发育健康提供了科学数据。  相似文献   

7.
人工饲养恒河猴、食蟹猴的繁殖性能初报   总被引:2,自引:0,他引:2  
目的探索北京地区人工饲养恒河猴与食蟹猴的繁殖性能,为温带地区猕猴的人工饲养和繁殖方式提供借鉴。方法对军事医学科学院实验动物中心饲养的317只恒河猴繁殖群(30只雄猴,287只雌猴)和78只食蟹猴繁殖群(8只雄猴,70只雌猴)近两年的繁殖性状进行观察和统计分析。结果恒河猴母猴妊娠率、繁殖率和成活率分别为60.73%、54.45%和96.89%。食蟹猴母猴妊娠率、繁殖率和成活率分别为79.86%、56.12%和75.00%。结论食蟹猴和恒河猴可以成功的在温带地区饲养和繁殖,但人工饲养食蟹猴的妊娠率与产仔率较恒河猴高,而仔猴成活率则低于恒河猴。  相似文献   

8.
目的模拟HIV性传播感染特点进行中国恒河猴阴道黏膜小剂量多次感染研究,为我国艾滋病疫苗有效性评价提供新的模型构建思路。方法选用20-30TCID50剂量的SHIVSF162p3病毒阴道黏膜途径感染六只成年雌性中国恒河猴,共感染13次,每次攻毒间隔4~7 d。采取测定血浆病毒载量和外周血CD4+∶CD8+。结果 6只中国恒河猴经13次病毒攻击后,经检测均建立系统性感染,血浆病毒载量呈阳性;CD4+∶CD8+均有下降。结论成功建立了中国恒河猴阴道黏膜小剂量多次感染模型,为艾滋病研究提供了新的更接近于自然感染状态的模型建立模式。  相似文献   

9.
SARS-CoV恒河猴模型动物中组织病理学动态变化   总被引:1,自引:0,他引:1  
目的在感染的8只恒河猴的SARS-CoV模型动物中,观察肺等组织中出现的系列病理学改变,为针对抗SARS药物筛选、疫苗评价中的免疫病理反应等奠定实验依据。方法SARS-CoV经鼻腔接种8只恒河猴,在感染的第5、7、10、15、20、30和60天,分别安乐处死动物,组织病理取材,制片,观察。结果经病毒分离和RT-PCR证实动物感染是成功的。系列病理改变表明,早期肺组织可见间质性肺炎,水肿、结构破坏、出血,巨噬细胞浸润;后期出现内皮细胞受损及再生,透明膜形成,小血管玻璃样变,肺组织纤维化及肺气肿形成,肺泡网状纤维和弹力纤维破坏并增生等,脾脏、淋巴结生发中心早期有萎缩,后期有恢复等病理学改变均和SARS患者相似。结论感染恒河猴出现与SARS患者类似的临床和病理学改变,为进一步研究该病毒的病原特性、发病机理、药物筛选、疫苗评价等方面的研究奠定了重要基础。  相似文献   

10.
目的用1日龄ICR小鼠传代制备EV71小鼠适应株,研究EV71亲代株与小鼠适应株的体内外感染特点,建立EV71感染ICR小鼠动物模型,为病毒疫苗和抗病毒药物的研究提供实用的动物评价工具。方法用1日龄ICR小鼠进行EV71病毒(Fuyang-0805)的传代,得到小鼠传代株。以一定浓度亲代株和传代株病毒分别接种RD、Vero、SY5Y、Caco-2四种细胞,定量方法检测各时间点不同毒株在四种细胞上的复制数量,CCK8方法测定各时间点细胞的存活率;同时,两毒株分别腹腔注射感染1日龄小鼠,定期安乐死动物,采集肺、小肠、骨骼肌、大脑四种器官组织,进行动物体内病毒半定量和定量分析,同时进行各器官组织病理学观察、免疫组织化学鉴定。结果与亲代毒株相比较,小鼠传代株(EV71-MMP4)表现出更强的肌肉来源细胞嗜性与毒性;同时,两毒株腹腔注射感染1日龄小鼠后,EV71-MMP4感染的小鼠体重增长较正常小鼠体重增长缓慢;半定量和定量RT-PCR显示,在小鼠肌肉中的病毒载量于感染后1d和5d达到高峰。EV71-MMP4感染组感染率较高、病毒组织分布较广、感染持续性较好、病毒载量较高,高剂量病毒感染后小鼠小肠、心肌和骨骼肌可观察到细胞空泡变性、淋巴细胞浸润等病理变化。免疫组织化学显示感染后小鼠骨骼肌有EV71病毒特异分布。结论阜阳EV71小鼠适应株表现出较亲代毒株更好的小鼠易感性、细胞毒性,所建立的动物模型可用于EV71病毒致病机制、感染特点的研究和病毒疫苗及药物的评价。  相似文献   

11.
Enterovirus 71 (EV71) has caused epidemics of hand, foot and mouth diseases in Asia during the past decades and no vaccine is available. A formalin-inactivated EV71 candidate vaccine (EV71vac) based on B4 subgenotype has previously been developed and found to elicit strong neutralizing antibody responses in mice and humans. In this study, we evaluated the long-term immunogenicity and safety of this EV71vac in a non-human primate model. Juvenile macaques were immunized at 0, 3 and 6 weeks either with 10 or 5 µg doses of EV71vac formulated with AlPO4 adjuvant, or PBS as control. During the 56 weeks of studies, no fever nor local redness and swelling at sites of injections was observed in the immunized macaques. After single immunization, 100% seroconversion based on 4-fold increased in neutralization titer (Nt) was detected in EV71vac immunized monkeys but not PBS controls. A dose-dependent IgG antibody response was observed in monkeys receiving EV71vac immunization. The Nt of EV71vac immunized macaques had reached the peak after 3 vaccinations, then decreased gradually; however, the GMT of neutralizing antibody in the EV71vac immunized macaques were still above 100 at the end of the study. Correspondingly, both dose- and time-dependent interferon-γ and CD4+ T cell responses were detected in monkeys receiving EV71vac. Interestingly, similar to human responses, the dominant T cell epitopes of macaques were identified mainly in VP2 and VP3 regions. In addition, strong cross-neutralizing antibodies against most EV71 subgenotypes except some C2 and C4b strains, and Coxsackievirus A16 were observed. In summary, our results indicate that EV71vac elicits dose-dependent T-cell and antibody responses in macaques that could be a good animal model for evaluating the long-term immune responses elicited by EV71 vaccines.  相似文献   

12.
目的研究肠道病毒71型经不同途径感染不同日龄ICR小鼠后的感染状况,了解肠道病毒71型的感染特点,为了解EV71小鼠感染机制和模型制备提供实验信息和技术支撑。方法分别通过口腔途径、颅腔途径、肌肉途径及腹腔途径感染1日龄、7日龄及3~4周龄SPF级ICR小鼠,定期安乐动物,采集各器官组织进行病原学诊断,确定EV71病毒感染情况;同时建立一步RT-PCR、病毒分离、IFA及IEA等方法。结果经腹腔途径感染成年鼠出现竖毛、弓背、消瘦症状,其他各途径感染小鼠感染后未见竖毛、弓背、觅食减少、体重减轻、精神呆滞及神经系统症状。颅腔注射3~4周龄ICR小鼠能在脑组织检测到病毒RNA,腹腔注射和肌肉注射1日龄乳鼠能在肌肉组织和肠道检测到病毒RNA,其中,肌肉组织病毒分离可检测到活病毒。本研究同时建立了分子生物学、血清学方法,为今后研究其它适合EV71的动物模型奠定了基础。结论临床分离的EV71毒株通过口腔接种、颅腔、肌肉、腹腔注射途径感染1日龄、7日龄及3~4周龄SPF级ICR小鼠的疾病程度和病毒检出不同,ICR乳鼠及成年鼠可作为该病毒感染机制、病毒体内分布等基础研究,但用作EV71动物模型应用,感染程度尚不十分理想。  相似文献   

13.
Enterovirus 71 (EV71) causes seasonal epidemics of hand-foot-and-mouth disease and has a high mortality rate among young children. We recently demonstrated potent induction of the humoral and cell-mediated immune response in monkeys immunized with EV71 virus-like particles (VLPs), with a morphology resembling that of infectious EV71 virions but not containing a viral genome, which could potentially be safe as a vaccine for EV71. To elucidate the mechanisms through which EV71 VLPs induce cell-mediated immunity, we studied the immunomodulatory effects of EV71 VLPs on human monocyte-derived dendritic cells (DCs), which bind to and incorporate EV71 VLPs. DC treatment with EV71 VLPs enhanced the expression of CD80, CD86, CD83, CD40, CD54, and HLA-DR on the cell surface; increased the production of interleukin (IL)-12 p40, IL-12 p70, and IL-10 by DCs; and suppressed the capacity of DCs for endocytosis. Treatment with EV71 VLPs also enhanced the ability of DCs to stimulate naïve T cells and induced secretion of interferon (IFN)-γ by T cells and Th1 cell responses. Neutralization with antibodies against Toll-like receptor (TLR) 4 suppressed the capacity of EV71 VLPs to induce the production of IL-12 p40, IL-12 p70, and IL-10 by DCs and inhibited EV71 VLPs binding to DCs. Our study findings clarified the important role for TLR4 signaling in DCs in response to EV71 VLPs and showed that EV71 VLPs induced inhibitor of kappaB alpha (IκBα) degradation and nuclear factor of kappaB (NF-κB) activation.  相似文献   

14.
A reliable disease model mimicking Enterovirus 71 (EV71) infection in humans is essential for understanding pathogenesis and for developing a safe and effective vaccine. Commonly used rodent models including mouse or rat models are not suitable for vaccine evaluation because the rodents are resistant to EV71 infection after they reach the age of 6 days. In this study, 21-day-old gerbils inoculated intraperitoneally (IP) with a non mouse-adapted EV71 strain developed neurological lesion-related signs including hind limb paralysis, slowness, ataxia and lethargy similar to those of central nervous system (CNS) infection of EV71 in humans. The infected gerbils eventually died of the neurological lesions and EV71 could be isolated from lung, liver, spleen, kidney, heart, spinal cord, brain cortex, brainstem and skeletal muscle. Significantly high virus replication was detected in spinal cord, brainstem and skeletal muscle by cellular analysis, real-time quantitative PCR (RT-PCR) and immunohistochemical staining. Histopathologic changes such as neuronal degeneration, neuronal loss and neuronophagia were observed in spinal cord, brain cortex, brainstem, and skeletal muscle along with necrotizing myositis and splenic atrophy. Gerbils that received two doses of inactive whole-virus vaccine showed no EV71-specific symptoms after challenged with EV71. In contrast, gerbils that received mock vaccination died of EV71-induced neuropathology after challenged with EV71. The result indicates that gerbils can serve as a reliable disease model for evaluating safety and efficacy of EV71 vaccine.  相似文献   

15.
Enterovirus 71 (EV71), a major causative agent of hand, foot, and mouth disease, occasionally causes severe neurological symptoms. We identified P-selectin glycoprotein ligand-1 (PSGL-1) as an EV71 receptor and found that an amino acid residue 145 in the capsid protein VP1 (VP1-145) defined PSGL-1-binding (PB) and PSGL-1-nonbinding (non-PB) phenotypes of EV71. However, the role of PSGL-1-dependent EV71 replication in neuropathogenesis remains poorly understood. In this study, we investigated viral replication, genetic stability, and the pathogenicity of PB and non-PB strains of EV71 in a cynomolgus monkey model. Monkeys were intravenously inoculated with cDNA-derived PB and non-PB strains of EV71, EV71-02363-EG and EV71-02363-KE strains, respectively, with two amino acid differences at VP1-98 and VP1-145. Mild neurological symptoms, transient lymphocytopenia, and inflammatory cytokine responses, were found predominantly in the 02363-KE-inoculated monkeys. During the early stage of infection, viruses were frequently detected in clinical samples from 02363-KE-inoculated monkeys but rarely in samples from 02363-EG-inoculated monkeys. Histopathological analysis of central nervous system (CNS) tissues at 10 days postinfection revealed that 02363-KE induced neuropathogenesis more efficiently than that induced by 02363-EG. After inoculation with 02363-EG, almost all EV71 variants detected in clinical samples, CNS, and non-CNS tissues, possessed a G to E amino acid substitution at VP1-145, suggesting a strong in vivo selection of VP1-145E variants and CNS spread presumably in a PSGL-1-independent manner. EV71 variants with VP1-145G were identified only in peripheral blood mononuclear cells in two out of four 02363-EG-inoculated monkeys. Thus, VP1-145E variants are mainly responsible for the development of viremia and neuropathogenesis in a non-human primate model, further suggesting the in vivo involvement of amino acid polymorphism at VP1-145 in cell-specific viral replication, in vivo fitness, and pathogenesis in EV71-infected individuals.  相似文献   

16.
Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and is also sometimes associated with serious neurological disorders. In this study, we characterized the antigenicity and tissue specificity of an attenuated strain of EV71 [EV71(S1-3')], which belongs to genotype A, in a monkey infection model. Three cynomolgus monkeys were inoculated with EV71(S1-3'), followed by lethal challenge with the parental virulent strain EV71(BrCr-TR) via an intravenous route on day 45 postinoculation of EV71(S1-3'). Monkeys inoculated with EV71(S1-3') showed a mild neurological symptom (tremor) but survived lethal challenge by virulent EV71(BrCr-TR) without exacerbation of the symptom. The immunized monkey sera showed a broad spectrum of neutralizing activity against different genotypes of EV71, including genotypes A, B1, B4, C2, and C4. For the strains examined, the sera showed the highest neutralization activity against the homotype (genotype A) and the lowest neutralization activity against genotype C2. The order of decreasing neutralization activity of sera was as follows: A > B1 > C4 > B4 > C2. To examine the tissue specificity of EV71(S1-3'), two monkeys were intravenously inoculated with EV71(S1-3'), followed by examination of virus distribution in the central nervous system (CNS) and extraneural tissues. In the CNS, EV71(S1-3') was isolated only from the spinal cord. These results indicate that EV71(S1-3') acts as an effective antigen, although this attenuated strain was still neurotropic when inoculated via the intravenous route.  相似文献   

17.
Human enterovirus 71 (EV71) is one of the major causative agents of hand, foot and mouth disease and is also associated with serious neurological diseases in children. Currently, there are no effective antiviral drugs or vaccines against EV71 infection. VP1, one of the major immunogenic capsid proteins of EV71, is widely considered to be the candidate antigen for an EV71 vaccine. In this study, VP1 of EV71 was expressed as a secretory protein with an N-terminal histidine tag in the methylotrophic yeast Pichia pastoris, and purified by Ni–NTA affinity chromatography. Immunogenicity and vaccine efficacy of the recombinant VP1 were assessed in mouse models. The results showed that the recombinant VP1 could efficiently induce anti-VP1 antibodies in BALB/c mice, which were able to neutralize EV71 viruses in an in vitro neutralization assay. Passive protection of neonatal mice further confirmed the prophylactic efficacy of the antisera from VP1 vaccinated mice. Furthermore, VP1 vaccination induced strong lymphoproliferative and Th1 cytokine responses. Taken together, our study demonstrated that the yeast-expressed VP1 protein retained good immunogenicity and was a potent EV71 vaccine candidate.  相似文献   

18.
ABSTRACT: Enterovirus 71 (EV71) causes severe neurological diseases resulting in high mortality in young children worldwide. Development of an effective vaccine against EV71 infection is hampered by the lack of appropriate animal models for efficacy testing of candidate vaccines. Previously, we have successfully tested the immunogenicity and protectiveness of a candidate EV71 vaccine, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP11-100) protein, in a mouse model of EV71 infection. A drawback of this system is its limited window of EV71 susceptibility period, 2 weeks after birth, leading to restricted options in the evaluation of optimal dosing regimens. To address this issue, we have assessed the NPt-VP11-100 candidate vaccine in a hamster system, which offers a 4-week susceptibility period to EV71 infection. Results obtained showed that the NPt-VP11-100 candidate vaccine stimulated excellent humoral immune response in the hamsters. Despite the high level of antibody production, they failed to neutralize EV71 viruses or protect vaccinated hamsters in viral challenge studies. Nevertheless, these findings have contributed towards a better understanding of the NPt-VP11-100 recombinant protein as a candidate vaccine in an alternative animal model system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号