首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The four tropane alkaloids have played a pivotal role in controlling diseases such as the toxic and septic shock, the organophosphorus poison and the acute lung injury. Here, the elicitation effect of different elicitors on the production of tropane alkaloids and the molecular mechanism of enzyme genes in the pathway was firstly demonstrated in hairy roots of Anisodus acutangulus. The results showed ethanol, methyl jasmonate and Ag+ could improve the accumulation of tropane alkaloids up to 1.51, 1.13 and 1.08 times after 24 h treatment, respectively (P < 0.05), whereas salicylic acid decreased the average content of tropane alkaloids. Furthermore, expression profile analysis results revealed that up-regulation of hyoscyamine-6b-hydroxylase (AaH6H) and little regulation of tropinone reducase II (AaTR2) elicited by ethanol, increased expression of putrescine N-methyltransferase I (AaPMT1) elicited by Ag+, elevated expression of tropinone reducase I (AaTR1) elicited by methyl jasmonate, respectively, resulted in tropane alkaloids improvement. Our results showed that hairy root culture of A. acutangulus in combination with elicitors was a promising way for production of tropane alkaloids in the future.  相似文献   

2.
The effects of oxygen on nicotine and tropane alkaloid production in root cultures of Duboisia myoporoides were investigated. Duboisia roots cultured in air produced both nicotine and tropane alkaloids equally. However, when roots were cultured in pure oxygen, the metabolic flux to tropane alkaloids increased, and that to nicotine alkaloids decreased. Intermediate product analysis by GC-MS showed an increase in tropine, but decreases in acetyl derivatives of tropane alkaloids and tropine esters with low-class fatty acids. Furthermore, hyoscyamine 6β-hydroxylase (H6H, EC 1.14.11.11, the key enzyme in the pathway from hyosyamine to scopolamine) also increased. These results suggest that pure oxygen contributes to scopolamine production not only by activating the biosynthetic steps for scopolamine, but also by inactivating the biosynthetic steps for nicotine and other tropine derivatives.  相似文献   

3.
Hyoscyamus niger L. is a medicinal plant which produces a class of jasmonate-responsive pharmaceutical secondary metabolites named tropane alkaloids. As a family of signaling phytohormones, jasmonates play significant roles in the biosynthesis of many plant secondary metabolites. In the jasmonate biosynthetic pathway of plants, allene oxide cyclase (AOC, EC 5.3.99.6) catalyzes the most important step. Here we cloned a cDNA from H. niger, named HnAOC (GenBank accession no.: AY708383), which was 1044 bp long, with a 747-bp open reading frame (ORF) encoding a polypeptide of 248 amino acid residues. Southern blot analysis indicated that it was a multicopy gene. RT-PCR analysis revealed that the expression of HnAOC was regulated by various stresses and elicitors, with methyl-jasmonate showing the most prominent inducement. The characterization of HnAOC would be helpful for improving the production of valuable secondary metabolites by regulating the biosynthesis of jasmonates. The text was submitted by the authors in English.  相似文献   

4.
The presence of two compounds, norlittorine and norhyoscyamine, has been reported in leaves and roots of Datura innoxia; however their metabolic origin in the tropane alkaloid pathway has remained unknown. Precise knowledge of this pathway is a necessary pre-requisite to optimize the production of hyoscyamine and scopolamine in D. innoxia hairy root cultures. The exact structure of norlittorine and norhyoscyamine was confirmed by LC–MS/MS and NMR analyses. Isotopic labeling experiments, using [1-13C]-phenylalanine, [1′-13C]-littorine and [1′-13C]-hyoscyamine, combined with elicitor treatments, using methyl jasmonate, coronalon and 1-aminocyclopropane-1-carboxylic acid, were used to investigate the metabolic origin of the N-demethylated tropane alkaloids. The results suggest that norlittorine and norhyoscyamine are induced under stress conditions by conversion of littorine and hyoscyamine. We propose the N-demethylation of tropane alkaloids as a mechanism to detoxify cells in overproducing conditions.  相似文献   

5.
Zhang L  Yang B  Lu B  Kai G  Wang Z  Xia Y  Ding R  Zhang H  Sun X  Chen W  Tang K 《Planta》2007,225(4):887-896
The cDNA from Nicotiana tabacum encoding Putrescine N-methyltransferase (PMT), which catalyzes the first committed step in the biosynthesis of tropane alkaloids, has been introduced into the genome of a scopolamine-producing Hyoscyamus niger mediated by the disarmed Agrobacterium tumefaciens strain C58C1, which also carries Agrobacterium rhizogenes Ri plasmid pRiA4, and expressed under the control of the CaMV 35S promoter. Hairy root lines transformed with pmt presented fivefold higher PMT activity than the control, and the methylputrescine (MPUT) levels of the resulting engineered hairy roots increased four to fivefold compared to the control and wild-type roots, but there was no significant increase in tropane alkaloids. However, after methyl jasmonate (MeJA) treatment, a considerable increase of PMTase and endogenous H6Hase as well as an increase in scopolamine content was found either in the transgenic hairy roots or the control. The results indicate that hairy root lines over-expressing pmt have a high capacity to synthesize MPUT, whereas their ability to convert hyoscyamine into scopolamine is very limited. Exposure to MeJA strongly stimulated both polyamine and tropane biosynthesis pathways and elicitation led to more or less enhanced production simultaneously.  相似文献   

6.
The coca family (Erythroxylaceae) consists of trees and shrubs sub-divided into four genera: Aneulophus, Nectaropetalum, Pinacopodium, and Erythroxylum, which include species with highly valuable medicinal compounds. E. delagoense, E. emarginatum, and E. pictum are endemic to southern Africa and have great pharmaceutical potential based on their traditional uses. Previous studies have shown certain inconsistencies in terms of the presence or absence of tropane alkaloids in these species, resulting in a need for further research and clarification. Therefore, the aim of this study was to determine the seasonal variation of the immediate biosynthetic precursor of cocaine, the tropane alkaloid, ecgonine methyl ester in the three South African Erythroxylum species by means of gas chromatography–mass spectrometry, as well as to conduct a phytochemical screening for observing the presence of other potential compounds and tropane alkaloids. We found significant differences in tropane concentrations from the seasonal variation study, explaining the discrepancies in previous reports on its presence/absence in these species. Furthermore, we report for the first time on the occurrence of selected highly valuable tropane alkaloids in E. emarginatum currently used in ‘blockbuster medicine’.  相似文献   

7.
8.
Summary In wild-type Scopolia parvilfora (Solanaceae) tissues, only the roots express the enzyme putrescine N-methyltransferase (PMT; EC 2.1.1.53), which is the first specific precursor of the tropane alkaloids. Moreover, the tropanane alkaloid levels were the highest in the root (0.9 mg g−1 on a dry weight basis), followed by the stem and then the leaves. We metabolically engineered S. parviflora by introducing the tobacco pmt gene into its genome by a binary vector system that employs disarmed Agrobacterium rhizogenes. The kanamycin-resistant hairy root lines were shown to bear the pmt gene and to overexpress its mRNA and protein product by at least two-fold, as determined by polymerase chain reaction (PCR) and Northern and Western blottings, respectively. The transgenic lines also showed higher PMT activity and were morphologically aberrant in terms of slower growth and the production of lateral roots. The overexpression of pmt markedly elevated the scopolamine and hyoscyamine levels in the transgenic lines that showed the highest pmt mRNA and PMT protein levels. Thus, overexpression of the upstream regulator of the tropane alkaloid pathway enhanced the biosynthesis of the final product. These observations may be useful in establishing root culture systems that generate large yields of tropane alkaloids. These authors contributed equally to this paper (co-first authors).  相似文献   

9.
Scopolamine is widely used for its anticholinergic properties. Because of higher physiological activity and less side effects the world demand of scopolamine is estimated to be ten times greater than other anticholinergic agents, hyoscyamine and atropine. Since natural production is limited, alternatives are required to boost the production. We report the introduction of mouse odc gene of polyamine biosynthesis pathway which is also the primary pathway of tropane alkaloids in Datura innoxia. Polyamines, mainly putrescine, serve as the common metabolite for tropane alkaloids and nicotine. We have overexpressed odc gene to modulate the metabolic flux downstream and eventually achieved higher accumulation of scopolamine in transgenic plants. Among six independent transformed lines one line (O10) produced scopolamine (0.258 μg/g dry weight) almost six times higher than that produced by control plants (0.042 μg/g DW). To our knowledge, this is the first report of odc overexpression in D. innoxia leading to higher scopolamine yield.  相似文献   

10.
1-Deoxy-d-xylulose 5-phosphate (DXP) reductoisomerase (DXR; EC 1.1.1.267) catalyzes the first committed step of the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in plants. The present study describes the cloning and characterization of a cDNA encoding DXR from Salvia miltiorrhiza (designated as SmDXR, GenBank Accession No. FJ476255). Comparative and bioinformatic analyses revealed that SmDXR showed extensive homology with DXRs from other plant species. Phylogenetic tree analysis indicated that SmDXR belongs to the plant DXR superfamily and has the closest relationship with DXR from Lycopersicon esculentum. Tissue expression pattern analysis revealed that SmDXR expressed strongly in leaves, followed by roots and stems, implying that SmDXR was a constitutively expressed gene. This is the first report on the mRNA expression profile of genes encoding key enzymes involved in tanshinone biosynthetic pathway in Salvia plants. The expression profiles revealed by RT-PCR under different elicitor treatments such as methyl jasmonate (MJ) and salicylic acid (SA) were compared for the first time, and the results revealed that SmDXR was an elicitor-responsive gene, which could be induced by SA in leaves and inhibited by exogenous MJ in three tested tissues. The functional color assay in Escherichia coli showed that SmDXR could accelerate the biosynthesis of lycopene, indicating that SmDXR encoded a functional protein. The characterization, expression profile and functional analysis of SmDXR gene will be helpful for further study in the role of SmDXR in tanshinones biosynthetic pathway and metabolic engineering to increase tanshinones production in S. miltiorrhiza.  相似文献   

11.
The cDNAs encoding putrescine N-methyltransferase (PMT), which catalyzes the S-adenosylmethionine-dependent N-methylation of putrescine at the first committed step in the biosynthetic pathways of tropane alkaloids, were isolated from Atropa belladonna and Hyoscyamus niger. These PMTs, however, lacked the N-terminal tandem repeat arrays previously found in Nicotiana PMTs. AbPMT1 RNA was much more abundant in the root of A. belladonna than was AbPMT2 RNA. The 5'-flanking region of the AbPMT1 gene was fused to the beta-glucuronidase (GUS) reporter gene and transferred to A. belladonna. Histochemical analysis showed that GUS is expressed specifically in root pericycle cells and that the 0.3-kb 5'-upstream region was sufficient for pericycle-specific expression. Treatment of A. belladonna roots with methyl jasmonate did not up-regulate the expression of GUS or endogenous AbPMT genes. The regulation of tropane alkaloid biosynthesis is discussed and compared with that of nicotine biosynthesis.  相似文献   

12.

Plant cell and organ cultures via the implementation of effective elicitation strategies can offer attractive biotechnological platforms for the enhanced production of phytochemicals of pharmaceutical interest. For the first time, the elicitation of exogenous signal molecules was conducted to enhance the production of pharmacologically active alkaloids and flavonoids in Isatis tinctoria L. hairy root cultures (ITHRCs). ITHRCs III and V correspondingly possessing high alkaloid and flavonoid productivity were adopted for elicitation treatments. The maximum accumulation of alkaloids in ITHRCs III elicited by 142.61 µM salicylic acid for 28.18 h and flavonoids in ITHRCs V elicited by 179.54 µM methyl jasmonate for 41.87 h increased 5.89- and 11.21-folds as compared with controls, respectively. Moreover, expressions of 11 genes involved in alkaloid and flavonoid biosynthetic pathways were significantly up-regulated following elicitation, among which YUCCA, CHI and F3′H genes might play a crucial role in the target phytochemical augmentation. Overall, two effective elicitation protocols were provided here to improve the yields of bioactive alkaloids and flavonoids in ITHRCs, which was useful for the scale-up production of these valuable compounds to meet the demands for natural bioactive ingredients by pharmaceutical industries.

  相似文献   

13.
This work presents a study of the effect of different phytohormones on growth and accumulation of terpenoid indole alkaloids in a Catharanthus roseus cell suspension culture upon feeding with the precursors loganin and tryptamine. The phytohormones tested were 2,4-dichlorophenoxyacetic acid, salicylic acid, methyl jasmonate and abscisic acid. Among these only methyl jasmonate enhanced the accumulation of alkaloids. Abscisic acid did not enhance the accumulation of alkaloids but delayed the catabolism of strictosidine.  相似文献   

14.
Shortly after germination, alkaloids are rapidly synthesized in seedlings of both Catharanthus roseus L.G. Don and Cinchona ledgeriana Moens. The effect of low-level, atmospheric methyl jasmonate on this developmentally controlled process was studied. In both species, about 1 p.p.m. of methyl jasmonate vapor significantly enhanced alkaloid synthesis during germination, resulting in a doubling of alkaloid content in seedlings. Treatment with methyl jasmonate resulted in increased allocation of alkaloid precursors and in enhanced enzyme activities in alkaloid biosynthesis. The ability of methyl jasmonate to increase alkaloid biosynthesis decreased with age of the seedlings. Susceptibility of the process to methyl jasmonate was confined to a narrow time interval where the developmentally regulated onset of alkaloid synthesis occurred. When methyl jasmonate was applied at later developmental stages, its ability to enhance alkaloid content in the seedlings declined sharply.  相似文献   

15.
Lu Y  Wang H  Wang W  Qian Z  Li L  Wang J  Zhou G  Kai G 《Molecular biology reports》2009,36(7):1845-1852
A new full-length cDNA encoding strictosidine synthase (designated as OjSTR, GenBank Accession No. 1087598), which catalyzes a committed step in camptothecin biosynthetic pathway, was isolated from young leaves of Ophiorrhiza japonica for the first time. OjSTR was 1,258 bp and contained a 1,062 bp open reading frame encoding a deduced protein of 353 amino acid residues. Sequence analyses showed that OjSTR had high homology with other STRs from some TIA-producing plants. Phylogenetic tree analysis showed that OjSTR had closest relationship with STR from O. pumila. Tissue expression pattern analysis revealed that OjSTR constitutively expressed in all the tested tissues at different levels, which was high in flower, moderate in leaf and root, low in stem. Expression profiles under plant defense signals such as methyl jasmonate and salicylic acid were investigated, and the results revealed that expression of OjSTR was all induced, implying that OjSTR was high elicitor responsive.  相似文献   

16.
17.
The present research investigates the effect of Piriformospora indica, an endophytic fungus, on production of protoberberine alkaloids in in vitro cell suspension cultures of Tinospora cordifolia. Although T. cordifolia produces a number of protoberberine alkaloids, the simultaneous production of jatrorrhizine and palmatine in cell suspension cultures of T. cordifolia was observed for the first time with the use of P. indica as biotic elicitor. The cells in suspension cultures were elicitated with P. indica on 14th day of culture initiation and the production of the alkaloids on 16th day was monitored. The autoclaved as well as filter sterilized cultures of P. indica were used in addition to the use of fungal cell extract. The elicitor effect of P. indica was analyzed and compared with other abiotic elicitor (methyl jasmonate) and biotic elicitors (chitin and chitosan). The culture filtrate of P. indica in the filter sterilized (5.0% v/v) form gave better response with enhanced 4.2-fold production of jatrorrhizine (10.72 mg/g DW) and 4.0-fold production of palmatine (4.39 mg/g DW). The production of these compounds was at par with that achieved in methyl jasmonate (at 250 µM) treated cell suspension cultures.  相似文献   

18.
19.
20.
The use of nanotechnology and biotechnology to improve the production of plant bioactive compounds is growing. Hyoscyamus reticulatus L. is a major source of tropane alkaloids with a wide therapeutic use, including treatment of Parkinson's disease and to calm schizoid patients. In the present study, hairy roots were obtained from two‐week‐old cotyledon explants of H. reticulatus L. using the A7 strain of Agrobacterium rhizogenes. The effects of different concentrations of the signaling molecule nano‐zinc oxide (ZnO) (0, 50, 100 and 200 mg/L), with three exposure times (24, 48 and 72 h), on the growth rate, antioxidant enzyme activity, total phenol contents (TPC), tropane alkaloid contents and hyoscyamine‐6‐beta‐hydroxylase (h6h) gene expression levels were investigated. Growth curve analysis revealed a decrease in fresh and dry weight of ZnO‐treated hairy roots compared to the control. ANOVA results showed that the antioxidant activity of the enzymes catalase, guaiacol peroxidase and ascorbate peroxidase was significantly higher in the ZnO‐treated hairy roots than in the control, as was the TPC. The highest levels of hyoscyamine (37%) and scopolamine (37.63%) were obtained in hairy roots treated with 100 mg/L of ZnO after 48 and 72 h, respectively. Semi‐quantitative RT‐PCR analysis revealed the highest h6h gene expression was in hairy roots treated with 100 mg/L of ZnO after 24 h. It can be concluded that ZnO is as an effective elicitor of tropane alkaloids such as hyoscyamine and scopolamine due to its enhancing effect on expression levels of the biosynthetic h6h gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号