首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 263 毫秒
1.
2.
The dispersal of Morus macroura seeds by two species of frugivorous bats ( Rousettus leschenaulti and Cynopterus sphinx ) was studied in a forest at Xishuangbanna Tropical Botanical Garden in Southwest China from March to May 2005. Feeding roosts were identified within 500 m around parent trees and the types and number of seed loads under each roost were recorded. We found feeding roost density decreased with increasing distance from the parent, but found no correlation between distance and seed deposition. The effect of bat digestion on seed germination was investigated, and we found that germination percentage of all treatments involving ingestion by bats was significantly lower than control seeds and some germination parameters of seeds from different treatments changed.  相似文献   

3.
Seed dispersal and pollination by animals play a crucial role in the maintenance of forest ecosystems worldwide. Frugivorous bats are important pollen and seed dispersers in both the Palaeo- and Neotropics, and at least 300 plant species are known to rely on Old World fruit bats (Megachiroptera, Pteropodidae) for their propagation. However, rapid food transit times (generally less than 30 minutes) in frugivorous bats have been thought to limit their ability to disperse seeds to just a few tens of kilometres. Here we demonstrate regular daytime (greater than 12 hours) retention of food and viable fig seeds (Ficus, Moraceae) in the gut of the Old World fruit bat Cynopterus sphinx: a behaviour not previously reported for any frugivorous bat. Field observations indicate that this behaviour also occurs in other genera. Old World fruit bats are highly mobile and many species undertake considerable foraging and migration flights. Our findings indicate that Old World fruit bats have the potential to disperse small seeds hundreds of kilometres. This necessitates a reappraisal of their importance in transporting zoochorous seeds to remote areas and facilitating gene flow between isolated populations of plants, both within mainlands and across ocean barriers.  相似文献   

4.
Seed passage through the guts of bats potentially influences germination in different ways: physically, chemically and biologically. To evaluate the influence of a Neotropical bat on the seed germination of four pioneer plant species, an experiment was conducted. Considering the positive influence of bats on germination and the possibility of observing non-viability caused by microorganisms, we hypothesized that (i) seeds subjected to passage through bat guts without the influence of microorganisms have a higher germination potential. Considering the different ecological requirements for the germination of plant species, we also hypothesized that (ii) the four plant species present different germination parameters. The germination of seeds from feces and fruits in the presence and absence of microorganisms was compared for each plant species and among the four plant species. The ingestion of seeds by bats and the presence of microorganisms either improved or did not influence the germination parameters of plants, but the direction of the effects did not support the hypothesis in all cases. The germination parameters differed among most plant species except between Ficus adhatodifolia and F. guaranitica. Our findings indicate that the influence of bats on seeds depends on the microorganisms and singularities of plant species.  相似文献   

5.
Neotropical frugivorous bats display a trophic structure composed of bat species with dietary preferences of core plant taxa (Artibeus-Ficus  +  Cecropia, Carollia-Piper, Sturnira- Solanum  +  Piper). This structure is hypothesized to be an ancestral trait, suggesting that similar diets would be observed throughout a species' range. However, most evidence comes from lowlands where data from montane habitats are scarce. In high mountain environments both diversity of bats and plants decreases with altitude; such decline in plant diversity produces less plants to feed from, which should ultimately affect the trophic structure of frugivorous bats in mountain environments. Here, we present a comprehensive review of the diet of frugivorous bats in Neotropical montane environments and evaluate their trophic structure in middle and higher elevations by combining a literature database with field data. We use the concept of modularity to test whether frugivorous montane bats have dietary preferences on core plant taxa. Our database revealed 47 species of montane bats feeding on 211 plant species. We find that the networks are modular, reflecting the trophic structure previously reported. We also found that in highlands the tribe Ectophyllini are Cecropia  +  Cavendishia-specialists rather than Ficus-specialists, and we describe new interactions reflecting 14 species of plants, including three botanical families previously not reported to be consumed by bats.  相似文献   

6.
In Neotropical regions, fruit bats are among the most important components of the remaining fauna in disturbed landscapes. These relatively small-bodied bats are well-known dispersal agents for many small-seeded plant species, but are assumed to play a negligible role in the dispersal of large-seeded plants. We investigated the importance of the small tent-roosting bat Artibeus watsoni for dispersal of large seeds in the Sarapiquí Basin, Costa Rica. We registered at least 43 seed species > 8 mm beneath bat roosts, but a species accumulation curve suggests that this number would increase with further sampling. Samples collected beneath bat feeding roosts had, on average, 10 times more seeds and species than samples collected 5 m away from bat feeding roosts. This difference was generally smaller in small, disturbed forest patches. Species-specific abundance of seeds found beneath bat roosts was positively correlated with abundance of seedlings, suggesting that bat dispersal may influence seedling recruitment. Our study demonstrates a greater role of small frugivorous bats as dispersers of large seeds than previously thought, particularly in regions where populations of large-bodied seed dispersers have been reduced or extirpated by hunting.  相似文献   

7.
棕果蝠取食对两种榕树种子萌发行为的影响   总被引:1,自引:0,他引:1  
在实验室利用聚果榕(Fieus racemosa)和对叶榕(Fieus hispida)成熟的果实饲喂笼养棕果蝠(Rousettus leschenaulti),比较了不同处理的3组种子的萌发行为:(1)棕果蝠粪便中的种子;(2)被吐出的果渣中的种子;(3)成熟果实中的种子(对照)。棕果蝠取食行为显著影响了两种榕树种子的萌发过程,3种不同处理的种子萌发过程及最终萌发率(GP)之间都存在显著的差异。聚果榕种子经过棕果蝠消化道后GP显著降低,而对叶榕种子的GP显著提高。棕果蝠粪便中的聚果榕种子萌发开始(GS)和最短萌发时间(Tmin)均比对照种子延迟了2d,但其粪便中的对叶榕种子G5比对照种子提前了1d,Tmin提前了2d;与之相似,前者种子萌发比果实中种子提前2d达到萌发总量的50%(T50),但后者没有改变T50。不同种榕果果渣中的种子萌发行为也有重大差异:聚果榕果渣中种子的Tmin和T50均比对照种子延迟1d,GS没发生改变;而对叶榕果渣中种子的Tmin比对照种子提前了3d,GS提前1d,T50没有改变。棕果蝠取食两种榕果后在飞行过程中排泄,进而有效的散布种子;而且通过消化明显改变了种子萌发行为,使种子萌发类型更为多样,增加了种子在不同时空条件下萌发的可能性。  相似文献   

8.
The quantitative and qualitative aspects of seed dispersal by the western lowland gorilla (Gorilla gorilla gorilla) were investigated in Gabon. Fresh faeces were collected and washed to identify and count the seeds. Seed germinability after gut passage was estimated with trials in a nursery at the study site. To assess the impact of gut passage on germination success and delay, comparative trials were run with four treatments: (i) gut passed seeds cleaned of faeces, (ii) gut passed seeds within a faecal matrix, (iii) seeds from fresh fruits surrounded by pulp, and (iv) seeds from fresh fruits cleaned of pulp. The analysis of 180 faecal units resulted in the identification of 58 species of seed. Germination trials were realized for 55 species and the mean germination success reached 46%. The impact of gut passage was investigated for Santiria trimera and Chrysophyllum lacourtianum; both species displayed higher germination success after ingestion. This study shows that gorillas effectively disperse seeds of numerous plant species, many of which provide timber or nontimber forest products or are typical of Gabonese forests. Considering the high‐quality of gorilla deposition sites, gorillas is thought to play a unique role in the dynamics of Central African forest.  相似文献   

9.
Seed dispersal by vertebrate animals is important for the establishment of many fleshy-fruited plant species. Different frugivorous species can provide different seed dispersal services according to their specific dietary preferences as well as behaviour and body traits (e.g. body size and beak size of birds). Our aim was to study redundancies and complementarities in seed dispersal and germination between the two main native seed disperser birds and the introduced silver pheasant Lophura nycthemera in the temperate Patagonian forests. For this, we collected fresh droppings from the studied species and analyzed seed content. We conducted germination trials for four plant species common in bird droppings; two native species (Aristotelia chilensis and Rhaphithamnus spinosus) and two invasive non-native species (Rubus ulmifolius and Rosa rubiginosa). Both native frugivorous birds and the silver pheasant dispersed fruits of non- native fleshy-fruited plants, but their roles were non-redundant in terms of species dispersed and effect on seed germination. The silver pheasant dispersed a proportionally high number of non-native seeds, while native birds dispersed a high number of native seeds. In addition, the effect of gut treatment in seed germination differed between seed dispersers. Native birds promoted the germination for the two native plant species studied, while the silver pheasant promoted the germination of one non-native plant. This suggests that seed dispersal by the silver pheasant may contribute to the spread of some invasive fleshy-fruited plants in the ecosystems that otherwise would not be dispersed by any other bird. The understanding of redundancies and complementarities on seed dispersal and germination between native and introduced birds will allow improving the management of fleshy-fruited non-native plants.  相似文献   

10.
We combined laboratory and nursery experiments to analyse the effectiveness of sheep as endozoochorous seed dispersers of six native shrubby Cistaceae species collected in SE Spain (Helianthemum apenninum (L.) Mill., H. violaceum (Cav.) Pers., Fumana ericoides (Cav.) Grand., F. thymifolia (L.) Spach, Cistus monspeliensis L. and C. laurifolius L.), considering the main stages after seed ingestion, i.e. seed recovery, seed germination, seedling emergence and early seedling establishment. Seed recovery after gut passage was high (around 40%) for all the species, except F. thymifolia (12%). Most seeds (ca. 90%) were recovered within 48 h after ingestion for all the species, although seeds were still recovered up to 96 h after ingestion. Gut passage increased germination up to seven-fold compared to non-ingested seeds. Furthermore, seedling emergence from seeds contained in pellets was overall similar (intact pellets) to or higher (crumbled pellets) than emergence from seeds without dung. Survival of emerged seedlings and mass of seedlings after 20 days were not reduced by dung. Sheep act therefore as effective dispersers of these Cistaceae species by scattering seeds and promoting germination, while faeces do not hamper seedling establishment. We conclude that the interaction between herbivorous ungulates and these dry-fruited species may be considered a mutualism qualitatively similar to the mutualism between frugivorous vertebrates and fleshy-fruited plants.  相似文献   

11.
Aim To test whether ingestion by endemic frugivores differentially affects the seed germination time, germination percentage and seedling survival of endemic, native and exotic fleshy fruited plant species, and to identify the principal processes and attributes driving such effects. Location Round Island, Mauritius. Methods We conducted a germination and seedling survival experiment for 3 months to test whether ingestion (gut passage and deposition in faeces) by the endemic Telfair’s skink (Leiolopisma telfairii) had a differential effect on the germination time, germination percentage and seedling survival of two endemic, four native and two exotic fleshy fruited plant species. To assess the importance of factors involved in the ingestion process, we used a factorial design with gut passage (gut‐passed vs. not gut‐passed), depulping (whole fruit vs. manually depulped seed) and the presence of faecal material (faeces vs. without faeces). In addition, the roles of species‐specific traits, seed size and deposition density (average number of seeds per faeces) were examined. Results Exotic species had a higher germination percentage than indigenous (native and endemic) species when not ingested. Following skink ingestion, there was no longer a difference, as ingestion enhanced germination percentage most in endemic species. The exotic species still germinated faster overall than the indigenous species, despite ingestion accelerating the germination time of endemics. However, ingestion strongly reduced seedling survival of the exotic species, while having no negative effect on the survival of indigenous seedlings. Overall, ingested indigenous seeds were more likely to germinate and the seedlings more likely to survive than ingested exotic seeds and seedlings. Seed size, deposition density and the removal of fruit pulp by either manual depulping or gut passage were important predictors of germination time, germination percentage and seedling survival. Main conclusions These endemic frugivores can enhance the competitiveness of endemic compared with exotic fleshy fruited plants at the critical germination and seedling establishment stage. Consequently, conservation and restoration of mutualistic endemic plant–animal interactions may be vital to mitigating the degradation of habitats invaded by exotic plants, which is of particular relevance for island ecosystems in which large numbers of endemics are threatened by exotic invaders.  相似文献   

12.
Summary Dietary overlap and competition between frugivorous birds and bats in the Neotropics have been presumed to be low, but comparative data have been lacking. We determined the diets of volant frugivores in an early successional patch of Costa Rican wet forest over a one month period. Ordination of the diet matrix by Reciprocal Averaging revealed that birds and bats tend to feed on different sets of fruits and that diets differed more among bat species than among bird species. However, there was overlap between Scarlet-rumped Tanagers and three Carollia bat species on fruits of several Piper species which comprised most of the diet of these bats. Day/night exclosure experiments on P. friedrichsthalli treetlets provided evidence that birds deplete the amount of ripe fruit available to bats. These results indicate that distantly related taxa may overlap in diet and compete for fruit, despite the apparent adaptation of animal-dispersed plant species for dispersal by particular animal taxa.  相似文献   

13.
To assess the impact of bats on seed dispersal in a tropical mature forest (Nouragues, French Guiana), we conducted a bat exclusion experiment and tested the hypotheses that an artificial reduction in the abundance of bats would result in: (1) a decrease in seed species diversity, at the community level; and (2) an increase in seed limitation (a failure of seeds to reach all suitable sites for germination) at the species level. Seed rain was sampled in two contiguous forest plots for a total of 120 d, using 49 seed traps (1 m2) arranged in 7 × 7 grids and spaced at 5-m intervals. Using mist nets, bat activity was reduced in one forest plot for a total of 60 nights. Thirty-nine plant species, or species groups, likely to be consumed and dispersed by bats, were collected within a total sample of 50,063 seeds. The overall seed rain was dominated by epiphytic Araceae and Cyclanthaceae (83.3%) and tree species within the genera Cecropia and Ficus (16.0%). Seeds from bat-dispersed shrubs and treelets ( Piper , Solanum , and Vismia ) were relatively rare (0.7%). The bat exclusion resulted in a 30.5 percent reduction in seed species richness and increased seed limitation for most of the species sampled. Seed limitation was caused mainly by a reduced seed rain (seed source limitation) rather than a decrease in seed dispersal uniformity (seed dispersal limitation). Therefore, bat-dispersed plants with low seed production are likely to be particularly affected by a decline in bat abundance, as a result of anthropogenic change.  相似文献   

14.
Bats play an important role in the ecosystem as seed dispersers, pollinators and pest controllers. In particular, frugivorous bats are important for regeneration processes in open and degraded areas, because they disperse the seeds of pioneer plant species, which are essential for succession. Depending on the type of habitat that is established at the fragment edge, resources and bat movement patterns toward open areas can be affected. The structure and composition of bats was compared between two ‘interior-edge-pasture’ gradients, in an Andean forest fragment located at the Reserva Natural la Montaña del Ocaso (Quindío, Colombia). The two edge-types considered were forest-edge and bamboo-edge (Guadua angustifolia, Poaceae), both located in the same fragment. Bat abundance was significantly different in the two edge habitats. The forest-edge is a soft edge, in that it allows bat species to move from the interior of the forest to the pasture in front of it. In contrast, the bamboo-edge can be defined as semi-permeable, because it allows less movement of species and individuals from the interior to the pasture. Here we evaluate the possible effects of habitat edge type on bat movement in degraded areas in the main coffee producing region of Colombia.  相似文献   

15.
To relate differences in phenological strategies of a group of closely related plants to biotic (pollinators, dispersers) and abiotic (water, light) factors, we studied leafing, flowering, and fruiting phenology of 12 species of Piper (Piperaceae) in a neotropical lowland forest in Panama for 28 months. We asked how Piper may partition time and vertebrate frugivores to minimize possible competition for dispersal agents. Based on habitat preferences and physiological characteristics we discriminate between forest Piper species (eight species) and gap Piper species (four species). Forest Piper species flowered synchronously mostly at the end of the dry season. Gap Piper species had broader or multiple flowering peaks distributed throughout the year with a trend towards the wet season. Both groups of Piper species showed continuous fruit production. Fruiting peaks of forest Piper species were short and staggered. Gap Piper species had extended fruiting seasons with multiple or broad peaks. Both groups of Piper species also differed in their time of ripening and disperser spectrum. Forest Piper species ripened in late afternoon and had a narrow spectrum consisting mainly of two species of frugivorous bats: Carollia perspicillata and C. castanea (Phyllostomidae). Fruits of gap Piper species, in contrast, ripened early in the morning and were eaten by a broader range of diurnal and nocturnal visitors, including bats, birds, and ants. We conclude that the differences in flowering phenology of forest and gap Piper species are primarily caused by abiotic factors, particularly the availability of water and light, whereas differences in fruiting patterns are mostly influenced by biotic factors. The staggered fruiting pattern of forest Piper species may reflect competition for a limited spectrum of dispersers. The long and overlapping fruiting periods of gap Piper species are associated with a larger spectrum of dispersers and may be a strategy to overcome the difficulty of seed dispersal into spatially unpredictable germination sites with suitable light conditions.  相似文献   

16.
The influence of fruit ingestion by the bat, Sturnira lilium, on germination of the seeds of the tree Solanum riparium was studied in a secondary rain forest in northwestern Argentina. Bat frequencies in disturbed areas were analyzed by mist net captures. Germination rates were determined for seeds collected from trees and bat feces. S. lilium was the most abundant fruit bat in the study area. Fruit digestion and the passage of seeds through the intestine did not significantly affect germination in S. riparium. In this case the fruit bats, therefore, probably provide only seed dispersal.  相似文献   

17.
Many invasive plant species have fleshy fruits that are eaten by native frugivorous birds which disperse their seeds and may facilitate their germination, playing an important role in plant invasion success. The fleshy‐fruited shrub Cotoneaster franchetii (Rosaceae) is an important invasive alien in the mountainous regions of central Argentina. To determine the role of avian frugivorous in fruit removal of this species, we conducted a frugivore exclusion experiment including bagged and unbagged branches in 75 plants of C. franchetii. At the end of the dispersal period, we compared the percentage of missing fruits (removed by birds + naturally dropped) in unbagged branches with the percentage of naturally dropped fruits in bagged branches. To assess whether any mechanism acting on seeds during their passage through bird guts (de‐inhibition by pulp removal and/or seed scarification) affects seed germination of this species, we compared percentage and speed of germination among seeds obtained from faeces of the native frugivorous Turdus chiguanco, from manually de‐pulped fruits, and from intact fruits. The percentage of missing fruits per shrub in unbagged branches was significantly higher than the percentage of naturally dropped fruits in bagged branches, suggesting that frugivorous birds play an important role in fruit removal of C. franchetii in the study area. Seeds from bird faeces and from manually de‐pulped fruits germinated in higher percentage and faster than seeds from intact fruits. Germination percentage and speed of seeds from manually de‐pulped fruits were significantly higher than those of gut‐passed seeds. These results indicate that T. chiguanco increases and accelerates seed germination of C. franchetii through pulp removal, but not through seed scarification. Overall, our findings indicate that native frugivorous birds facilitate the dispersal and germination success of C. franchetii, likely playing an important role in its invasion throughout the mountainous region of central Argentina.  相似文献   

18.
The loss of largest-bodied individuals within species of frugivorous animals is one of the major consequences of defaunation. The gradual disappearance of large-bodied frugivores is expected to entail a parallel deterioration in seed dispersal functionality if the remaining smaller-sized individuals are not so effective as seed dispersers. While the multiple impacts of the extinction of large bodied species have been relatively well studied, the impact of intraspecific downsizing (i.e. the extinction of large individuals within species) on seed dispersal has rarely been evaluated. Here we experimentally assessed the impact of body-size reduction in the frugivorous lizard Gallotia galloti (Lacertidae), an endemic species of the Canary Islands, on the seed germination patterns of two fleshy-fruited plant species (Rubia fruticosa and Withania aristata). Seed germination curves and the proportions of germinated seeds were compared for both plant species after being defecated by large-sized individuals and small-sized individuals. The data show that seeds of W. aristata defecated by larger-sized lizards germinated faster and in a higher percentage than those defecated by small-sized lizards, while no differences were found for R. fruticosa seeds. Our results suggest that disappearance of the largest individuals of frugivorous species may impair recruitment of some plant species by worsening seed germination. They also warn us of a potential cryptic loss of seed dispersal functionality on defaunated ecosystems, even when frugivorous species remain abundant.  相似文献   

19.
Forest disturbance causes specialization of plant-frugivore networks and jeopardizes mutualistic interactions through reduction of ecological redundancy. To evaluate how simplification of a forest into an agroecosystem affects plant-disperser mutualistic interactions, we compared bat-fruit interaction indexes of specialization in tropical montane cloud forest fragments (TMCF) and shaded-coffee plantations (SCP). Bat-fruit interactions were surveyed by collection of bat fecal samples. Bat-fruit interactions were more specialized in SCP (mean H2 '' = 0.55) compared to TMCF fragments (mean H2 '' = 0.27), and were negatively correlated to bat abundance in SCP (R = -0.35). The number of shared plant species was higher in the TMCF fragments (mean = 1) compared to the SCP (mean = 0.51) and this was positively correlated to the abundance of frugivorous bats (R= 0.79). The higher specialization in SCP could be explained by lower bat abundance and lower diet overlap among bats. Coffee farmers and conservation policy makers must increase the proportion of land assigned to TMCF within agroecosystem landscapes in order to conserve frugivorous bats and their invaluable seed dispersal service.  相似文献   

20.
Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H’) was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests’ structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号