首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims The use of exotic species as taxon substitutes to restore lost ecological interactions is currently hotly debated. Aldabrachelys gigantea giant tortoises have recently been introduced to three islands in the Mascarene archipelago (Ile aux Aigrettes, Round Island and Rodrigues) to resurrect herbivory and seed dispersal functions once performed by extinct giant tortoises. However, potential unintended impacts by frugivore substitutes on native ecosystems, e.g. whether they will facilitate the germination of exotic plant species, are largely unknown. We investigated whether A. gigantea introduced to Rodrigues in 2006 could enhance the germination percentage of four widespread fleshy-fruited exotic species on the island. Using germination trials to forecast unintended impacts that could arise from the introduction of a frugivorous taxon substitute enables conservation managers to limit potential adverse negative interactions before they occur.Methods In germination trials that ran over 4 months, we investigated the effects of ingestion (gut passage and deposition in faeces) by sub-adult and adult A. gigantea on the germination percentage of four exotic fleshy-fruited plant species introduced to Rodrigues. We fed fruits of these plant species to sub-adult and adult A. gigantea to test how variation in age and size of the frugivore would affect seed germination. Feeding of distinctly coloured plastic pellets together with the fruits allowed us to test for individual tortoise effects on seed germination.Important findings Ingestion by A. gigantea increased the percentage of seeds germinating of Mimusops coriacea and Lantana camara, but not percentage of germination of Veitchia merrillii or Wikstroemia indica. Seeds were more likely to germinate following ingestion by sub-adult rather than adult tortoises, which may be a consequence of the shorter gut passage time observed for sub-adults. Our results demonstrate that introduced frugivorous taxon substitutes could facilitate germination of exotic and invasive plants and highlight the need for conservation managers to weigh the risk of taxon substitutes potentially facilitating the germination and recruitment of exotic fleshy-fruited plants against the benefit of restoring lost seed dispersal functions of threatened indigenous plants. Our findings also highlight the importance of considering age and size variation in frugivores, in particular in long-lived taxa such as giant tortoises, when studying ingestion effects on the germination performance of plants.  相似文献   

2.
Frugivorous birds are among the most important consumers of fleshy fruits particularly in sub-tropical and tropical forest ecosystems. Whether or not such plant–frugivore interactions contribute to germination enhancement is still a subject of much debate. We tested the effect of gut treatment by four captive species of avian frugivores in comparison to manually depulped seeds and whole fruits on seedling emergence and germination probability of seeds from sixteen plant species in South Africa. Moreover, we determined whether fruit weight of each plant species affected germination patterns. Across plant species, a total of 2795 seeds were planted, of which 50% germinated. Both seedling emergence and germination probability neither differed among the bird species nor in comparison to manually depulped seeds or whole fruits. Further, seedling emergence and germination probability were both unaffected by fruit weight. However, the germination probability of all treatments increased similarly with increasing number of weeks after planting. Overall, these results suggest that seed depulping, neither by gut treatment nor manually improved germination of seeds, irrespective of their fruit weights. Thus, the major contribution of frugivores to forest regeneration may be more confined in transporting seeds away from the mother plant than in germination enhancement per se.  相似文献   

3.
Effects of macaque ingestion were examined on both seed destruction during passage through the gut and germination enhancement after defecation, using typically endozoochorous fruits of Eurya emarginata. Mechanical and chemical actions associated with the ingestion were also examined. A fruit-feeding experiment found that 4.4% of ingested seeds could pass intact through the gut of Japanese macaques. No significant difference was detected between the seed passage percentages of six Eurya emarginata trees despite individual variation in seed weight and hardness, implying that mastication is a major factor in the severe seed mortality during the gut passage. Seeds in intact fruits showed lower germination percentage and longer germination delay than seeds with the flesh removed artificially. In contrast, no enhancement in germination was observed after passage through the gut. A series of seed treatment experiments indicated that seed abrasion did not affect germination percentage, though acid and heat-exposure enhanced the germination. The two factors, severe seed destruction and germination enhancement by flesh removal, opposed each other. With the survival proportion of uningested seeds taken as 1.0, the survival proportion of ingested seeds was estimated as 0.49 with the 95% confidence interval of 0.14–1.46, which indicated no significant difference between the proportions of ingested- and uningested-seeds.  相似文献   

4.
There is increasing evidence that restoration ecologists should be most concerned with restoring species interactions rather than species diversity per se [1]. Rewilding with taxon substitutes, the intentional introduction of exotic species to replace the ecosystem functions of recently extinct species, is one way to reverse ecosystem dysfunction following the loss of species interactions [2]. This is highly controversial [3], in part because of a lack of rigorous scientific studies [4]. Here we present the first empirical evidence of an in situ rewilding project undertaken as a hypothesis-driven ecosystem management option. On Ile aux Aigrettes, a 25-hectare island off Mauritius, the critically endangered large-fruited endemic ebony, Diospyros egrettarum (Ebenaceae), was seed-dispersal limited after the extinction of all native large-bodied frugivores, including giant tortoises. We introduced exotic Aldabra giant tortoises, Aldabrachelys gigantea, to disperse the ebony seeds. Not only did the tortoises ingest the large fruits and disperse substantial numbers of ebony seeds, but tortoise gut passage also improved seed germination, leading to the widespread, successful establishment of new ebony seedlings. Our results demonstrate that the introduction of these exotic frugivores is aiding the recovery of ebonies. We argue for more reversible rewilding experiments to investigate whether extinct species interactions can be restored.  相似文献   

5.
Many invasive plant species have fleshy fruits that are eaten by native frugivorous birds which disperse their seeds and may facilitate their germination, playing an important role in plant invasion success. The fleshy‐fruited shrub Cotoneaster franchetii (Rosaceae) is an important invasive alien in the mountainous regions of central Argentina. To determine the role of avian frugivorous in fruit removal of this species, we conducted a frugivore exclusion experiment including bagged and unbagged branches in 75 plants of C. franchetii. At the end of the dispersal period, we compared the percentage of missing fruits (removed by birds + naturally dropped) in unbagged branches with the percentage of naturally dropped fruits in bagged branches. To assess whether any mechanism acting on seeds during their passage through bird guts (de‐inhibition by pulp removal and/or seed scarification) affects seed germination of this species, we compared percentage and speed of germination among seeds obtained from faeces of the native frugivorous Turdus chiguanco, from manually de‐pulped fruits, and from intact fruits. The percentage of missing fruits per shrub in unbagged branches was significantly higher than the percentage of naturally dropped fruits in bagged branches, suggesting that frugivorous birds play an important role in fruit removal of C. franchetii in the study area. Seeds from bird faeces and from manually de‐pulped fruits germinated in higher percentage and faster than seeds from intact fruits. Germination percentage and speed of seeds from manually de‐pulped fruits were significantly higher than those of gut‐passed seeds. These results indicate that T. chiguanco increases and accelerates seed germination of C. franchetii through pulp removal, but not through seed scarification. Overall, our findings indicate that native frugivorous birds facilitate the dispersal and germination success of C. franchetii, likely playing an important role in its invasion throughout the mountainous region of central Argentina.  相似文献   

6.
The capacity of seeds to germinate after ingestion by frugivores is important for the population dynamics of some plant species and significant for the evolution of plant-frugivore interactions. In this paper the effects of different vertebrates on seed germination of nearly 200 plant species are reviewed, searching for patterns that predict the circumstances in which germination of seeds is enhanced, inhibited, or unaffected by the passage through the digestive tract of a seed disperser. It was found that seed dispersers commonly have an effect on the germinability of seeds, or on the rate of germination, or both, in about 50% of the plants they consume, although the diversity of animal species tested so far is still rather low (42 bird species, 28 non-flying mammals, 10–15 bats, 12 reptiles, 2 fishes). Enhancement of germination occurred about twice as often as inhibition.

In spite of the morphological and physiological differences in their digestive tracts, the different animal groups tested have similar effects on seed germination, although non-flying mammals tend to influence germination slightly more often than the other groups. Data on fishes are still too scarce for any generalization. Seed retention time in the dispersers' digestive tract is one factor affecting germination, and helps to explain the variation in seed responses observed among plant species, and even within a species. However other factors are also important; for example, the type of food ingested along with the fruits may affect germination through its influence on chemical or mechanical abrasion of the seed coat. Seed traits such as coat structure or thickness may themselves be responsible for some of the variation in seed retention times. Seeds of different sizes, which usually have different transit times through frugivores, and seeds of either fleshy or dry fruits, show often similar germination response to gut passage.

Seeds of different plants species differ strongly in their germination response after ingestion, even by the same frugivore species. Congeneric plants often show little consistency in their response. Even within a species variation is found which can be related to factors such as the environmental conditions under which germination takes place, seed morphology, seed age, and the season when the seeds are produced.

The effect of gut passage on germination differs between tropical and temperate zones. Seed germination of both shrubs and trees (data on herbaceous species are still scarce) in the temperate zone is more frequently enhanced than in the tropics. This result supports the hypothesis that enhanced germination may be more advantageous in unpredictable or less constant environments. Significant differences in frugivore-mediated germination are also found among different life forms. In both tropical and temperate zones, trees appear to be consistently more affected than shrubs or herbs. This might be due to an overall higher thickness of the seed coats, or to a higher frequency of seed-coat dormancy in tree species.

The influence of frugivory upon the population dynamics of a species has to be evaluated relative to other factors that influence germination and seedling recruitment at a particular site. Whether seed ingestion by dispersers is really advantageous to a plant (as has commonly been assumed) can only be assessed if we also determine the fate of the ingested seeds under natural conditions, and compare it to the fate of seeds that have not been ingested.  相似文献   


7.
While fleshy‐fruited invasive alien plants are recognized as some of the worst invaders on a global scale, until recently, little consideration has been given to the frugivores that feed on these fruits and, more specifically, the fruit traits, which may influence this. We investigated a series of morphological and nutritive fruit traits for ca 30 species of fleshy‐fruited invasive alien and exotic species in South Africa. Invasive alien fruit traits were compared with comparable traits of a similar sample size of indigenous fleshy fruits, which occur in the same area. Finally, the similarity of traits for the same invasive alien species was compared with those fruits in Australia. Invasive alien fleshy fruits were similar in morphology, but greater in some nutritive aspects when compared with indigenous fruits. Furthermore, they were very similar in all aspects to their counterparts in Australia. Most seeds of invasive fleshy fruits were small and light, which may explain some of their invasive success, as benefits associated with small seededness may promote invasive potential. Nutritionally, most invasive alien fleshy‐fruits were hexose‐dominant, containing low lipid and nitrogen content. While frugivore preference trends remain to be formally investigated, this study provides insights into fruit traits, which may tentatively outline why invasive fruits are universally fed on and thus successfully spread.  相似文献   

8.
The dispersion and seedling establishment of pioneering plants can be favoured by the presence of frugivorous bats because the bats usually improve seed germination after ingestion. Although seed germinability is known to vary greatly after ingestion by different bats, the relative contribution of each bat species to seed germination within plant communities is poorly understood. In this study, we first determined the fauna of frugivorous bats in a semideciduous seasonal forest remnant in southern Brazil and subsequently identified the plant species of the seeds passed through their guts. Second, the germination performance (i.e., germination percentage and speed) of the seeds of three pioneering plants (Piper aduncum, Piper hispidinervum and Solanum granuloso-leprosum) ingested by the most abundant bats was compared with that of the non-ingested seeds (seeds collected from fruits). Additionally, the effects on seed germination of different bat species were compared. During one year, five species of frugivorous bats were caught, and the seeds of eleven identifiable plant species (not counting those of undetermined species) were found in their faeces. We found that the germination performance of the seeds of Piper species was significantly enhanced after ingestion by bats, whereas S. granuloso-leprosum seeds had neutral or reduced germinability when seeds in faeces were compared with pulp-removed seeds. Our results revealed that the bat species that were captured exerted different effects upon seed germination; such a disparity is expected to result in different rates of early establishment of these pioneer plants in tropical forests, most likely affecting forest composition and structure, particularly during the initial stages of succession.  相似文献   

9.
The quantitative and qualitative aspects of seed dispersal by the western lowland gorilla (Gorilla gorilla gorilla) were investigated in Gabon. Fresh faeces were collected and washed to identify and count the seeds. Seed germinability after gut passage was estimated with trials in a nursery at the study site. To assess the impact of gut passage on germination success and delay, comparative trials were run with four treatments: (i) gut passed seeds cleaned of faeces, (ii) gut passed seeds within a faecal matrix, (iii) seeds from fresh fruits surrounded by pulp, and (iv) seeds from fresh fruits cleaned of pulp. The analysis of 180 faecal units resulted in the identification of 58 species of seed. Germination trials were realized for 55 species and the mean germination success reached 46%. The impact of gut passage was investigated for Santiria trimera and Chrysophyllum lacourtianum; both species displayed higher germination success after ingestion. This study shows that gorillas effectively disperse seeds of numerous plant species, many of which provide timber or nontimber forest products or are typical of Gabonese forests. Considering the high‐quality of gorilla deposition sites, gorillas is thought to play a unique role in the dynamics of Central African forest.  相似文献   

10.
McKey's (1975) hypothesis that avian dispersers with a specialized gut provide higher quality seed dispersal than unspecialized frugivores was tested using grey mistletoe (Amyema quandang) fruits, and captive mistletoebirds (Dicaeum hirundinaceum) and spinycheeked honeyeaters (Acanthagenys refogularis) in arid South Australia. Mistletoebirds have a specialized gut, unlike spiny-cheeked honeyeaters. The gut passage time of A. quandang fruits through mistletoebirds was 820±29 s (mean±SE, n=188), compared to 2434±36 s (n=436) for honeyeaters. The seeds defecated by both bird species were deployed on twigs of host trees. Despite the longer retention time of fruit in the gut of honeyeaters, the germination percentage of seeds defecated by mistletoebirds (85% of 485 seeds) and honeyeaters (81% of 485 seeds) did not differ significantly 1 week after deployment. However, after 5 months, a significantly greater proportion of seedlings had established from seeds passed by mistletoebirds (42.7%) than from seeds defecated by honeyeaters (31.1%). The data support the notion that the more gentle treatment of seeds in the gut of specialized dispersers translates into higher seedling establishment.  相似文献   

11.
Summary Invasive plants are regarded as a major threat to biodiversity worldwide. Yet, in some cases, invasive plants now perform important ecological functions. For example, fleshy‐fruited invasive plants provide food that supports indigenous frugivore populations. How can the disparate goals of conservation versus invasive weed control be managed? We suggest using the fruit characteristics of the invasive plant to select replacement indigenous plants that are functionally similar from the perspective of frugivores. These could provide replacement food resources at sites where plants with these characteristics are part of the goal plant community and where such plants would not otherwise regenerate. Replacement plants could also redirect seed dispersal processes to favour indigenous, rather than invasive, plant species. We investigated the utility of this approach by ranking all indigenous fleshy‐fruited plant species from a region using a simple model that scored species based upon measures of fruit phenology, morphology, conspicuousness and accessibility relative to a target invasive species, Lantana (Lantana camara). The model successfully produced high scores for indigenous plant species that were used by more of the frugivores of Lantana than a random selection of plants, suggesting that this approach warrants further investigation.  相似文献   

12.
We combined laboratory and nursery experiments to analyse the effectiveness of sheep as endozoochorous seed dispersers of six native shrubby Cistaceae species collected in SE Spain (Helianthemum apenninum (L.) Mill., H. violaceum (Cav.) Pers., Fumana ericoides (Cav.) Grand., F. thymifolia (L.) Spach, Cistus monspeliensis L. and C. laurifolius L.), considering the main stages after seed ingestion, i.e. seed recovery, seed germination, seedling emergence and early seedling establishment. Seed recovery after gut passage was high (around 40%) for all the species, except F. thymifolia (12%). Most seeds (ca. 90%) were recovered within 48 h after ingestion for all the species, although seeds were still recovered up to 96 h after ingestion. Gut passage increased germination up to seven-fold compared to non-ingested seeds. Furthermore, seedling emergence from seeds contained in pellets was overall similar (intact pellets) to or higher (crumbled pellets) than emergence from seeds without dung. Survival of emerged seedlings and mass of seedlings after 20 days were not reduced by dung. Sheep act therefore as effective dispersers of these Cistaceae species by scattering seeds and promoting germination, while faeces do not hamper seedling establishment. We conclude that the interaction between herbivorous ungulates and these dry-fruited species may be considered a mutualism qualitatively similar to the mutualism between frugivorous vertebrates and fleshy-fruited plants.  相似文献   

13.
Figuerola  Jordi  Green  Andy J. 《Plant Ecology》2004,173(1):33-38
The ingestion of seeds by vertebrates usually affects the viability and/or germination rate of seeds. Increases in germination rate following passage through the vertebrate gut have often been assumed to be favourable for seedling survival and plant fitness, but this assumption has never been tested experimentally. Given that numbers of herbivorous waterfowl are higher in winter in Mediterranean wetlands, herbivory pressure there will be higher for early growing plants. In a factorial experiment we investigated the effects of seed ingestion by ducks (shoveler, Anas clypeata) on the survival of wigeongrass Ruppia maritima seedlings in the field in Doñana (south-west Spain), under differing exposures to herbivory by waterfowl and fish. We planted ingested and non-ingested seeds in December, using exclosures to protect half of them from herbivores. When they were protected inside exclosures, there was no difference between ingested and non-ingested seeds in the number of plants that survived until June-July. However, fewer plants survived from ingested seeds when exposed to natural levels of herbivory because they were exposed for longer than plants germinating from non-ingested seeds. In conclusion, increases in germination rate after ingestion are not necessarily beneficial for the plant, and the final outcome depends on complex interactions with other factors such as herbivore abundance.  相似文献   

14.
Fruit-eating animals can influence the germination success of seeds through transportation and handling. We experimentally tested the contribution of ingestion by the common fruit-eating bat, Artibeus jamaicensis (Phyllostomidae, Chiroptera), to the percentage and rate of seed germination of figs (Ficus, Moraceae), which are considered keystone species for many frugivores. We collected fruits from three species of native free-standing figs (subgenus Pharmacosycea: F. insipida, F. maxima and F. yoponensis) and three species of native strangler figs (subgenus Urostigma: F. nymphiifolia, F. obtusifolia and F. popenoei) on Barro Colorado Island, Panama. The germination success of seeds removed from fruit pulp either manually or by ingestion was very high (>92%), while seeds that were not removed from fruit pulp were destroyed by fast-growing fungi within a few days. The dynamics of seed germination were not influenced by ingestion, but differed between the two subgenera of figs. In free-standing figs, germination started significantly earlier (5.3 ± 0.7 days) than in strangler figs (8.6 ± 1.4 days). Furthermore, strangler seeds were covered with a sticky coating and their seedlings developed cotyledons faster than fine roots, in contrast to free-standing figs that showed the opposite pattern. Our results demonstrate that the germination of fig seeds is positively influenced by passage through the gut of A. jamaicensis. Furthermore, free-standing and strangler figs revealed differences in germination parameters that might be adaptive with respect to the suitability of microsites such as tree fall gaps or host trees for establishment.  相似文献   

15.
Black bears Ursus americanus are generally considered effective seed dispersal agents for fleshy‐fruited plants because they can consume hundreds of fruits at once and have large home ranges. Although seedlings can emerge from faecal piles, establishment of such seedlings seems to be infrequent. Removal of seeds from faeces by rodents is often considered seed predation. We show that removal of seeds from bear faeces by seed‐caching rodents in the Sierra Nevada, USA, represents a second phase of seed dispersal that benefits some fleshy‐fruited plants. Using Trail Master infrared cameras to photograph animals and scandium‐46, a gamma‐emitting radionuclide, to track seeds, we determined that deer mice Peromyscus maniculatus removed seeds from bear faeces and cached them in soil. Caches typically contained 1–3 seeds buried 5–10 mm deep. These seeds escaped several sources of mortality by being moved to relatively safe locations, but deer mice also eventually eat many of the cached seeds. A field germination study confirmed that seed burial increased seedling emergence. Rodents removed seeds in bear faeces more quickly than those in bird faeces in one year, but seeds in bird faeces were removed faster in another year. Results varied across two years, probably because of availability of alternative food sources or changes in deer mice population sizes. The two‐phase seed dispersal syndrome described here may be important in understanding seed dispersal by carnivores and large ungulates that produce large faecal deposits containing many relatively large seeds.  相似文献   

16.
Using field seed sowings, we assessed how four mammal species (Meles meles, Vulpes vulpes, Sus scrofa, and Oryctolagus cuniculus) influenced seed germination in three fleshy‐fruited Mediterranean shrubs (Corema album, Pyrus bourgaeana, and Rubus ulmifolius). We predicted that gut passage and removal away from mother plants would enhance the quantity, speed, and asynchrony of seed germination. Results showed that percent germination was altered by gut passage, but that the magnitude and even the direction of such effects varied according to plant and disperser species. Likewise, dispersal away from mother plants affected the percentage and germination speed in some species but not others. Gut passage increased asynchrony of germination in Rubus and Pyrus, and removal from the mother plant increased asynchrony in Rubus, which likely enhances plant fitness in unpredictable environments. Gut passage generally had a stronger effect on germination than removal away from mother plants, but for some species both factors were similarly influential. Therefore, the combined effects of both seed dispersal services varied individually among fruit and frugivore species, leading to unusually high functional diversity in this seed dispersal mutualism.  相似文献   

17.
Passage rate through the digestive tracts of zebu cattle and sheep, and subsequent germination of egested seeds of four woody species from the Sudanian savanna, Acacia dudgeoni, Acacia seyal, Burkea africana and Prosopis africana, were studied. The result indicates large differences in passage rate among woody species, as well as between animals. The values ranged from 46% to 87% for seeds ingested by cattle while the lowest passage rate was 2.3% and the highest being 74% for seeds ingested by sheep. Among plant species, seeds of Prosopis africana had the highest passage rate through the digestive tract of both cattle and sheep. Seed passage through the gut showed a significant positive correlation with seed mass and thickness for cattle and sheep, respectively. The gut treatment and the retention time in the gut did not improve germination capacity and the speed of germination of dormant seeds. For non-dormant seeds of Acacia dudgeoni, the germination capacity was higher for seeds ingested by cattle than sheep. The speed of germination was also significantly higher for egested seeds than the control. It can be concluded that large herbivores could play an essential role in long distance dispersal of seeds. Gut treatment alone was not effective in breaking seed coat-imposed dormancy, although it enhanced the rate of germination of non-dormant seeds. To get a complete picture of the effect of frugivore on the release of seed dormancy, the combined effect of initial mastication and subsequent gut treatment needs to be investigated.  相似文献   

18.
The marula (Sclerocarya birrea Hochst.) is an important forage and fruit tree in African savannahs. This study compared germination rate (days to germination) and success (percentage of stones that produced seedlings) among an intact control and four treatments, where fruits were (i) ingested by antelope (Cephalophinae and Neotragini), (ii) manually depulped, (iii) manually depulped and burnt and (iv) burnt intact. Measurements on three unrelated trees showed that whilst stone size differed significantly, germination success was comparable. Antelope regurgitated and expelled stones during rumination, within 16 h of ingestion. Seedling emergence commenced approximately 6 months after fruit drop when ambient temperature increased. Removal of fruit pulp increased germination rate and germination success, but moderate exposure to fire inhibited germination, especially following depulping. Germinated seeds were from significantly smaller stones than ungerminated seeds, suggesting that thicker‐walled endocarps inhibited seedling emergence. However, germination of the second seed in a stone was from larger stones in the germinated subset, possibly due to larger seed size. That antelope ingestion significantly enhanced germination over other treatments suggests that endozoochory is an important mode of seed dispersal in marulas. Appropriate fire management is therefore required in savannahs, as high‐intensity fires may limit germination and recruitment of marulas.  相似文献   

19.
The elimination of the largest herbivores (elephants and rhinoceroses) from many forests in tropical East Asia may have severe consequences for plant species that depend on them for seed dispersal. We assessed the capacity of Malayan tapirs Tapirus indicus—the next largest nonruminant herbivore in the region—as a substitute for the lost megafauna in this role by studying their ability to disperse the seeds of nine fleshy‐fruited plants with seeds 5–97 mm in length. We combined information from feeding trials, germination tests, and field telemetry to assess the effect of tapir consumption on seed viability and to estimate how far the seeds would be dispersed. The tapirs (N=8) ingested few seeds. Seed survival through gut passage was moderately high for small‐seeded plants (e.g., 36.9% for Dillenia indica) but very low for medium‐ (e.g., 7.6% for Tamarindus indica) and large‐seeded (e.g., 2.8% for Artocarpus integer) plants. Mean seed gut passage times were long (63–236 h) and only the smallest seeds germinated afterwards. Using movement data from four wild tapirs in Peninsular Malaysia we estimated mean dispersal distances of 917–1287 m (range=22–3289 m) for small‐seeded plants. Malayan tapirs effectively dispersed small‐seeded plants but acted as seed predators for the large‐seeded plants included in our study, suggesting that they cannot replace larger herbivores in seed dispersal. With the absence of elephants and rhinos many megafaunal‐syndrome plants in tropical East Asia are expected to face severe dispersal limitation problems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号