首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Landscape complexity may provide ecosystem services to agriculture through the provision of natural enemies of agricultural pests. Strong positive effect of adjacent semi-natural habitats on natural enemies in croplands has been evidenced, but the resulting impact on biological control remains unclear. Taking into account the temporal dynamics of pest and natural enemies in agricultural landscapes provides better resolution to the studies and better understanding of the biological control service.In this study, the population dynamics of aphids and two groups of predators (coccinellid and carabid beetles) were examined. Insects were sampled in 20 wheat fields, surrounded by structurally simple and complex landscapes in Chilean central valley. Considering the whole sampling period, the diversity of aphids and natural enemies were similar in wheat crops surrounded by both types of landscapes, and the abundance of ladybirds was higher in crops in the complex landscapes. The dynamics of predators was more advanced in complex landscapes than in the simple ones, whereas the dynamics of aphids were similar in both types of landscape. Negative correlation between abundance of predators and aphid population growth rate in both landscape contexts were observed suggesting a control of the pest population by the predators. Different temporal patterns were observed in these correlations in the two landscape contexts, which suggests differences in the biological control related to the landscape composition.The present study shows that colonization of crops by natural enemies occurs sooner in structurally complex landscapes and suggests that this early colonization may facilitate an early and efficient control of aphid populations, nevertheless the biological control efficiency seems to be higher in structurally simple landscapes later in the season.  相似文献   

2.
The spatial structure of agricultural landscapes can have a strong impact on the distribution and diversity of insects. Here we studied the effects of within-field position (edge or center) as well as adjacent habitats on the community structure of the natural enemies of cereal aphids. Twelve agricultural sites were included in the study, with two spring wheat fields selected for each site (one adjacent to an alfalfa field, the other adjacent to a corn field). We sampled two rows per field (1 and 20 m from the edge) using pitfall trapping for ground-dwelling predators, sweep netting for leaf-dwelling predators and hand collecting of aphid mummies for parasitoids. Adjacent alfalfa areas, as opposed to corn fields, can significantly increase the abundance and diversity of leaf-dwelling predators and parasitoids near the field edges. Abundance and diversity were found significantly higher near the edges than in the centers of fields adjacent to alfalfa areas. In contrast, no significant differences were found between edges and centers of fields adjacent to corn fields. Of the fifteen most abundant species, Aphidius avenae (Haliday), A. gifuensis (Ashmead), Hippodamia variegata (Goeze) and Chrysopa sinica (Tjeder) were significantly more abundant near the edge than in the center. Being adjacent to alfalfa habitats could enhance parasitism and predator/prey ratios of leaf-dwelling predators at the edges, but has no effects on ground-dwelling predators. In conclusion, the effect of within-field position and adjacent habitats on natural enemies of agricultural pests was species specific. This should be considered for designing efficient plans of biological control.  相似文献   

3.
Predators are important natural enemies, often responsible for preventing pest population outbreaks of in many crops. Complementarity in resource use involves spatial or temporal segregation of predators, which can result in better biological control when several species of natural enemies share a prey. In this study, we investigated the seasonal, spatial and diel segregation of Acyrthosiphon pisum predators and its predation in alfalfa fields, by setting out cards with sentinel aphids, and making observations every 3 h for a 24 h period. A temporal and spatial segregation of predators was observed. Coccinellids were the most abundant predators, representing 51% of the total observations, followed by syrphid larvae. Coccinellids were also responsible for high levels of predation throughout the year, although the species responsible varied from spring to summer and autumn. On the other hand, syrphids were only found in spring and summer, while spiders only in autumn. Predator species also differed on their preferred sites for predation, with Heteropterans and syrphids found on the foliage, the spider Neomaso articeps only on the ground, and coccinellid and Anyphaenidae species on both sites. The two main predator groups also showed distinct diel patterns, with coccinellids observed only during day and syrphids only during night. This predatory activity corresponded with aphid predation, observing more predation in spring, on the foliage and during the day time. The proportion of predators observed preying on cards in the different seasons did not corresponded tightly with their field abundance, particularly in the case of coccinellids, which maintained high levels of predation in spite of great variations in its field abundance. Our results support the hypothesis of a spatio-temporal segregation of the predators associated with A. pisum in alfalfa, which might be beneficial for the outcome of biological control of this pest.  相似文献   

4.
Landscape context and habitat quality may have pronounced effects on the diversity of flower visiting insects. We investigated whether the effects of landscape context and habitat quality on flower visiting insects interact in agricultural landscapes in the Netherlands. Landscape context was expressed as the area of semi-natural habitats or the density of linear landscape features, and was quantified at spatial scales ranging from 250 to 2000 m. Habitat quality was determined as flower abundance. Species richness and abundance of hoverflies and bees were determined along 16 stream banks experiencing similar environmental conditions but situated in areas with contrasting landscape context. Only flower abundance and the area of semi-natural habitats within 500–1000 m were significantly related to species richness of hoverflies and bees and these factors had interacting effects on both species groups. Our results suggest that the regional area of semi-natural habitats had a positive effect on hoverfly species richness when flower abundance was relatively high, but not when flower abundance was low. Moreover, flower abundance had positive effects on hoverfly species richness only in areas with relatively many semi-natural habitats. Contrastingly, flower abundance had a more positive effect on bee species richness in landscapes with few semi-natural habitats compared to landscapes with more semi-natural habitats. Our results suggest that the importance of landscape context for the species richness of flower visiting insects depends upon the quality of the habitat patches.  相似文献   

5.
张旭珠  张鑫  宋潇  宇振荣  刘云慧 《生态学报》2018,38(23):8442-8454
通过管理半自然生境提高农田中天敌多样性及农田害虫的生物控制效率是当前生态农业研究的基本问题之一。为探讨不同类型半自然植被边界带对相邻麦田地表天敌的发生以及对小麦蚜虫生物控制潜力的影响,在北京顺义区赵全营镇采用陷阱法调查了不同类型植被边界带(人工林地、人工种植草带、自然演替草带)相邻的小麦田中,距离边界0,15 m和30 m处步甲和蜘蛛两类重要地表天敌的多度分布及小麦田蚜虫发生情况,同时分析了边界带植被群落结构对步甲和蜘蛛群落分布的影响。结果表明:人工林地相邻的小麦田中维持了显著较高的步甲、蜘蛛和蚜虫发生密度;不同类型植被边界带相邻小麦田中步甲和蜘蛛群落组成显著不同,植被边界带宽度以及乔木层盖度是影响相邻麦田步甲和蜘蛛群落分布的主要因子;距离植被边界带不同取样界面处,不同迁移方向的步甲和蜘蛛的活动密度无显著性差异;与林地相邻的麦田中,蜘蛛活动密度从农田边界向农田内部处依次降低,与人工种植草带以及自然演替草带相邻的麦田中,农田边界处蜘蛛的活动密度显著高于农田内部。研究显示,半自然植被边界带与麦田交界处维持了较高的蜘蛛活动密度,并具有向农田内部扩散的趋势,然而,并非高天敌密度就意味着低害虫发生率,深入研究天敌群落与害虫发生关系及其影响因素是未来天敌保护和害虫生物防治的重要方面。同时,因为不同类型植被边界带维持的天敌群落具有高度异质性,未来的研究需要充分考虑不同类型植被边界带对天敌维持的作用,以及不同类型生境界面地表天敌的活动规律。  相似文献   

6.
  • 1 We investigated, over the course of 2 years, the spatial distribution and abundance of two species of aphid, Metopolophium dirhodum and Sitobion avenae, and predatory species of carabid. This was undertaken in 24 wheat fields in ‘coarse‐grain’ and ‘fine‐grain’ landscapes in western France. A greater percentage of the latter landscape was covered by hedgerows and grassland and the total area covered by fields and the average size of the fields were smaller.
  • 2 The effects on aphid abundance of the distance from field margins, the presence of grassy strips and carabid abundance were determined in both landscapes.
  • 3 Both aphid species were more abundant in the ‘fine‐grain’ landscape, which may have been a result of the higher density of semi‐natural elements. In both types of landscape, the total numbers of aphids were negatively correlated with the distance from the field margin. This may have been because aphids were dispersing from overwintering sites in field margins. The abundance of M. dirhodum was strongly negatively correlated with the presence of grassy strips in the ‘coarse‐grain’ landscape, although there were no such significant correlations for either of the aphid species in the ‘fine‐grain’ landscape.
  • 4 Aphid and carabid abundances were negatively correlated in the ‘fine‐grain’ and positively in ‘coarse‐grain’ landscape.
  • 5 The results obtained in the present study emphasize the importance of semi‐natural areas in agricultural landscapes in shaping the spatial distribution of aphids and carabid beetles, their natural enemies, at different spatial scales.
  相似文献   

7.
Crop diversification and maintenance of semi-natural habitats (grasslands and field boundaries) are suggested to enhance farmland biodiversity, but the relative importance of these factors remains poorly known. We evaluated how crop diversity and availability of semi-natural grasslands at a landscape-scale interacted with local farming management (three management types from low to high intensity: ley < winter wheat < sugar beet) in their effect on ground beetle assemblages in southern Sweden. Ground beetle diversity increased with crop diversity either independently of local management (Simpson species diversity), or only in the less intensively managed habitats (rarefied species richness). While ground beetle diversity in leys tended to increase with field boundary length, no such relationship was observed in winter wheat or sugar beet fields. In contrast, the landscape proportions of leys and semi-natural grasslands did not affect ground beetle species richness and diversity. We conclude that (a) semi-natural grasslands and leys may not function as source habitats at a landscape-scale if they comprise a low proportion of the total land-use, while (b) increasing crop diversity is correlated to ground beetle richness and diversity in agricultural landscapes dominated by arable land. The beneficial effect of landscape-scale crop diversification on farmland biodiversity may depend on the general level of agricultural intensity of a region.  相似文献   

8.
9.
Temperature and solar radiation can be important sources of abiotic stress for small herbivorous insects living in close association with plants. We examined the effects of daily fluctuations of heat and UV radiation on the proteome and performance of winged and wingless morphs of the aphid Macrosiphum euphorbiae. A daily regime of 4 h of heat stress at 35 °C had more negative effects on the aphid's fitness than a similar period of UV-B stress (11.6 kJ m?2 per day), and these effects were most pronounced on wingless aphids. Aphid proteomes as detected on 2-D gels revealed ~470 protein spots, with the fluctuating heat stress leading to many more changes than exposure to UV-B. The reduced performance of aphids under heat stress correlated with lower abundance of several enzymes in central pathways of energy metabolism, including the TCA cycle and the respiratory chain. Several exoskeletal proteins were induced or their abundance was increased under high temperature stress, suggesting that cuticle barrier enhancement at molting in response to heat stress is an aphid adaptation to stressful thermal conditions. The proteome of winged aphids was more broadly modulated under stress than that of wingless aphids. Greater homeostatic capabilities as revealed at the proteomic level could explain the higher tolerance of the alate aphid morph to environmental stress and its more stable performance and fitness.  相似文献   

10.
The sudden decline following the peak in population abundance of aphids on crops of small grain cereals is attributed to the joint effect of natural enemies and plant senescence. To distinguish between these causes, a four year experiment was established in which the numbers of Metopolophium dirhodum (Walker) infesting spring wheat plots sown from April to June at c. 14 day intervals were determined. Aphid abundance in replicates sown at successive dates peaked within a period of 5-9 days (106-171 day degrees above a base temperature of 0 degrees C) although their sowing dates varied by 62-97 days (727-1106 day degrees). At the time of the aphid population peaks, plants in the different sowings differed in age (11-99 days), developmental stage (stage 15-65 on the Zadoks scale), leaf nitrogen content and shoot mass. Maximum abundance of M. dirhodum decreased with sowing date because the time available for its population increase was shorter on late than early sowings. The abundance of M. dirhodum on spring wheat was similar to its abundance on winter wheat. After reaching peak abundance, aphids declined in numbers within 3-7 days. The effect of host plant ageing on the M. dirhodumdecline thus appeared small. Natural enemies (largely mycoses), and timing of alata production may have contributed to the aphid decline.  相似文献   

11.
Intraguild relations between beneficial insects have become a major research topic in biological pest control. In order to understand the intraguild competitions between aphidophagous populations in natural conditions, a field experiment was carried out in the experimental farm of the Gembloux Agricultural University. As biological control of pests involve a community of diverse natural enemies, this experiment firstly aimed to assess the aphidophagous predator diversity and abundance in green pea (Pisum sativum) field and secondly to investigate the impact of the large natural occurrence of C. septempunctata on the aphidophagous beneficial dispersion and efficiency as aphid biological control agents in pea field. Visual observations were weekly performed throughout the 2006 growing season. The pea aphids were attacked by several predatory groups, mainly ladybird beetles and hoverflies. Higher densities of ladybirds and hoverflies were recorded in the beginning of July, associated with an aphid occurrence peak. Using net cage system in the field, the particular intraguild relations between added C. septempunctata or E. balteatus and the natural beneficial arrivals and dispersion were observed. The E. batteatus (eggs and larvae) presence inhibited other aphidophagous predators presence on the aphid infested plants. Lower abundance of E. balteatus was observed on aphid infested plants already colonised by C. septempunctata. To explore more accurately the oviposition and predation behaviours of ladybirds and hoverflies and to determine the chemical factors that could influence these behaviours, current researches are performed in laboratory and will be discussed to promote efficient biological control of aphids by natural enemies.  相似文献   

12.
Non-crop habitats, depending on their composition, can enhance the abundance and diversity of natural enemies of crop pests, but also at the same time provide resources to pests, thereby reducing the effect on pest incidence and resulting yield losses. The objective of the present study was to test (1) the effect of semi-natural habitats in the landscape on crop colonization by pests and natural regulation, and (2) the relationship between natural regulation and pest incidence. The pearl millet head miner (MHM) was selected as a case study because it is a key pest of millet cultivated in traditional pesticide-free tree-crop agroforestry systems in which its control mostly relies on the action of natural enemies.A set of 24 millet fields were selected in a 20×20 km area in Senegal, from the analysis of high-resolution satellite images (Pléiades), and hypotheses on the relative abundance of semi-natural habitats (here trees and rangelands) in the agricultural landscape. Millet fields were monitored for pest infestation of panicles and pest natural regulation. We used partial least squares structural equation modelling (PLS-PM) to evaluate the relationships between the abundance and diversity of semi-natural habitats at the landscape scale, crop colonization, natural pest regulation, and pest incidence.Panicle colonization by the MHM was generally high (14–92%) and increased with the abundance of trees and to a lesser extent with the rangeland area at a 1000 m-radius around millet fields. However, regulation provided by natural enemies was amplified by the abundance of trees at a local scale (250 m-radius around millet fields). This was particularly true at early crop colonization of the MHM with parasitism and direct predation on eggs and young larvae. This multi-scale effect of semi-natural habitats on crop colonization and natural regulation could explain why no clear relationship between crop colonization and pest incidence, nor natural regulation and pest incidence, was observed. Future studies on the identification of complex species-specific interactions between trees and natural enemies should provide a better understanding of the ecological processes underlying the performance of natural regulation of MHM populations.  相似文献   

13.
Sowing of wildflower strips has been integrated in agri-environment schemes of several European countries. Their beneficial effects on natural enemies of pest insects are well documented but (1) the desired spill-over into crop fields has not always been demonstrated, and (2) the need to adapt sown mixtures to regional climatic differences has been rarely addressed.We set up a multi-site experiment in different French climatic regions to compare effects of a wildflower strip with a grass mixture and spontaneous vegetation. The design included five regions, three to five fields per region and the three strip treatments being repeated in each field. We tested strip treatment effects on vegetation (plant species richness, plant and flower cover) and on natural enemies (hoverflies, ladybirds, aphid predation). In a subset, we further analysed the spill-over into winter wheat fields including natural enemies and pest insects (cereal aphids, leaf beetles).The wildflower strip mixture developed well in all regions and increased plant species richness and flower cover compared with grass strips and spontaneous vegetation. We found a corresponding higher hoverfly abundance and aphid predation in wildflower strips that were consistent in all regions, whereas ladybird abundance was not affected. A significantly higher hoverfly abundance, aphid predation and aphid parasitism in wheat fields close to wildflower strips indicated a spill-over. No corresponding margin treatment effects were observed for aphid and leaf beetle abundance in the field. A multivariate analysis comparing the influence of climate and vegetation parameters showed that floral cover better explained variation in natural enemy abundance and predation than climate. Our results demonstrated that similar mixtures of native plants can be used over large climatic gradients to improve biocontrol. Further research is needed to improve spill-over into crop fields and to obtain consistently strong effects in different climate zones.  相似文献   

14.
Wild pollinators may benefit Brassica oilseed production in temperate Australia, yet it is not known how the density of potential pollinators varies in these landscapes. In this study we assessed whether the density of feral honeybees, hoverflies (probably 2 species) and native bees (multiple species) in temperate Australian Brassica oilseed crops was related to the composition of the landscape. The density of pollinators was measured at multiple points in six different Brassica oilseed paddocks (20–80 ha) at least 1.75 km apart. Landscape composition at multiple scales (radii 100–2000 m) was determined from GIS layers of Brassica paddocks, woody vegetation and non-woody vegetation, and a derived layer expected to reflect the condition of woody vegetation remnants (the ‘Link’ score). Densities of feral honeybees were higher near the edges of Brassica fields than towards the middle. Densities of feral honeybees were strongly positively associated with the summed ‘Link’ score within 300 m and with the amount of woody vegetation. Densities of native bees and hoverflies were not strongly associated with woody vegetation or with woody vegetation with a high ‘Link’ score. Our results suggest that maximising feral honeybee abundance within paddocks in these landscapes may require smaller paddocks than those typically used, interspersed with habitat beneficial to feral honeybees such as woody vegetation in good condition.  相似文献   

15.
1 Temporary habitats are characterized by the appearance and disappearance of patches in which resources are available for a limited period only. Organisms living in those environments usually exhibit adaptive traits, such as a high ability to find and exploit new patches. Among them are phytophagous insects, such as crop pests living in agroecosystems. Understanding how phytophagous insects invade a new patch is of great agricultural importance. 2 Here, we investigated how aphids colonize a wheat field by studying the spatial and temporal dynamics of their populations at large (field) and fine (group of host plants) scales. 3 The sampling design consisted of counting and locating aphid colonies within 30 0.25 m2 squares randomly spaced in a 1.5‐ha winter wheat field over 2 months. All colonies were precisely located within the squares and their composition in terms of morphs was determined. 4 We show that: (i) immigration of winged aphids was a major factor driving the aphid population dynamics during a large part of the season and (ii) within the field, populations established late in the growing season. Aggregated, populations of aphids became progressively homogeneously distributed at the field scale. At the scale of a 0.25 m2 square, infested plants were clustered in randomly distributed small patches, and aphid colonies experienced high extinction rates, suggesting failure in population establishment. 5 Because immigration may considerably influence both population dynamics and spatial distribution, our study suggests that future predictive models should give a greater weight to spring immigrants.  相似文献   

16.
The differential loss of higher trophic levels in the face of natural habitat loss can result in the disruption of important trophic interactions, such as biological control. Natural enemies of herbivorous pests in cropping systems often benefit from the presence of natural habitats in surrounding landscapes, as they provide key resources such as alternative hosts. However, any benefits from a biological control perspective may be dampened if this also enhances enemies at the fourth trophic level. Remarkably, studies of the influence of landscape structure on diversity and interactions of fourth trophic‐level natural enemies are largely lacking. We carried out a large‐scale sampling study to investigate the effects of landscape complexity (i.e. the proportion of non‐crop habitat in the landscapes surrounding focal study areas) on the parasitoid communities of aphids in wheat and on an abundant extra‐field plant, stinging nettle. Primary parasitoid communities (3rd trophic level) attacking the cereal aphid, Sitobion avenae, had little overlap with the communities attacking the nettle aphid, Microlophium carnosum, while secondary parasitoids (4th trophic level) showed high levels of species overlap across these two aphids (25 vs 73% shared species respectively), resulting in significantly higher linkage density and lower specialization for secondary than primary parasitoid webs. In wheat, parasitoid diversity was not related to landscape complexity for either primary or secondary parasitoids. Rates of primary parasitism were generally low, while secondary parasitism rates were high (37–94%) and increased significantly with increasing landscape complexity, although this pattern was driven by a single secondary parasitoid species. Overall, our results demonstrate that extra‐field habitats and landscape complexity can differentially benefit fourth, over third, trophic level natural enemies, and thereby, could dampen biological control. Our results further suggest that fourth trophic‐level enemies may play an important, yet understudied, role in linking insect population dynamics across habitat types.  相似文献   

17.
Winter oilseed rape (OSR, Brassica napus) cropping is often associated with an intensive use of pesticides. The transformation of structurally rich landscapes into more monotonous landscapes may be partly responsible for this, because non-crop habitats believed to benefit natural enemies have been eliminated. We examined the influence of field (soil quality, nitrogen fertilization) and landscape characteristics (OSR area and isolation, non-crop area, landscape diversity, proportions of grassy fallows and woody areas) on three major European OSR pest groups: pollen beetles, stem weevils, and brassica pod midges. Twenty-nine landscape sectors ranging from structurally poor to complex were studied at eight spatial scales (radii 250–2000 m) centered in the studied OSR fields. Abundances of pollen beetles and stem weevils were significantly positively correlated with soil quality and negatively related to OSR area in the surroundings. Generally, abundances of all groups were positively related to woody areas, but not related to grassy fallow area. Pod midges and stem weevils tended to respond primarily to landscape variables at small (250–500 m) and medium (1000–1250 m) scales, while pollen beetles responded at medium to large (1000–2000 m) scales. The results are discussed in relation to differences in overwintering strategies and mobility of pest insects. Strategies at the field and landscape level, aiming to reduce pest pressure in OSR fields, are also discussed.  相似文献   

18.
The relative occurrence and seasonal abundance of aphids and their natural enemies were visually assessed between May and July 2005–2006 in four types of habitats located in Gembloux (Namur province, Belgium): green pea, wheat and stinging nettle either planted in or naturally growing in woodland adjacent to these crops. Results showed that: (i) Acyrthosiphon pisum Harris, Sitobion avenae F. and Microlophium carnosum Buckton were the most common aphid species, respectively, on green pea, wheat and stinging nettle either in or near field crops; (ii) stinging nettle and field crops shared several important aphidophagous insect species such as the ladybird Coccinella septempunctata L., hoverfly Episyrphus balteatus De Geer and braconid wasp Aphidius ervi Haliday; (iii) the shared beneficial species were typically recorded earlier on stinging nettles than on crops; and (iv) the spatial occurrence of the invasive ladybird Harmonia axyridis Pallas was distinctly associated with stinging nettles, particularly in 2005. Stinging nettles and field crops partially coincide in time, enabling the movement of natural enemies among them. These findings suggest that the presence of stinging nettles in landscapes seems to enhance the local density of aphidophagous insect communities necessary for aphid biocontrol in field crops.  相似文献   

19.
In 1996 and 1997 a field survey of the abundance and species composition of cereal aphid primary and secondary parasitoids in spring barley, winter wheat and durum wheat was conducted in Zealand, Denmark. The purpose was to create a better understanding of the mechanisms underlying aphid–parasitoid dynamics in the field. Such an understanding can be used when developing biological control methods in cereals. In both years aphid attacks in cereals began in late June and never exceeded the economic threshold. In 1996 the first aphids were found in wheat on 26 June; in 1997 the first aphids were found on 24 June on both crops. The highest densities reached in 1996 were an average of six aphids per shoot in winter wheat and one aphid per shoot in spring barley. In 1997 the highest densities reached were 11 aphids per shoot in winter wheat and four aphids per shoot in spring barley. The aphid population collapsed by the end of July to early August in 1996, but it collapsed by mid-July in 1997. The onset and peak of parasitization were delayed in comparison to aphid infestation. Parasitism was 20–60% by the end of the cropping season in spring barley, and 30–80% in winter wheat and durum wheat in 1996. In 1997 parasitism did not exceed 3–11% in barley and was less than 2% in one winter wheat field but more than 40% in the other winter wheat field sampled. In both years most parasitism was due to Aphidiidae (Hymenoptera). The two dominant species were Aphidius ervi Haliday and Aphidius rhopalosiphi De Stefani-Perez. Hyperparasitism began after primary parasitism and increased progressively during the cropping season. The two years were similar in many respects, including for species composition of aphids and parasitoids. The late start of the aphid infestation may have contributed to the high level of parasitization found in 1996, but in 1997 the aphid infestation period was so short that a parasitoid population did not have time to build up.  相似文献   

20.
The cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae), is an important cotton pest in northern China, especially in the seedling stage of cotton. After large scale commercial use of transgenic Bt cotton, cotton aphids became one of the most important cotton pests. A 2‐year study was conducted to evaluate the role of four winter wheat varieties that were resistant or susceptible to wheat aphid, Sitobion avenae Fabricius (Homoptera: Aphididae), in conserving arthropod natural enemies and suppressing cotton aphids in a wheat–cotton relay intercropping system in northern China. The results indicated that wheat–cotton intercropping preserved and augmented natural enemies more than a monoculture of cotton. The density of natural enemies in cotton was significantly different among relay‐intercropping fields with different wheat varieties. The highest density of natural enemies and low cotton aphid populations were found in the treatment of cotton in relay intercropped with the wheat variety Lovrin10, which is susceptible to wheat aphid. The lowest density of predators and parasitoids associated with high cotton aphid populations were found with the wheat variety KOK1679, which is resistant to wheat aphid. The results showed that wheat varieties that are susceptible or moderately resistant to wheat aphid might reduce cotton aphids more effectively than an aphid‐resistant variety in the intercropping system by enhancing predators to suppress cotton aphids during the cotton seedling stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号