首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
Interleukin (IL) 2 receptor subunit alpha (IL-2Ralpha) increases the affinity of the IL-2 receptor complex while hetero-association of IL-2Rbeta and gamma(c) chains initiates a proliferative signal. We show here that IL-2Ralpha is necessary for receptor clustering required for augmentation of IL-2 signalling. Cells expressing chimeras incorporating the extracellular domain of IL-2Ralpha demonstrated IL-2 independent homo-association of the IL-2Ralpha chimera. Singly or co-transfected IL-2Rbeta and gamma(c) chimeras showed no spontaneous or IL-2-inducible oligomerization. Co-transfection of IL-2Ralpha and IL-2Rbeta (+/- gamma(c)) chimeras diminished spontaneous IL-2Ralpha chimera oligomerization and permitted IL-2-inducible hetero-oligomerization of receptor components. Homo-association of IL-2Ralpha was also demonstrated by fluorescence resonance energy transfer (FRET). The spontaneous homo-oligomerization property of IL-2Ralpha required the membrane proximal region of the receptor (exon 6) by deletion analysis; the IL-2 inducible oligomerization property of IL-2Ralpha required the second "sushi" domain (exon 4). This work provides insight into the mechanics of this complex receptor system and to other receptor complexes in the immune system that send signals by clustering receptor subunits.  相似文献   

2.
Interleukin-2 is the primary T cell growth factor secreted by activated T cells. IL-2 is an alpha-helical cytokine that binds to a multisubunit receptor expressed on the surface of a variety of cell types. IL-2Ralpha, IL-2Rbeta, and IL-2Rgammac receptor subunits expressed on the surface of cells may aggregate to form distinct binding sites of differing affinities. IL-2Rgammac was the last receptor subunit to be identified. It has since been shown to be shared by at least five other cytokine receptors. In this study, we have probed the role of IL-2Rgammac in the assembly of IL-2R complexes and in ligand binding. We demonstrate that in the absence of ligand IL-2Rgammac does not possess detectable affinity for IL-2Ralpha, IL-2Rbeta, or the pseudo-high-affinity binding site composed of preformed IL-2Ralpha/beta. We also demonstrate that IL-2Rgammac possesses an IL-2-dependent affinity for IL-2Rbeta and IL-2Ralpha/beta. We performed a detailed biosensor analysis to examine the interaction of soluble IL-2Rgammac with IL-2-bound IL-2Rbeta and IL-2-bound IL-2Ralpha/beta. The kinetic and equilibrium constants for sIL-2Rgammac binding to these two different liganded complexes were similar, indicating that IL-2Ralpha does not play a role in recruitment of IL-2Rgammac. We also determined that the binding of IL-2 to the isolated IL-2Rgammac was very weak (approximate K(D) = 0.7 mM). The experimental methodologies and principles derived from these studies can be extended to at least five other cytokines that share IL-2Rgammac as a receptor subunit.  相似文献   

3.
4.
The bone morphogenetic proteins (BMPs) play important roles in embryogenesis and normal cell growth. The BMP receptors belong to the family of serine/threonine kinase receptors, whose activation has been investigated intensively for the transforming growth factor-beta (TGF-beta) receptor subfamily. However, the interactions between the BMP receptors, the composition of the active receptor complex, and the role of the ligand in its formation have not yet been investigated and were usually assumed to follow the same pattern as the TGF-beta receptors. Here we demonstrate that the oligomerization pattern of the BMP receptors is different and is more flexible and susceptible to modulation by ligand. Using several complementary approaches, we investigated the formation of homomeric and heteromeric complexes between the two known BMP type I receptors (BR-Ia and BR-Ib) and the BMP type II receptor (BR-II). Coimmunoprecipitation studies detected the formation of heteromeric and homomeric complexes among all the BMP receptor types even in the absence of ligand. These complexes were also detected at the cell surface after BMP-2 binding and cross-linking. Using antibody-mediated immunofluorescence copatching of epitope-tagged receptors, we provide evidence in live cells for preexisting heteromeric (BR-II/BR-Ia and BR-II/BR-Ib) and homomeric (BR-II/BR-II, BR-Ia/ BR-Ia, BR-Ib/ BR-Ib, and also BR-Ia/ BR-Ib) oligomers in the absence of ligand. BMP-2 binding significantly increased hetero- and homo-oligomerization (except for the BR-II homo-oligomer, which binds ligand poorly in the absence of BR-I). In contrast to previous observations on TGF-beta receptors, which were found to be fully homodimeric in the absence of ligand, the BMP receptors show a much more flexible oligomerization pattern. This novel feature in the oligomerization mode of the BMP receptors allows higher variety and flexibility in their responses to various ligands as compared with the TGF-beta receptors.  相似文献   

5.
The functional IL-5 receptor is a heteromeric complex consisting of an alpha and beta subunit. The cloning, sequencing and expression of guinea-pig IL-5Ralpha and beta subunits is described. The guinea-pig IL-5Ralpha subunit cDNA encodes a protein of M(r)47 kDa, which is 72 and 66% homologous to the human and murine orthologs, respectively. Three guinea-pig IL-5Rbeta subunit cDNA clones were isolated, which differ in the N-terminus and are 56-64% homologous to the human and murine IL-5Rbeta subunits. Expressing human IL-5Ralphabeta and guinea-pig IL-5Ralphabeta(1)in the baculovirus-insect cell system resulted in recombinant receptors which bound hIL-5 with high affinity (K(d)=0.19 and 0.11 nM, respectively). Expressing just gpIL-5Ralpha was not sufficient to demonstrate binding. This contrasts with the human receptor, where hIL-5Ralpha alone can bind hIL-5 with high affinity. gpIL-5Ralphabeta(1)bound both hIL-5 and mIL-5 with comparable affinity (K(i)=0.10 and 0.06 nM), similar to that seen with hIL-5Ralphabeta. Thus, both the heteromeric hIL-5R and gpIL-5Ralphabeta(1)can bind multiple IL-5 orthologs with high affinity whereas the murine IL-5R is selective for the murine ligand.  相似文献   

6.
Common gamma chain (gammac)-receptor dependent cytokines are required for regulatory T cell (Treg) development as gammac(-/-) mice lack Tregs. However, it is unclear which gammac-dependent cytokines are involved in this process. Furthermore, thymic stromal lymphopoietin (TSLP) has also been suggested to play a role in Treg development. In this study, we demonstrate that developing CD4(+)Foxp3(+) Tregs in the thymus express the IL-2Rbeta, IL-4Ralpha, IL-7Ralpha, IL-15Ralpha, and IL-21Ralpha chains, but not the IL9Ralpha or TSLPRalpha chains. Moreover, only IL-2, and to a much lesser degree IL-7 and IL-15, were capable of transducing signals in CD4(+)Foxp3(+) Tregs as determined by monitoring STAT5 phosphorylation. Likewise, IL-2, IL-7, and IL-15, but not TSLP, were capable of inducing the conversion of CD4(+)CD25(+)Foxp3(-) thymic Treg progenitors into CD4(+)Foxp3(+) mature Tregs in vitro. To examine this issue in more detail, we generated IL-2Rbeta(-/-) x IL-7Ralpha(-/-) and IL-2Rbeta(-/-) x IL-4Ralpha(-/-) mice. We found that IL-2Rbeta(-/-) x IL-7Ralpha(-/-) mice were devoid of Tregs thereby recapitulating the phenotype observed in gammac(-/-) mice; in contrast, the phenotype observed in IL-2Rbeta(-/-) x IL-4Ralpha(-/-) mice was comparable to that seen in IL-2Rbeta(-/-) mice. Finally, we observed that Tregs from both IL-2(-/-) and IL-2Rbeta(-/-) mice show elevated expression of IL-7Ralpha and IL-15Ralpha chains. Addition of IL-2 to Tregs from IL-2(-/-) mice led to rapid down-regulation of these receptors. Taken together, our results demonstrate that IL-2 plays the predominant role in Treg development, but that in its absence the IL-7Ralpha and IL-15Ralpha chains are up-regulated and allow for IL-7 and IL-15 to partially compensate for loss of IL-2.  相似文献   

7.
8.
The high affinity interleukin-2 receptor is composed of three cell surface subunits, IL-2Ralpha, IL-2Rbeta, and IL-2Rgamma. Functional forms of the IL-2 receptor exist, however, that enlist only two of the three subunits. On activated T-cells, the alpha- and beta-subunits combine as a preformed heterodimer (the pseudo-high affinity receptor) that serves to capture IL-2. On a subpopulation of natural killer cells, the beta- and gamma-subunits interact in a ligand-dependent manner to form the intermediate affinity receptor site. Previously, we have demonstrated the feasibility of employing coiled-coil molecular recognition for the solution assembly of a heteromeric IL-2 receptor complex. In that study, although the receptor was functional, the coiled-coil complex was a trimer rather than the desired heterodimer. We have now redesigned the hydrophobic heptad sequences of the coiled-coils to generate soluble forms of both the pseudo-high affinity and the intermediate affinity heterodimeric IL-2 receptors. The properties of these complexes were examined and their relevance to the physiological IL-2 receptor mechanism is discussed.  相似文献   

9.
10.
de Jong JL  Farner NL  Sondel PM 《Cytokine》1998,10(12):920-930
More interleukin 15 (IL-15) than IL-2 was needed to generate comparable proliferative responses by phytohaemagglutinin (PHA) blasts and Tf-1beta cells expressing high affinity and intermediate affinity IL-2 receptor (IL-2R) complexes, respectively. The focus of these experiments was to determine the contribution of the shared IL-2 and IL-15 receptor components to these dose-response differences. Some of this difference can be attributed to the role of the IL-2Rbeta chain, in that HuMikbeta1, a monoclonal antibody recognizing the IL-2Rbeta chain, blocks 92.2+/-2.5% (mean+/-SE) of the IL-2 proliferative response by Tf-1beta cells but only inhibits 57.9+/-3.7% of the IL-15 response, indicating that IL-2 and IL-15 may physically utilize the IL-2Rbeta chain differently. Monoclonal antibody 341, which recognizes IL-2Rbeta but does not inhibit IL-2 binding to the IL-2Rbeta chain, blocks 35.4+/-2.3% of IL-15-stimulated proliferation of PHA blasts, while not affecting the IL-2-stimulated proliferation. Finally, although HuMikbeta1 does not inhibit IL-2 responses by PHA blasts bearing high affinity IL-2 receptors, HuMikbeta1 does block IL-15-stimulated proliferation by these same cells bearing high affinity IL-15 receptors (88.5+/-1.6% inhibition). This indicates that the role of IL-15Ralpha in the high affinity IL-15R complex is distinct from that of IL-2Ralpha in the high affinity IL-2R complex. Overall, these studies show that the physical interactions of the IL-2Rbetagammac complex with IL-2 are different than the interactions with IL-15.  相似文献   

11.
Many different growth factor ligands, including epidermal growth factor (EGF) and the neuregulins (NRGs), regulate members of the erbB/HER family of receptor tyrosine kinases. These growth factors induce erbB receptor oligomerization, and their biological specificity is thought to be defined by the combination of homo- and hetero-oligomers that they stabilize upon binding. One model proposed for ligand-induced erbB receptor hetero-oligomerization involves simple heterodimerization; another suggests that higher order hetero-oligomers are 'nucleated' by ligand-induced homodimers. To distinguish between these possibilities, we compared the abilities of EGF and NRG1-beta1 to induce homo- and hetero-oligomerization of purified erbB receptor extracellular domains. EGF and NRG1-beta1 induced efficient homo-oligomerization of the erbB1 and erbB4 extracellular domains, respectively. In contrast, ligand-induced erbB receptor extracellular domain hetero-oligomers did not form (except for s-erbB2-s-erbB4 hetero-oligomers). Our findings argue that erbB receptor extracellular domains do not recapitulate most heteromeric interactions of the erbB receptors, yet reproduce their ligand-induced homo-oligomerization properties very well. This suggests that mechanisms for homo- and hetero-oligomerization of erbB receptors are different, and contradicts the simple heterodimerization hypothesis prevailing in the literature.  相似文献   

12.
13.
Kinetic analysis of the interleukin-13 receptor complex   总被引:15,自引:0,他引:15  
Interleukin (IL)-13 is a key cytokine associated with the asthmatic phenotype. It signals via its cognate receptor, a complex of IL-13 receptor alpha1 chain (IL-13Ralpha1) with IL-4Ralpha; however, a second protein, IL-13Ralpha2, also binds IL-13. To determine the binding contributions of the individual components of the IL-13 receptor to IL-13, we have employed surface plasmon resonance and equilibrium binding assays to investigate the ligand binding characteristics of shIL-13Ralpha1, shIL-13Ralpha2, and IL-4Ralpha. shIL-13Ralpha1 bound IL-13 with moderate affinity (K(D) = 37.8 +/- 1.8 nm, n = 10), whereas no binding was observed for hIL-4Ralpha. In contrast, shIL-13Ralpha2 produced a high affinity interaction with IL-13 (K(D) = 2.49 +/- 0.94 nm n = 10). IL-13Ralpha2 exhibited the binding characteristics of a negative regulator with a fast association rate and an exceptional slow dissociation rate. Although IL-13 interacted weakly with IL-4Ralpha on its own (K(D) > 50 microm), the presence of hIL-4Ralpha significantly increased the affinity of shIL-13Ralpha1 for IL-13 but had no effect on the binding affinity of IL-13Ralpha2. Detailed kinetic analyses of the binding properties of the heteromeric complexes suggested a sequential mechanism for the binding of IL-13 to its signaling receptor, in which IL-13 first binds to IL-13Ralpha1 and this then recruits IL-4Ralpha to stabilize a high affinity interaction.  相似文献   

14.
The type I and type II bone morphogenetic protein receptors (BMPRI and BMPRII) are present at the plasma membrane as monomers and homomeric and heteromeric complexes, which are modulated by ligand binding. The complexes of their extracellular domains with ligand were shown to form heterotetramers. However, the dynamics of the oligomeric interactions among the full-length receptors in live cell membranes were not explored, and the roles of BMP receptor homodimerization were unknown. Here, we investigated these issues by combining patching/immobilization of an epitope-tagged BMP receptor at the cell surface with measurements of the lateral diffusion of a co-expressed, differently tagged BMP receptor by fluorescence recovery after photobleaching (FRAP). These studies led to several novel conclusions. (a) All homomeric complexes (without or with BMP-2) were stable on the patch/FRAP time scale (minutes), whereas the heterocomplexes were transient, a difference that may affect signaling. (b) Patch/FRAP between HA- and myc-tagged BMPRII combined with competition by untagged BMPRIb showed that the heterocomplexes form at the expense of homodimers. (c) Stabilization of BMPRII·BMPRIb heterocomplexes (but not homomeric complexes) by IgG binding to same-tag receptors elevated phospho-Smad formation both without and with BMP-2. These findings suggest two mechanisms that may suppress the tendency of preformed BMP receptor hetero-oligomers to signal without ligand: (a) competition between homo- and heterocomplex formation, which reduces the steady-state level of the latter, and (b) the transient nature of the heterocomplexes, which limits the time during which BMPRI can be phosphorylated by BMPRII in the heterocomplex.  相似文献   

15.
Two types of functional interleukin-2 receptor (IL-2Ralpha/IL-2Rbeta/gammac and IL-2Rbeta/gammac) have already been characterized in humans. Here we describe a new form consisting of IL-2Rbeta/beta homodimers that assemble spontaneously in the absence of gammac. Co-transfection of COS-7 cells with constructs expressing IL-2Rbeta chains tagged with either HA or MYC sequences results in the formation of IL-2Rbeta:HA/IL-2Rbeta:MYC complexes detectable by coimmunoprecipitation. The formation of these IL-2Rbeta:HA/IL-2Rbeta:MYC dimers is also observed in the absence of IL-2. Moreover, in COS cells expressing chimeras of IL-2Rbeta fused to fluorescence reporters such as IL-2Rbeta:ECFP and IL-2Rbeta:EYFP, we also observed specific FRET at the surface of living cells, as expected for dimer formation. Transiently transfected COS-7 cells expressing IL-2Rbeta bind 125I-labeled IL-2 (homodimers, Kd = 1nM) as cells expressing both IL-2Rbeta and gammac chains (heterodimers, Kd = 1 nM). IL-2Rbeta/IL-2Rbeta could represent either a decoy receptor or a new form of IL-2R involved in signaling when gammac expression is low.  相似文献   

16.
Numerous studies have implicated interleukin-2 (IL-2) in various brain processes, and more recently, several studies have also attributed neurobiological actions to interleukin-15 (IL-15). On lymphocytes, receptors for IL-2 and IL-15 share a common subunit, the IL-2/15 receptor-beta (IL-2/15Rbeta) that is essential for intracellular signaling. Although a short segment of IL-2/15Rbeta has been cloned (0.35 kb) from normal brain cells, attempts to isolate the full-length cDNA have been unsuccessful, suggesting the possibility that the genes expressed by brain cells and lymphocytes may differ. Using conventional and anchored PCR cloning strategies, we isolated the full-length cDNA of IL-2/15Rbeta (2038 bp) from well-perfused, normal mouse forebrain. The coding sequence and the adjacent 5' and 3' UTR sequences from brain and lymphocyte were found to be fully homologous. Although evidence of expression of IL-2/15Rbeta can be found in many brain regions using PCR, clear evidence of gene expression by in situ hybridization was detectable only in the hippocampal formation, habenula and piriform cortex. This same pattern of mRNA expression in situ was also observed for the common gamma subunit shared by IL-2 and IL-15. In the hippocampus, IL-2/15Rbeta expression was localized to neurons by high resolution in situ hybridization and evidence of IL-2 receptor protein expression was also detected by radioligand receptor binding using hippocampal homogenates. Comparison of undifferentiated and differentiated, immortalized H19-7 hippocampal neurons showed that IL-2/15Rbeta was constitutively expressed across disparate stages of hippocampal neuronal differentiation. These data indicate that IL-2/15Rbeta may serve to modulate neuronal processes in the hippocampus and associated limbic brain regions.  相似文献   

17.
Bone morphogenetic proteins (BMPs) are multifunctional proteins regulating cell growth, differentiation, and apoptosis. BMP-2 signals via two types of receptors (BRI and BRII) that are expressed at the cell surface as homomeric as well as heteromeric complexes. Prior to ligand binding, a low but measurable level of BMP-receptors is found in preformed hetero-oligomeric complexes. The major fraction of the receptors is recruited into hetero-oligomeric complexes only after ligand addition. For this, BMP-2 binds first to the high affinity receptor BRI and then recruits BRII into the signaling complex. However, ligand binding to the preformed complex composed of BRII and BRI is still required for signaling, suggesting that it may mediate activating conformational changes. Using several approaches we have addressed the following questions: (i) Are preformed complexes incompetent of signaling in the absence of BMP-2? (ii) Which domains of the BRII receptors are essential for this complex formation? (iii) Are there differences in signals sent from BMP-induced versus preformed receptor complexes? By measuring the activation of Smads, of p38 MAPK and of alkaline phosphatase, we show that the ability of kinase-deficient BRII receptor mutants to inhibit BMP signaling depends on their ability to form heteromeric complexes with BRI. Importantly, a BRII mutant that is incapable in forming preassembled receptor complexes but recruits into a BMP-induced receptor complex does not interfere with the Smad pathway but does inhibit the induction of alkaline phosphatase as well as p38 phosphorylation. These results indicate that signals induced by binding of BMP-2 to preformed receptor complexes activate the Smad pathway, whereas BMP-2-induced recruitment of receptors activates a different, Smad-independent pathway resulting in the induction of alkaline phosphatase activity via p38 MAPK.  相似文献   

18.
Activation of the interleukin-2 receptor (IL-2R) induces signalling cascades promoting T cell proliferation. However, signal transduction pathways triggered in IL-2R-expressing solid tumours are unknown. This report shows that human papillomavirus (HPV)-associated cervical cancer cells express an IL-2R composed of beta and gamma chains (IL-2Rbetagamma), and that IL-2-mediated activation increases the phosphorylation of JAK3 and STAT5, stimulating cell proliferation. Interestingly, endogenous IL-2 is not produced by these cells, suggesting the activation of IL-2Rbetagamma by an alternative mechanism. Accordingly, we found that Stem Cell Factor (SCF)-activated c-Kit induces phosphorylation of the IL-2Rbeta chain in the absence of IL-2. Moreover, inhibition of IL-2Rbeta phosphorylation by blocking c-Kit tyrosine kinase activity abolishes both, IL-2 and SCF-mediated proliferation. Thus, these results demonstrate that IL-2 triggers a JAK3/STAT5 cascade in HPV-associated cervical cancer cells expressing IL-2Rbetagamma, and that this receptor can be alternatively activated by SCF-activated c-Kit in the absence of IL-2.  相似文献   

19.
The cytokine interleukin-15 (IL-15) signals through the formation of a quaternary receptor complex composed of an IL-15-specific alpha receptor, together with beta and gammac receptors that are shared with interleukin-2 (IL-2). The initiating step in the formation of this signaling complex is the interaction between IL-15 and IL-15Ralpha, which is a single sushi domain bearing strong structural homology to one of the two sushi domains of IL-2Ralpha. The crystal structure of the IL2-Ralpha/IL-2 complex has been determined, however little is known about the analogous IL-15Ralpha/IL-15 binding interaction. Here we show that recombinant IL-15 can be overexpressed as a stable complex in the presence of its high affinity receptor, IL-15Ralpha. We find that this complex is 10-fold more active than IL-15 alone in stimulating proliferation and survival of memory phenotype CD8 T cells. To probe the ligand/receptor interface, we used solution NMR to map chemical shifts on 15N-labeled IL-15Ralpha in complex with unlabeled IL-15. Our results predict that the binding surface on IL-15Ralpha involves strands C and D, similar to IL-2Ralpha. The interface, as predicted here, leaves open the possibility of trans-presentation of IL-15 by IL-15Ralpha on an opposing cell.  相似文献   

20.
Interleukin-2 was discovered in 1976 as a T-cell growth factor. It was the first type I cytokine cloned and the first for which a receptor component was cloned. Its importance includes its multiple actions, therapeutic potential, and lessons for receptor biology, with three components differentially combining to form high, intermediate, and low-affinity receptors. IL-2Ralpha and IL-2Rbeta, respectively, are markers for double-negative thymocytes and regulatory T-cells versus memory cells. gamma(c), which is shared by six cytokines, is mutated in patients with X-linked severe-combined immunodeficiency. We now cover an under-reviewed area-the regulation of genes encoding IL-2 and IL-2R components, with an effort to integrate/explain this knowledge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号