首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
SUMMARY The expression of GpANTL1 , a homolog of AINTEGUMENTA ( ANT ) found in the gymnosperm Gnetum parvifolium , was analyzed by RT-PCR and in situ hybridization. GpANTL1 was expressed in the leaf primordia, root tips, and young ovules. In the ovulate axis, expression was detected as four distinct rings around the outer, middle, and inner envelope primordia as well as around the nucellar tip. This pattern of expression is similar to that of ANT in Arabidopsis thaliana . A comparison of the expression of GpANTL1 with that of PtANTL1 in the conifer Pinus thunbergii suggests that the integrated expression of PtANTL1 may have been caused by congenital fusion of the integument, ovuliferous scale, and bract.  相似文献   

2.
3.
Expression patterns from in situ hybridization of four MADS-box genes (GGM7, GGM9, GGM11, and GGM15) from the gymnosperm species Gnetum gnemon are presented. Together with previously published data about putative orthologs of floral homeotic genes from G. gnemon (GGM2, GGM3, GGM13), we describe seven temporally and spatially distinct expression patterns in male, female or both types of reproductive units which very likely reflect the diversity of MADS-box gene function in gymnosperm cones. There is evidence that some aspects of the observed differential expression have been conserved since the last common ancestor of extant angiosperms and gymnosperms about 300 million years ago.Edited by R.J. Sommer  相似文献   

4.
Molecular evolution of the AP2 subfamily   总被引:12,自引:0,他引:12  
Shigyo M  Hasebe M  Ito M 《Gene》2006,366(2):256-265
  相似文献   

5.
In angiosperm flower development the identity of the floral organs is determined by the A, B and C factors. Here we present the characterisation of three homologues of the A class gene APETALA2 (AP2) from the conifer Picea abies (Norway spruce), Picea abies APETALA2 LIKE1 (PaAP2L1), PaAP2L2 and PaAP2L3. Similar to AP2 these genes contain sequence motifs complementary to miRNA172 that has been shown to regulate AP2 in Arabidopsis. The genes display distinct expression patterns during plant development; in the female-cone bud PaAP2L1 and PaAP2L3 are expressed in the seed-bearing ovuliferous scale in a pattern complementary to each other, and overlapping with the expression of the C class-related gene DAL2. To study the function of PaAP2L1 and PaAP2L2 the genes were expressed in Arabidopsis. The transgenic PaAP2L2 plants were stunted and flowered later than control plants. Flowers were indeterminate and produced an excess of floral organs most severely in the two inner whorls, associated with an ectopic expression of the meristem-regulating gene WUSCHEL. No homeotic changes in floral-organ identities occurred, but in the ap2-1 mutant background PaAP2L2 was able to promote petal identity, indicating that the spruce AP2 gene has the capacity to substitute for an A class gene in Arabidopsis. In spite of the long evolutionary distance between angiosperms and gymnosperms and the fact that gymnosperms lack structures homologous to sepals and petals our data supports a functional conservation of AP2 genes among the seed plants.  相似文献   

6.
The morphological variation among reproductive organs of extant gymnosperms is remarkable, especially among conifers. Several hypotheses concerning morphological homology between various conifer reproductive organs have been put forward, in particular in relation to the pine ovuliferous scale. Here, we use the expression patterns of orthologs of the ABC-model MADS-box gene AGAMOUS (AG) for testing morphological homology hypotheses related to organs of the conifer female cone. To this end, we first developed a tailored 3'RACE procedure that allows reliable amplification of partial sequences highly similar to gymnosperm-derived members of the AG-subfamily of MADS-box genes. Expression patterns of two novel conifer AG orthologs cloned with this procedure-namely PodAG and TgAG, obtained from the podocarp Podocarpus reichei and the yew Taxus globosa, respectively-are then further characterized in the morphologically divergent female cones of these species. The expression patterns of PodAG and TgAG are compared with those of DAL2, a previously discovered Picea abies (Pinaceae) AG ortholog. By treating the expression patterns of DAL2, PodAG, and TgAG as character states mapped onto currently accepted cladogram topologies, we suggest that the epimatium-that is, the podocarp female cone organ previously postulated as a "modified" ovuliferous scale-and the canonical Pinaceae ovuliferous scale can be legitimally conceptualized as "primary homologs." Character state mapping for TgAG suggests in turn that the aril of Taxaceae should be considered as a different type of organ. This work demonstrates how the interaction between developmental-genetic data and formal cladistic theory could fruitfully contribute to gymnosperm systematics.  相似文献   

7.
8.
Phylogeny and domain evolution in the APETALA2-like gene family   总被引:5,自引:0,他引:5  
The combined processes of gene duplication, nucleotide substitution, domain duplication, and intron/exon shuffling can generate a complex set of related genes that may differ substantially in their expression patterns and functions. The APETALA2-like (AP2-like) gene family exhibits patterns of both gene and domain duplication, coupled with changes in sequence, exon arrangement, and expression. In angiosperms, these genes perform an array of functions including the establishment of the floral meristem, the specification of floral organ identity, the regulation of floral homeotic gene expression, the regulation of ovule development, and the growth of floral organs. To determine patterns of gene diversification, we conducted a series of broad phylogenetic analyses of AP2-like sequences from green plants. These studies indicate that the AP2 domain was duplicated prior to the divergence of the two major lineages of AP2-like genes, euAP2 and AINTEGUMENTA (ANT). Structural features of the AP2-like genes as well as phylogenetic analyses of nucleotide and amino acid (aa) sequences of the AP2-like gene family support the presence of the two major lineages. The ANT lineage is supported by a 10-aa insertion in the AP2-R1 domain and a 1-aa insertion in the AP2-R2 domain, relative to all other members of the AP2-like family. MicroRNA172-binding sequences, the function of which has been studied in some of the AP2-like genes in Arabidopsis, are restricted to the euAP2 lineage. Within the ANT lineage, the euANT lineage is characterized by four conserved motifs: one in the 10-aa insertion in the AP2-R1 domain (euANT1) and three in the predomain region (euANT2, euANT3, and euANT4). Our expression studies show that the euAP2 homologue from Amborella trichopoda, the putative sister to all other angiosperms, is expressed in all floral organs as well as leaves.  相似文献   

9.
Orchidaceae are an excellent model to examine perianth development because of their sophisticated floral architecture. In this study, we identified 24 APETALA3 (AP3)-like and 13 PISTILLA (PI)-like genes from 11 species of orchids and characterized them into four AP3- and two PI-duplicated homologs. The first duplication event in AP3 homologs occurring in the early evolutionary history of the Orchidaceae gave rise to AP3A and AP3B clades. Further duplication events resulted in four subclades, namely AP3A1, AP3A2, AP3B1 and AP3B2, during the evolution of Orchidaceae. The AP3 paralogous genes were expressed throughout inflorescence and floral bud development. From the in situ hybridization results, we noticed that the transition timings from ubiquitous to constrained expression in floral organs for both clades are different. The transition point of expression of the AP3A clade (clades 3 and 4) was at the late floral organ primordia stage. In contrast, that for the AP3B clade (clades 1 and 2) was not observed until the late inflorescence and floral bud stages. In addition, the AP3 orthologous genes revealed diverse expression patterns in various species of orchids, whereas the PI homologs were uniformly expressed in all floral whorls. AP3A2 orthologs play a noticeable role in lip formation because of their exclusive expression in the lip. Further evidence comes from the ectopic expression of AP3A2 detected in the lip-like petals extending from the lip in four sets of peloric mutants. Finally, a Homeotic Orchid Tepal (HOT) model is proposed, in which dualistic characters of duplicated B-class MADS-box genes are involved in orchid perianth development and growth.  相似文献   

10.
AP2/EREBP蛋白是广泛存在于高等植物中的且包含AP2/EREBP功能域的重要转录因子家族,通常可分为包含单功能域的EREBP类蛋白和包含两个功能域的AP2类蛋白,它们的功能涉及植物生长发育调控和对逆境应答等许多方面。据预测.水稻基因组编码150个左右的AP2/EREBP家族成员,但目前绝大多数蛋白的功能仍不清楚。为了解这些基因在水稻不同器官中的表达特性,我们以AP2/EREBP功能域的氨基酸序列为基础,从水稻基因组数据库中搜索到12个AP2类以及20个EREBP类预测基因,利用PCR扩增的编码区序列制备了这些预测基因的macro—array。以幼芽、幼根、幼叶、颖花和灌浆期成熟叶的cDNA为探针,杂交分析结果显示:不同AP2类预测基因之间的表达量差别较大,但同一个基因在不同器官中表达量基本一致:与此不同的是,大部分EREBP类预测基因在幼根和成熟叶片中表达量较高,而在幼芽和幼叶中表达量较低。这些预测基因的表达模式可能与它们的功能密切相关。  相似文献   

11.
12.
The AP1/FUL clade of MADS box genes have undergone multiple duplication events among angiosperm species. While initially identified as having floral meristem identity and floral organ identity function in Arabidopsis, the role of AP1 homologs does not appear to be universally conserved even among eudicots. In comparison, the role of FRUITFULL has not been extensively explored in non-model species. We report on the isolation of three AP1/FUL genes from cultivated spinach, Spinacia oleracea L. Two genes, designated SpAPETALA1-1 (SpAP1-1) and SpAPETALA1-2 (SpAP1-2), cluster as paralogous genes within the Caryophyllales AP1 clade. They are highly differentiated in the 3′, carboxyl-end encoding region of the gene following the third amphipathic alpha-helix region, while still retaining some elements of a signature AP1 carboxyl motifs. In situ hybridization studies also demonstrate that the two paralogs have evolved different temporal and spatial expression patterns, and that neither gene is expressed in the developing sepal whorl, suggesting that the AP1 floral organ identity function is not conserved in spinach. The spinach FRUITFULL homolog, SpFRUITFULL (SpFUL), has retained the conserved motif and groups with Caryophyllales FRUITFULL homologs. SpFUL is expressed in leaf as well as in floral tissue, and shows strong expression late in flower development, particularly in the tapetal layer in males, and in the endothecium layer and stigma, in the females. The combined evidence of high rates of non-synonymous substitutions and differential expression patterns supports a scenario in which the AP1 homologs in the spinach AP1/FUL gene family have experienced rapid evolution following duplication. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.
The ABC model of floral organ identity is based on studies of Arabidopsis and Antirrhinum, both of which are highly derived eudicots. Most of the genes required for the ABC functions in Arabidopsis and Antirrhinum are members of the MADS-box gene family, and their orthologs are present in all major angiosperm lineages. Although the eudicots comprise 75% of all angiosperms, most of the diversity in arrangement and number of floral parts is actually found among basal angiosperm lineages, for which little is known about the genes that control floral development. To investigate the conservation and divergence of expression patterns of floral MADS-box genes in basal angiosperms relative to eudicot model systems, we isolated several floral MADS-box genes and examined their expression patterns in representative species, including Amborella (Amborellaceae), Nuphar (Nymphaeaceae) and Illicium (Austrobaileyales), the successive sister groups to all other extant angiosperms, plus Magnolia and Asimina, members of the large magnoliid clade. Our results from multiple methods (relative-quantitative RT-PCR, real-time PCR and RNA in situ hybridization) revealed that expression patterns of floral MADS-box genes in basal angiosperms are broader than those of their counterparts in eudicots and monocots. In particular, (i) AP1 homologs are generally expressed in all floral organs and leaves, (ii) AP3/PI homologs are generally expressed in all floral organs and (iii) AG homologs are expressed in stamens and carpels of most basal angiosperms, in agreement with the expectations of the ABC model; however, an AG homolog is also expressed in the tepals of Illicium. The broader range of strong expression of AP3/PI homologs is inferred to be the ancestral pattern for all angiosperms and is also consistent with the gradual morphological intergradations often observed between adjacent floral organs in basal angiosperms.  相似文献   

15.
16.
17.
18.
Evolution of Reproductive Organs in Land Plants   总被引:4,自引:0,他引:4  
LEAFY gene is the positive regulator of the MADS-box genes in flower primordia. The number of MADS-box genes presumably increased by gene duplications before the divergence of ferns and seed plants. Most MADS-box genes in ferns are expressed similarly in both vegetative and reproductive organs, while in gymnosperms, some MADS-box genes are specifically expressed in reproductive organs. This suggests that (1) the increase in the number of MADS-box genes and (2) the subsequent recruitment of some MADS-box genes as homeotic selector genes were important for the evolution of complex reproductive organs. The phylogenetic tree including both angiosperm and gymnosperm MADS-box genes indicates the loss of the A-function genes in the gymnosperm lineage, which is presumably related to the absence of perianths in extant gymnosperms. Comparison of expression patterns of orthologous MADS-box genes in angiosperms, Gnetales, and conifers supports the sister relationship of Gnetales and conifers over that of Gnetales and angiosperms predicted by phylogenetic trees based on amino acid and nucleotide sequences. Received 30 July 1999/ Accepted in revised form 9 September 1999  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号