首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
3.
4.
5.
Advances in elucidating the molecular processes controlling flower initiation and development have provided unique opportunities to investigate the developmental genetics of non-flowering plants. In addition to providing insights into the evolutionary aspects of seed plants, identification of genes regulating reproductive organ development in gymnosperms could help determine the level of homology with current models of flower induction and floral organ identity. Based upon this, we have searched for putative developmental regulators in conifers with amino acid sequence homology to MADS-box genes. PCR cloning using degenerate primers targeted to the MADS-box domain revealed the presence of over 27 MADS-box genes within black spruce (Picea mariana), including several with extensive homology to either AP1 or AGAMOUS, both known to regulate flower development in Arabidopsis. This indicates that like angiosperms, conifers contain a large and diverse MADS-box gene family that probably includes regulators of reproductive organ development. Confirmation of this was provided by the characterization of an AGAMOUS-like cDNA clone called SAG1, whose conservation of intron position and tissue-specific expression within reproductive organs indicate that it is a homologue of AGAMOUS. Functional homology with AGAMOUS was demonstrated by the ability of SAG1 to produce homeotic conversions of sepals to carpels and petals to stamens when ectopically expressed in transgenic Arabidopsis. This suggests that some of the genetic pathways controlling flower and cone development are homologous, and antedate the 300-million-year-old divergence of angiosperms and gymnosperms.  相似文献   

6.
7.
8.
9.
Class B floral homeotic genes play a key role in specifying the identity of male reproductive organs (stamens) and petals during the development of flowers. Recently, close relatives (orthologues) of these genes have been found in diverse gymnosperms, the sister group of the flowering plants (angiosperms). The fact that such genes have not been found so far, despite considerable efforts, in mosses, ferns or algae, has been taken as evidence to suggest that B genes originated 300–400 million years ago in a lineage that led to extant seed plants. Gymnosperms do not develop petals, and their male reproductive organs deviate considerably from angiosperm stamens. So what is the function of gymnosperm B genes? Recent experiments revealed that B genes from diverse extant gymnosperms are exclusively expressed in male reproductive organs (microsporophylls). At least for some of these genes it has been shown that they can partially substitute for the Arabidopsis B genes AP3 and PI in ectopic expression experiments, or even partially substitute these genes in different class B floral organ identity gene mutants. This functional complementation, however, is restricted to male organ development. These findings strongly suggest that gymnosperm and angiosperm B genes have highly related interaction partners and equivalent functions in the male organs of their different host species. It seems likely that in extant gymnosperms B genes have a function in specifying male reproductive organs. This function was probably established already in the most recent common ancestor of extant gymnosperms and angiosperms (seed plants) 300 million years ago and thus represents the ancestral function of seed plant B genes, from which other functions (e.g., in specifying petal identity) might have been derived. This suggests that the B gene function is part of an ancestral sex determination system in which B gene expression specifies male reproductive organ development, while the absence of B gene expression leads to the formation of female reproductive organs. Such a simple switch mechanism suggests that B genes might have played a central role during the origin of flowers. In the out-of-male and out-of-female hypotheses changes in B gene expression led to the origin of hermaphroditic flower precursors out of male or female gymnosperm reproductive cones, respectively. We compare these hypotheses with other recent molecular hypotheses on the origin of flowers, in which C/D and FLORICAULA/LEAFY-like genes is given a more prominent role, and we suggest how these hypotheses might be tested in the future.  相似文献   

10.
11.
12.
A short history of MADS-box genes in plants   总被引:47,自引:0,他引:47  
Evolutionary developmental genetics (evodevotics) is a novel scientific endeavor which assumes that changes in developmental control genes are a major aspect of evolutionary changes in morphology. Understanding the phylogeny of developmental control genes may thus help us to understand the evolution of plant and animal form. The principles of evodevotics are exemplified by outlining the role of MADS-box genes in the evolution of plant reproductive structures. In extant eudicotyledonous flowering plants, MADS-box genes act as homeotic selector genes determining floral organ identity and as floral meristem identity genes. By reviewing current knowledge about MADS-box genes in ferns, gymnosperms and different types of angiosperms, we demonstrate that the phylogeny of MADS-box genes was strongly correlated with the origin and evolution of plant reproductive structures such as ovules and flowers. It seems likely, therefore, that changes in MADS-box gene structure, expression and function have been a major cause for innovations in reproductive development during land plant evolution, such as seed, flower and fruit formation.  相似文献   

13.
14.
Relationships among the five groups of extant seed plants (cycads, Ginkgo, conifers, Gnetales, and angiosperms) remain uncertain. To explore relationships among groups of extant seed plants further and to attempt to explain the conflict among molecular data sets, we assembled a data set of four plastid (cpDNA) genes (rbcL, atpB, psaA, and psbB), three mitochondrial (mtDNA) genes (mtSSU, coxI, and atpA), and one nuclear gene (18S rDNA) for 19 exemplars representing the five groups of living seed plants. Analyses of the combined eight-gene data set (15?772 base pairs/taxon) with maximum parsimony (MP), maximum likelihood (ML), and Bayesian approaches reveal a gymnosperm clade that is sister to angiosperms. Within the gymnosperms, a conifer clade includes Gnetales as sister to Pinaceae. Cycads and Ginkgo are either successive sisters to this conifer clade (including Gnetales) or a clade that is sister to conifers and Gnetales. All analyses of the mtDNA partition and ML analyses of the nuclear partition yield very similar topologies. However, MP analyses of the combined cpDNA genes place Gnetales as sister to all other seed plants with strong bootstrap support, whereas ML and Bayesian analyses of the cpDNA data set place Gnetales as sister to Pinaceae. Maximum parsimony and ML analyses of first and second codon positions of the cpDNA partiation also place Gnetales as sister to Pinaceae. In contrast, MP analyses of third codon positions place Gnetales as sister to other seed plants, although ML analyses of third codon positions place Gnetales with Pinaceae. Thus, most of the discrepancies in seed plant topologies involve third codon positions of cpDNA genes. The likelihood ratio (LR) and Shimodaira-Hasegasa (SH) tests were applied to the cpDNA data. The preferred topology based on the LR test is that Gnetales are sister to Pseudotsuga. The SH test based on first and second codon and all three codon positions indicated that there is no significant difference between the best topology (Gnetales sister to Pseudotsuga) and Gnetales sister to a conifer clade. However, there is a significant difference between the best topology and topologies in which Gnetales are sister to the rest of the seed plants or Gnetales sister to angiosperms.  相似文献   

15.
Expression patterns from in situ hybridization of four MADS-box genes (GGM7, GGM9, GGM11, and GGM15) from the gymnosperm species Gnetum gnemon are presented. Together with previously published data about putative orthologs of floral homeotic genes from G. gnemon (GGM2, GGM3, GGM13), we describe seven temporally and spatially distinct expression patterns in male, female or both types of reproductive units which very likely reflect the diversity of MADS-box gene function in gymnosperm cones. There is evidence that some aspects of the observed differential expression have been conserved since the last common ancestor of extant angiosperms and gymnosperms about 300 million years ago.Edited by R.J. Sommer  相似文献   

16.
We review functional data on MADS-box genes, recent phylogenetic analyses of these coding regions, and their roles in the development and evolution of key morphological innovations in plants. We map the origin of important morphological structures in particular diverse stages of the life cycle in different plant clades onto organismal phylogenies, and present relevant molecular genetic aspects of development related to the MADS-box genes. We focus on reproductive structures of the sporophyte because most functional characterizations have been done of MADS-box genes involved in flower development. We discuss MADS-box evolution in flowering plants, but we also review studies in the other nonflowering vascular plants, gymnosperms (conifers and gnetales), and ferns and preliminary data from the algae. We suggest that floral (e.g. flowering time, inflorescence, and flower meristem identity) MADS-box and nonfloral plant MADS-box genes should be the focus of future comparative research. Cloning and functional analyses of MADS-box genes in bryophytes, particularly in the experimental system Physcomitrella patens (Hedw.) B.S.G., are needed. The ABC model of floral organ specification is an excellent general representation of an important network of genes; however, formal analytical tools are required to integrate data on complex gene interaction in comparative analyses. This and other analytical approaches to constructing gene network models will help to frame homology hypotheses in an evolutionary and developmental framework.  相似文献   

17.
A novel result of the current research is the development and implementation of a unique functional phylogenomic approach that explores the genomic origins of seed plant diversification. We first use 22,833 sets of orthologs from the nuclear genomes of 101 genera across land plants to reconstruct their phylogenetic relationships. One of the more salient results is the resolution of some enigmatic relationships in seed plant phylogeny, such as the placement of Gnetales as sister to the rest of the gymnosperms. In using this novel phylogenomic approach, we were also able to identify overrepresented functional gene ontology categories in genes that provide positive branch support for major nodes prompting new hypotheses for genes associated with the diversification of angiosperms. For example, RNA interference (RNAi) has played a significant role in the divergence of monocots from other angiosperms, which has experimental support in Arabidopsis and rice. This analysis also implied that the second largest subunit of RNA polymerase IV and V (NRPD2) played a prominent role in the divergence of gymnosperms. This hypothesis is supported by the lack of 24nt siRNA in conifers, the maternal control of small RNA in the seeds of flowering plants, and the emergence of double fertilization in angiosperms. Our approach takes advantage of genomic data to define orthologs, reconstruct relationships, and narrow down candidate genes involved in plant evolution within a phylogenomic view of species' diversification.  相似文献   

18.
The specification of floral organ identity during development depends on the function of a limited number of homeotic genes grouped into three classes: A, B, and C. Pairs of paralogous B class genes, such as DEF and GLO in Antirrhinum, and AP3 and PI in Arabidopsis, are required for establishing petal and stamen identity. To gain a better understanding of the evolutionary origin of petals and stamens, we have looked for orthologs of B class genes in conifers. Here we report cDNA cloning of PrDGL (Pinus radiata DEF/GLO-like gene) from radiata pine. We provide phylogenetic evidence that PrDGL is closely related to both DEF- and GLO-like genes of angiosperms, and is thus among the first putative orthologs of floral homeotic B function genes ever reported from a gymnosperm. Expression of PrDGL is restricted to the pollen strobili (male cones) and was not detected in female cones. PrDGL expression was first detected in emergent male cone primordia and persisted through the early stages of pollen cone bud differentiation. Based on the results of our phylogeny reconstructions and expression studies, we suggest that PrDGL could play a role in distinguishing between male (where expression is on) and female reproductive structures (where expression is off) in radiata pine. We speculate that this could be the general function of DEF/GLO-like genes in gymnosperms that may have been recruited for the distinction between stamens and carpels, the male and female reproductive organs of flowering plants, during the evolution of angiosperms out of gymnosperm-like ancestors.  相似文献   

19.
Gymnosperms, and conifers in particular, are sometimes very productive trees yet angiosperms dominate most temperate and tropical vegetation. Current explanations for angiosperm success emphasize the advantages of insect pollination and seed dispersal by animals for the colonization of isolated habitats. Differences between gymnosperm and angiosperm reproductive and vegetative growth rates have been largely ignored. Gymnosperms are all woody, perennial and usually have long reproductive cycles. Their leaves are not as fully vascularized as those of angiosperms and are more stereotyped in shape and size. Gymnosperm tracheids are generally more resistant to solute flow than angiosperm vessels. A consequence of the less efficient transport system is that maximum growth rates of gymnosperms are lower than maximum growth rates of angiosperms in well lit, well watered habitats. Gymnosperm seedlings may be particularly uncompetitive since their growth depends on a single cohort of relatively inefficient leaves. Later, some gymnosperms attain a higher productivity than co-occurring angiosperm trees by accumulating several cohorts of leaves with a higher total leaf area. These functional constraints on gymnosperm growth rates suggest that gymnosperms will be restricted to areas where growth of angiosperm competitors is reduced, for example, by cold or nutrient shortages. Biogeographic evidence supports this prediction since conifers are largely confined to high latitudes and elevations or nutrient-poor soils. Experimental studies show that competition in the regeneration niche (between conifer seedlings and angiosperm herbs and shrubs) is common and significantly affects conifer growth and survival, Fast-growing angiosperms, especially herbs and shrubs, may also change the frequency of disturbance regimes thereby excluding slower-growing gymnosperms. Shade-tolerant and early successional conifers share similar characteristics of slow initial growth and low plasticity to a change in resources. Shade-tolerant gymnosperms would be expected to occur only where forest openings are small or otherwise unsuitable for rapid filling by fast-growing angiosperm trees, lianas or shrubs. The limited evidence available suggests that shade-tolerant conifers are confined to forests with small gap sizes where large disturbances are very rare. The regeneration hypothesis for gymnosperm exclusion by angiosperms is consistent with several aspects of the fossil record such as the early disappearance of gymnosperms from early successional environments where competition with angiosperms would have been most severe. However there are unresolved difficulties in interpreting process from paleoecological pattern which prevent the testing of alternative hypotheses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号