首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) is a bioactive gaseous, multifunctional molecule playing a central role and mediating a variety of physiological processes and responses to biotic and abiotic stresses including heavy metals. The present study investigated whether NO applied exogenously as sodium nitroprusside (SNP) has any protective role against arsenic (As) toxicity in Oryza sativa (rice). Treatment with 50 μM SNP (a NO donor) significantly ameliorated the As-induced (25 or 50 μM) decrease in root and coleoptile length of rice. Further, As-induced oxidative stress measured in terms of malondialdehyde (MDA), superoxide ion (), root oxidizability and H2O2 content was lesser upon supplementation of NO. It indicated a reactive oxygen species (ROS) scavenging activity of NO. NO addition reversed (only partially) the As-induced increase in activities of antioxidant enzymes – superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, and catalase. The study concludes that exogenous NO provides resistance to rice against As-toxicity and has an ameliorating effect against As-induced stress.  相似文献   

2.
Nitric oxide (NO) is a multifunctional gaseous signal in plant. In the present study, we found that pretreatment with NO could significantly improve wheat seeds germination and alleviate oxidative stress against copper toxicity. With the enhancement of copper stress, the germination percentage of wheat seeds decreased gradually. Pretreatment during wheat seed imbibition with sodium nitroprusside (SNP), an NO donor, could greatly reverse the inhibitory effect of the following copper stress to wheat seeds germination. SNP-pretreated seeds also tended to retain higher amylase activities than that of the control without SNP pretreatment. On the other hand, there was no apparent difference in the activities of esterase in wheat seeds pretreated with or without SNP. Further investigations showed that pretreatment with NO donor dramatically stimulated the activities of superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6), decreased the activities of lipoxygenases, sustained a lower level of malondialdehyde, and interfered with hydrogen peroxide (H2O2) excessive accumulation compared with the control, thereby enhancing the antioxidative capacity in wheat seeds under copper stress. In addition, the seed copper contents were not significant different between those pretreated with SNP and the controls, inferring that protective roles of NO was not responsible for preventing Cu uptake. Kang-Di Hu and Lan-Ying Hu contributed equally to this paper.  相似文献   

3.
Nitric Oxide (NO) is a bioactive signaling molecule that mediates a variety of biotic and abiotic stresses. The present study investigated the role of NO (as SNP [sodium nitroprusside]) in ameliorating lead (Pb)-toxicity in Triticum aestivum (wheat) roots. Pb (50 and 250 μM) alone and in combination with SNP (100 μM) was given to hydroponically grown wheat roots for a period of 0–8 h. NO supplementation reduced the accumulation of oxidative stress markers (malondialdehyde, conjugated dienes, hydroxyl ions and superoxide anion) and decreased the antioxidant enzyme activity in wheat roots particularly up to 6 h, thereby suggesting its role as an antioxidant. NO ameliorated Pb-induced membrane damage in wheat roots as evidenced by decreased ion-leakage and in situ histochemical localization. Pb-exposure significantly decreased in vivo NO level. The study concludes that exogenous NO partially ameliorates Pb-toxicity, but could not restore the plant growth on prolonged Pb-exposure.  相似文献   

4.
Summary In a split root experiment translocation of N from shoot to root was studied using15NO 3 . The three plant species selected for this experiment differed significantly with respect to root NRA. For lupin, maize and cocklebur about 80, 50 and 6% of all absorbed NO 3 was assmilated in the roots, respectively.Although NO 3 was reduced in the roots of lupin and maize plants to a greater extent than required for the roots' demand for organic N, a significant phloem flow of N from shoot to roots was found in these plants. Unexpectedly, for cocklebur, the plant with the very low root NRA, the fraction of total N present in the root that has been imported from the shoot was only half that as found for lupin and maize.  相似文献   

5.
Effects of exogenous nitric oxide (NO) on the germination and antioxidant enzyme during cucumber seed germination were investigated under salt stress. Seeds of cucumber (Cucumis sativus L. cv. Jinyou 1) were treated with distilled water or NaCl in the presence or absence of NO donor sodium nitroprusside (SNP) during germination. Excess 50 mM NaCl reduced significantly the seed germination rate in a short term and speed of germination. When salt concentration increased, germination of cucumber seed was reduced and the time needed to complete germination lengthened. Addition of exogenous SNP in salt solution attenuated the salt stress effects in a dose-dependent manner, as indicated by accelerating the seed germination, as well as weight increase of budding seeds, and 50 μM SNP was optimal concentration. At 150 mM NaCl, the 50 μM exogenous SNP significantly increased the activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6) and protein content, while decreased the contents of malondialdehyde (MDA). There were no obvious effects of exogenous NO on peroxidase (POD, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.6) activities under salt stress. Exogenous NO also increased the SOD and CAT isozyme expression under salt stress, which was in accordance with the improved antioxidant activities in the germinating seeds. The NO-induced salt stress resistance was associated with activated enzymes, and enhanced protein content, thus decreasing MDA content. It is concluded that exogenous NO treatment on cucumber seeds may be a good option to improve seed germination under saline conditions.  相似文献   

6.
The adverse effects of arsenic (As) toxicity on seedling growth, root and shoot anatomy, chlorophyll and carotenoid contents, root oxidizability (RO), antioxidant enzyme activities, H2O2 content, lipid peroxidation and electrolyte leakage (EL%) in common bean (Phaseolus vulgaris L.) were investigated. The role of exogenous nitric oxide (NO) in amelioration of As-induced inhibitory effect was also evaluated using sodium nitroprusside (100 μM SNP) as NO donor and 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (200 μM PTIO) as NO scavenger in different combinations with 50 μM As. As-induced growth inhibition was associated with marked anomalies in anatomical features, reduction in pigment composition, increased RO and severe perturbations in antioxidant enzyme activities. While activity of superoxide dismutase and catalase increased, levels of ascorbate peroxidase, dehydroascorbate reductase and glutathione reductase decreased significantly and guaiacol peroxidase remained normal. The over-accumulation of H2O2 content along with high level of lipid peroxidation and electrolyte leakage indicates As-induced oxidative damage in P. vulgaris seedlings with more pronounced effect on the roots than the shoots. Exogenous addition of NO significantly reversed the As-induced oxidative stress, maintaining H2O2 in a certain level through balanced alterations of antioxidant enzyme activities. The role of NO in the process of amelioration has ultimately been manifested by significant reduction of membrane damage and improvement of growth performance in plants grown on As + SNP media. Onset of oxidative stress was more severe after addition of PTIO, which confirms the protective role of NO against As-induced oxidative damage in P. vulgaris seedlings.  相似文献   

7.
Cadmium (Cd) is a non-redox toxic heavy metal present in the environment and induces oxidative stress in plants. We investigated whether exogenous nitric oxide (NO) supplementation as sodium nitroprusside (SNP) has any ameliorating action against Cd-induced oxidative damage in plant roots and thus protective role against Cd toxicity. Cd treatment (50 or 250 μM) alone or in combination with 200 μM SNP was given to hydroponically grown wheat roots for a short time period of 24 h and then these were shifted to distilled water to observe changes in levels of oxidative markers (lipid peroxidation, H2O2 content and electrolyte leakage). Supplementation of Cd with SNP significantly reduced the Cd-induced lipid peroxidation, H2O2 content and electrolyte leakage in wheat roots. It indicated a reactive oxygen species (ROS) scavenging activity of NO. However, even upon removal of Cd-treatment solution, the levels of oxidative markers increased during 24 h recovery stage and later at 48 h these decreased. Cd treatment resulted in an upregulation of activities of antioxidant enzymes—superoxide dismutase (SOD, 1.15.1.1), guaiacol peroxidase (GPX, 1.11.1.7), catalase (CAT, 1.11.1.6), and glutathione reductase (GR, 1.6.4.2). SNP supply resulted in a reduction in Cd-induced increased activities of scavenging enzymes. The protective role of exogenous NO in decreasing Cd-induced oxidative damage was also evident from the histochemical localization of lipid peroxidation, plasma membrane integrity and superoxides. The study concludes that an exogenous supply of NO protects wheat roots from Cd-induced toxicity.  相似文献   

8.
Seasonal changes and vertical distribution of fine (< 2 mm diameter) and coarse (2-10 mm diameter) root mass of Pinus kesiya and fine root and rhizome mass of herbaceous species, and root production were studied in the 6-, 15- and 23-year old Pinus kesiya forest stands at Shillong, in the Meghalaya state of north-east India. Maximum fine and coarse root mass of P. kesiya, and fine root and rhizome mass of the ground vegetation were recorded during the rainy season. The contribution of the tree fine roots in 0-10 cm soil layer declined from 51% in the 6-year old stand to about 33% in the older stands. The major proportion (63-88%) of herbaceous fine root and rhizome mass was concentrated in this soil layer in all the three stands. The majority (36-57%) of tree coarse roots were present in the 10-20 cm layer in all the stands. The biomass and necromass values in the case of fine roots were more or less equal in a given stand, but the coarse roots had 5 to 9 times more live than the dead mass. The proportion of herbaceous fine root mass to the total fine root mass declined from 54% in the 6-year old stand to 30-32% in the 15- and 23-year old stands. The mean total fine root mass (pine + herbaceous species) decreased from 417 g m–2 in the 6-year old stand to 302 in 15-year and 322 g m–2 in the 23-year old stand. Annual fine root production showed a marked decrease from 1055 g m–2 in the 6-year old stand to 743 g m–2 in the 23-year old stand, but coarse root production increased from 169 g m–2 in the 6-year to 466 g m–2  in the 23-year old stand; the total root production thus remained approximately constant.  相似文献   

9.
The inhibitory effect of nickel on the growth of wheat (Triticum aestivum L.) seedlings and the alleviation of nickel toxicity by nitric oxide (NO) were investigated. Nickel (Ni) at 100 μM caused striking reduction in seedling growth and significant overproduction of MDA and H2O2 in the roots. Supplementation with NO donor sodium nitroprusside (SNP) could significantly reverse the inhibitory effect of nickel in a dose-dependent manner. K3Fe(CN)6, a SNP analogue, which does not release NO, had no ameliorative effect on Ni toxicity in wheat.. In addition, application of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), a NO scavenger, could dramatically counteract the stimulatory effects of SNP on the growth of wheat seedling roots under Ni stress, confirming that NO rather than other compounds derived from SNP was responsible for the alleviating effect of Ni toxicity. Further results showed that SNP enhanced the activities of guaiacol peroxidase (POD, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11), superoxide dismutase (SOD, EC 1..1..5.1..1), glutathione reductase (GR, EC 1.6.4.2), and glutathione S-transferase (GST, EC 2.5.1.18) in wheat seedling roots under nickel stress, while no significant difference in the activity of catalase (CAT, EC 1.11.1.6) in wheat roots supplemented with SNP or without it was observed. These results clearly indicate that NO has a protective role in Ni-induced oxidative damage through modulation of antioxidant enzymes.  相似文献   

10.
Protein synthesis is an essential growth process in all animals. Little information is available on post-prandial protein synthesis and even less where different protein sources are compared. Protein synthesis was measured at 4 and 24 h after feeding juvenile barramundi in order to determine the effect of using lupin as a partial protein replacement for fish meal on the post-prandial protein metabolism. Juvenile barramundi (4.3 ±0.6 g) were held in a recirculation system (27 °C, salinity 10‰ and 24 h light) for 15 days. Fish were fed one of two isonitrogenous isoenergetic diets (40% crude protein, 16% lipid and 18.5 GE MJ kg− 1). One diet was formulated with 100% fish meal as the protein source while the other had 45% of the protein replaced with lupin ingredients (lupin kernel meal (Lupinus angustifolius) and lupin protein concentrate). All fish were fed a ration of 6%·d− 1 and feed intake was not significantly different between the two diets. Specific growth rate (SGR) and growth efficiency (in relation to protein (PPV) and energy (PEV)) were 6.5 ± 0.14%·d− 1, 43.8 ± 2.72% and 38.31 ± 1.56%, respectively, and were not significantly different between the two diets. There was no significant difference in protein synthesis between the two diets at 4 and 24 h after feeding, however protein synthesis was significantly higher 4 h after feeding than at 24 h (p = 0.02). Neither growth performance nor protein metabolism was altered by replacing 45% of the protein with lupin protein and indicated this to be a suitable protein source for barramundi feeds.  相似文献   

11.
以玉米幼苗为材料,通过在镉处理的同时补充外源一氧化氮(NO)供体硝普钠(SNP)及其类似物[K3Fe(CN)6]、以及NO消除剂,分析NO对植物耐镉性的影响,探讨NO在植物逆境胁迫响应中的作用及其机理。结果显示:添加20μmol·L-1 SNP能显著降低镉引发的玉米幼苗根生长抑制及根尖内源镉的积累,减少电解质的渗漏以及超氧化物自由基(O2.-)和过氧化氢(H2O2)的上升幅度,抑制超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性的增加,进一步提高镉胁迫下谷胱甘肽还原酶(GR)的活性。SNP的上述效应可被NO消除剂2-(4-羧基-2-苯基)-4,4,5,5-四甲基咪唑-1-氧-3-氧化物(cPTIO)所逆转,而SNP类似物K3Fe(CN)6的应用对上述反应几乎无影响,说明该反应具有NO特异性。研究表明,外源NO能够显著缓解镉胁迫对玉米幼苗生长造成的伤害,该缓解作用主要是通过降低植株体内内源镉积累和减轻镉诱发的氧化伤害来实现的。  相似文献   

12.
Invertebrates are increasingly raised in mariculture, where it is important to monitor immune function and to minimize stresses that could suppress immunity. The activities of phagocytosis, superoxide dismutase (SOD), catalase (CAT), myeloperoxidase (MPO), and lysozyme (LSZ) were measured to evaluate the immune capacities of the sea cucumber, Apostichopus japonicus, to acute temperature changes (from 12 °C to 0 °C, 8 °C, 16 °C, 24 °C, and 32 °C for 72 h) and salinity changes (from 30‰ to 20‰, 25‰, and 35‰ for 72 h) in the laboratory. Phagocytosis was significantly affected by temperature increases in 3 h, and by salinity (25‰ and 35‰) changes in 1 h. SOD activities decreased significantly in 0.5 h to 6 h samples at 24 °C. At 32 °C, SOD activities decreased significantly in 0.5 h and 1 h exposures, and obviously increased for 12 h exposure. CAT activities decreased significantly at 24 °C for 0.5 h exposure, and increased significantly at 32 °C in 3 h to 12 h exposures. Activities of MPO increased significantly at 0 °C in 0.5 h to 6 h exposures and at 8 °C for 1 h. By contrast, activities of MPO decreased significantly in 24 °C and 32 °C treatments. In elevated-temperature treatments, activities of LSZ increased significantly except at 32 °C for 6 h to 12 h exposures. SOD activity was significantly affected by salinity change. CAT activity decreased significantly after only 1 h exposure to salinity of 20‰. Activities of MPO and LSZ showed that A. japonicus tolerates limited salinity stress. High-temperature stress had a much greater effect on the immune capacities of A. japonicus than did low-temperature and salinity stresses.  相似文献   

13.
The study evaluated the effect of dietary doses of Euglena viridis on the immune response and disease resistance of Labeo rohita fingerlings against infection with the bacterial pathogen Aeromonas hydrophila. L. rohita fingerlings were fed with diet containing 0 (Control), 0.1 g, 0.5 g, 1.0 g Euglena powder kg−1 dry diet for 90 days. Biochemical (serum total protein, albumin, globulin, albumin:globulin ratio), haematological (WBC, RBC, haemoglobin content) and immunological (superoxide anion production, lysozyme, serum bactericidal activity) parameters of fish were examined after 30, 60 and 90 days of feeding. Fish were challenged with A. hydrophila 90 days post-feeding and mortalities were recorded over 10 days post-infection. The results demonstrate that fish fed with Euglena showed increased levels of superoxide anion production, lysozyme, serum bactericidal activity, serum protein and albumin (P < 0.05) compared with the control group. Following challenge with A. hydrophila less survivability was observed in the control group (56.65%) than the group fed the experimental diets. The group fed 0.5 g Euglena kg−1 dry diet showed the highest percentage survival (75%). These results indicate that Euglena stimulates the immunity and makes L. rohita more resistant to A. hydrophila infection.  相似文献   

14.
The effects of α-pinene, which is one of the major components of essential oils of several aromatic species, on energy metabolism of mitochondria isolated from maize (Zea mays L.) coleoptiles and primary roots were investigated. α-Pinene exerted similar effects on oxygen consumption irrespective of the source of mitochondria or of the substrate (L-malate, succinate or NADH). At concentrations lower than 250 μM, α-pinene stimulated respiration in state IV and inhibited respiration in state III. At higher concentrations the effect of α-pinene on state IV respiration was shifted toward inhibition. Complete suppression of respiratory control ratio was evident at α-pinene concentrations higher than 100 μM. When mitochondria were uncoupled with carbonyl cyanide 4-trifluoromethoxyphenyl-hydrazone (FCCP), α-pinene caused only inhibition of respiration. In the presence of α-pinene, the transmembrane potential was decreased as indicated by changes in the safranine binding by energized mitochondria. α-Pinene did not affect the activities of succinate dehydrogenase (EC 1.3.5.1) and L-malate dehydrogenase (L-malate:NAD+ oxidoreductase; EC 1.1.1.37). The results indicate that α-pinene acts by at least two mechanisms: uncoupling of oxidative phosphorylation and inhibition of electron transfer. Confirming the impairment of mitochondrial energy metabolism, α-pinene strongly inhibited mitochondrial ATP production. It is apparent that the actions of α-pinene on isolated mitochondria are consequences of unspecific disturbances in the inner mitochondrial membrane.  相似文献   

15.
In western Canada, oilseed rape (Brassica napus L. var. oleifera cv. Westar) is seeded during the early months of spring, when ambient temperatures are well below the optimum. This can result in poor seedling emergence. The objectives of the present study were to determine which developmental stages are sensitive to low temperature and whether the effects are thermal or developmental in nature. Seed was germinated at 22, 10 and 6 °C. Fresh weight changes and seedling growth were assessed on the basis of equal accumulated heat units, and the mobilization of storage reserves was assessed by employing antibodies against isocitrate lyase (ICL; EC 4.1.3.1), oleosin and cruciferin. Additionally, de novo protein synthesis was determined by quantifying the incorporation of methionine via in vivo labelling. Low temperature resulted in poor germination and early seedling growth with phase II of germination being most sensitive. At 10 °C, there was a temporal delay in germination that did not affect the overall success of germination. This was a thermal effect as seed at the lower temperatures required the equivalent of 16–24 degree days before germination occurred. Also, seedling growth at 10 °C was lower in comparison to seedlings grown at 22 °C. Seed at 6 °C displayed slow and incomplete germination and poor seedling growth as a result of both thermal and developmental effects.  相似文献   

16.
Effects of exogenous nitric oxide (NO) on starch degradation, oxidation in mitochondria and K+/Na+ accumulation during seed germination of wheat were investigated under a high salinity level. Seeds of winter wheat (Triticum aestivum L., cv. Huaimai 17) were pre-soaked with 0 mM or 0.1 mM of sodium nitroprusside (SNP, as nitric oxide donor) for 20 h just before germination under 300 mM NaCl. At 300 mM NaCl, exogenous NO increased germination rate and weights of coleoptile and radicle, but decreased seed weight. Exogenous NO also enhanced seed respiration rate and ATP synthesis. In addition, seed starch content decreased while soluble sugar content increased by exogenous NO pre-treatment, which was in accordance with the improved amylase activities in the germinating seeds. Exogenous NO increased the activities of superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6); whereas decreased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and superoxide anions (O2??) release rate in the mitochondria. Exogenous NO also decreased Na+ concentration while increased K+ concentration in the seeds thereby maintained a balance between K+ and Na+ during germination under salt stress. It is concluded that exogenous NO treatment on wheat seeds may be a good option to improve seed germination and crop establishment under saline conditions.  相似文献   

17.
Homobrassinolide (HBR), which is one of the most biologically active forms of Brassinosteroids (BRs), was used to examine the potential effects of hormone on root germination, antioxidant system enzymes and cell division of barley (Hordeum vulgare L.). Seeds were germinated between filter papers in 0.1, 0.5 and 1.0 μM HBR-supplemented distilled water for 48 h at dark with their controls. HBR application increased especially the primary root growth significantly with increasing concentrations when compared with the control materials and reached two fold increase in 1.0 μM HBR treated material. Treated and untreated control group roots were fixed in 1:3 aceto-alcohol and aceto-orcein preparations were made. Roots treated with HBR showed more mitotic activity, mitotic abnormalities and significant enlargements at the root tips when compared with control material. HBR application decreased total soluble protein content, superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) and peroxidase (EC 1.11.1.11) activities significantly at 1.0 μM HBR concentration. Data presented here is one of the first detailed analyses of HBR effect on barley root development.  相似文献   

18.
Nitric oxide (NO) affects the growth and development of plants and also affects plant responses to various stresses. Because NO induces root differentiation, we examined whether or not it is involved in increased ROS generation. Treatments with sodium nitroprusside (SNP), an NO donor, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a specific NO scavenger, and Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME), an NO synthase (NOS) inhibitor, revealed that NO is involved in the adventitious root growth of mountain ginseng. Supply of an NO donor, SNP, activates NADPH oxidase activity, resulting in increased generation of O2 ·−, which subsequently induces growth of adventitious roots. Moreover, treatment with diphenyliodonium chloride (DPI), an NADPH oxidase inhibitor, individually or with SNP, inhibited root growth, NADPH oxidase activity, and O2 ·− anion generation. Supply of the NO donor, SNP, did not induce any notable isoforms of enzymes; it did, however, increase the activity of pre-existing bands of NADPH oxidase, superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione reductase. Enhanced activity of antioxidant enzymes induced by SNP supply seems to be responsible for a low level of H2O2 in the adventitious roots of mountain ginseng. It was therefore concluded that NO-induced generation of O2 ·− by NADPH oxidase seems to have a role in adventitious root growth of mountain ginseng. The possible mechanism of NO involvement in O2 ·− generation through NADPH oxidase and subsequent root growth is discussed.  相似文献   

19.
选用水稻品种‘Ⅱ优128’种子为材料,以1.0μmol.L-1高铁血红素(Hematin,H)和200μmol.L-1硝普钠(sodium nitroprusside,SNP)分别作为CO和NO供体,采用PEG-6000模拟干旱胁迫,研究外源CO和NO对干旱胁迫下水稻种子萌发和萌发过程中抗氧化能力的影响。结果表明:高铁血红素和硝普钠处理可以显著提高干旱胁迫下水稻种子的发芽率、芽长和根长;同时显著提高种子淀粉酶活性,显著增加其可溶性糖、可溶性蛋白和脯氨酸含量;还不同程度地诱导增强超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)的活性,同时降低质膜相对透性和丙二醛(MDA)含量。研究证实,外源CO和NO可通过调节渗透调节物质含量和保护酶活性来有效缓解干旱胁迫对萌发水稻种子造成的氧化伤害,促进种子萌发生长。  相似文献   

20.
The effects of the heavy metals Cd and Pb on the activity of the enzyme ferric chelate reductase (FC-R, E.C. 1.6.99.13) have been studied in excised sugar beet root tips. The activity of this enzyme is markedly increased by iron deficiency. Metals were used as chloride salts or chelated with EDTA, and chemical speciation was carried out to predict the metal chemical species in equilibrium both in the ferric reductase assay and in the nutrient solutions. Three different heavy metal treatments were used. First, effects of Cd and Pb on the functioning of the FC-R were assessed in Fe-deficient plants, by including metals in the enzyme assay medium only. Results indicate that 50 μM CdCl2 or Cd-EDTA did not affect FC-R activities even when assay time was as long as 2 h, whereas Pb slightly decreased enzyme activity only at concentrations of 2 mM. Second, short-time Cd and Pb pre-treatments (30–60 min) were imposed on intact Fe-deficient plants before carrying out the assay of FC-R activity. These short-term treatments induced significant decreases in the FC-R activities previously induced by Fe deficiency. With Cd, effects were more pronounced at higher concentrations, and they were stronger when Cd was in the free ion form than when present in the form of Cd-EDTA chelate. Third, prolonged Cd and Pb treatments were imposed on plants grown on 45 μM Fe-EDTA to assess the long-term effects of heavy metals on the induction of the FC-R enzyme. These long-term heavy metal treatments caused a significant increase in the root FC-R activities, indicating that Cd and Pb induce a deficiency in Fe in sugar beet that in turn elicits FC-R activity. The increases, however, are not as large as those found in total absence of Fe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号