首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Empirical studies suggest that most exotic species have fewer parasite species in their introduced range relative to their native range. However, it is less clear how, ecologically, the loss of parasite species translates into a measurable advantage for invaders relative to native species in the new community. We compared parasitism at three levels (species richness, abundance and impact) for a pair of native and introduced cichlid fishes which compete for resources in the Panama Canal watershed. The introduced Nile tilapia, Oreochromis niloticus, was infected by a single parasite species from its native range, but shared eight native parasite species with the native Vieja maculicauda. Despite acquiring new parasites in its introduced range, O. niloticus had both lower parasite species richness and lower parasite abundance compared with its native competitor. There was also a significant negative association between parasite load (abundance per individual fish) and host condition for the native fish, but no such association for the invader. The effects of parasites on the native fish varied across sites and types of parasites, suggesting that release from parasites may benefit the invader, but that the magnitude of release may depend upon interactions between the host, parasites and the environment.  相似文献   

2.
The recent irruption of Pacific red lionfish (Pterois volitans) on Caribbean and Atlantic coral reefs could prove to be one of the most damaging marine invasions to date. Invasive lionfish are reaching densities much higher than those reported from their native range, and they have a strong negative effect on the recruitment and abundance of a broad diversity of native coral-reef fishes. Otherwise, little is known about how lionfish affect native coral-reef communities, especially compared to ecologically similar native predators. A controlled field experiment conducted on small patch-reefs in the Bahamas over an 8-week-period demonstrated that (1) lionfish caused a reduction in the abundance of small native coral-reef fishes that was 2.5?±?0.5 times (mean?±?SEM) greater than that caused by a similarly sized native piscivore, the coney grouper Cephalopholis fulva (93.7 vs. 36.3?% reduction); (2) lionfish caused a reduction in the species richness of small coral-reef fishes (loss of 4.6?±?1.6 species), whereas the native piscivore did not have a significant effect on prey richness; (3) the greatest effects on the reef-fish community, in terms of both abundance and richness, occurred when both native and invasive predators were present; and (4) lionfish grew significantly faster (>6 times) than the native predator under the same field conditions. These results suggest that invasive lionfish have stronger ecological effects than similarly sized native piscivores, and may pose a substantial threat to native coral-reef fish communities.  相似文献   

3.
Escape from parasites in their native range is one of many mechanisms that can contribute to the success of an invasive species. Gnathiid isopods are blood-feeding ectoparasites that infest a wide range of fish hosts, mostly in coral reef habitats. They are ecologically similar to terrestrial ticks, with the ability to transmit blood-borne parasites and cause damage or even death to heavily infected hosts. Therefore, being highly resistant or highly susceptible to gnathiids can have significant fitness consequences for reef-associated fishes. Indo-Pacific red lionfish (Pterois volitans) have invaded coastal habitats of the western tropical and subtropical Atlantic and Caribbean regions. We assessed the susceptibility of red lionfish to parasitic gnathiid isopods in both their native Pacific and introduced Atlantic ranges via experimental field studies during which lionfish and other, ecologically-similar reef fishes were caged and exposed to gnathiid infestation on shallow coral reefs. Lionfish in both ranges had very few gnathiids when compared with other species, suggesting that lionfish are not highly susceptible to infestation by generalist ectoparasitic gnathiids. While this pattern implies that release from gnathiid infestation is unlikely to contribute to the success of lionfish as invaders, it does suggest that in environments with high gnathiid densities, lionfish may have an advantage over species that are more susceptible to gnathiids. Also, because lionfish are not completely resistant to gnathiids, our results suggest that lionfish could possibly have transported blood parasites between their native Pacific and invaded Atlantic ranges.  相似文献   

4.
Successful invasions are largely explained by some combination of enemy release, where the invader escapes its natural enemies from its native range, and low biotic resistance, where native species in the introduced range fail to control the invader. We examined the extent to which parasites may mediate both release and resistance in the introduction of Pacific red lionfish (Pterois volitans) to Atlantic coral reefs. We found that fewer lionfish were parasitized at two regions in their introduced Atlantic range (The Bahamas and the Cayman Islands) than at two regions in their native Pacific range (the Northern Marianas Islands and the Philippines). This pattern was largely driven by relatively high infection rates of lionfish by didymozoan fluke worms and parasitic copepods (which may be host-specific to Pterois lionfishes) in the Marianas and the Philippines, respectively. When compared with sympatric, native fishes in the Atlantic, invasive lionfish were at least 18 times less likely to host a parasite in The Bahamas and at least 40 times less likely to host a parasite in the Cayman Islands. We found no indication that lionfish introduced Pacific parasites into the Atlantic. In conjunction with demographic signs of enemy release such as increased density, fish size, and growth of invasive lionfish, it is possible that escape from parasites may have contributed to the success of lionfish. This is especially true if future studies reveal that such a loss of parasites has led to more energy available for lionfish growth, reproduction, and/or immunity.  相似文献   

5.
1. It is well recognised that non-indigenous species (NIS) can affect native communities via the 'spillover' of introduced parasites. However, two other potentially important processes, the 'spillback' of native parasites from a competent NIS host, where the latter acts as a reservoir leading to amplified infection in native hosts, and the 'dilution' of parasitism by a NIS host acting as a sink for native parasites, have either not been tested or largely overlooked.
2. We surveyed the helminth parasite fauna of native New Zealand fish in Otago streams that varied in the abundance of introduced brown trout Salmo trutta , to look for evidence of spillback and/or dilution. Spillover is not an issue in this system, with trout introduced as parasite-free eggs.
3. Seven native parasite species were present across 12 sites; significant inverse relationships with an index of trout abundance (i.e. dilution) were documented for three species infecting the native upland bully Gobiomorphus breviceps , and one species infecting the native roundhead galaxias Galaxias anomalus .
4. An inverse relationship between bully energy status and infection intensity of one parasite species suggests that parasite dilution could have positive effects on bully populations. Our failure to detect similar relationships for the other parasites does not preclude the possibility that dilution is beneficial to native fish, since parasites may have subtle or unmeasured impacts.
5. The parasite dilution patterns reported are compelling in that they occurred across several native host and parasite species; as such they have important implications for invasion ecology, providing an interesting contrast to the largely negative impacts reported for NIS. Mechanisms potentially responsible for the patterns observed are discussed.  相似文献   

6.
The study of parasitism related to biological invasion has focused on attributes and impacts of parasites as invaders and the impact of introduced hosts on endemic parasitism. Thus, there is currently no study of the attributes of hosts which influence the invasiveness of parasites. We aimed to determine whether the degree of domestication of introduced mammalian species – feral introduced mammals, livestock or pets, hereafter ‘D’ – is important in the spillover of introduced parasites. The literature on introduced parasites of mammals in Chile was reviewed. We designed an index for estimating the relevance of the introduced host species to parasite spillover and determined whether the D of introduced mammals predicted this index. A total of 223 introduced parasite species were found. Our results indicate that domestic mammals have a higher number of introduced parasites and spillover parasites, and the index indicates that these mammals, particularly pets, are more relevant introducers than introduced feral mammals. Further analyses indicated that the higher impact is due to higher parasite richness, a longer time since introduction and wider dispersal, as well as how these mammals are maintained. The greater relevance of domestic mammals is important given that they are basically the same species distributed worldwide and can become the main transmitters of parasites to native mammals elsewhere. This finding also underlines the feasibility of management in order to reduce the transmission of parasites to native fauna through anti-parasitic treatment of domestic mammals, animal-ownership education and the prevention of importing new parasite species.  相似文献   

7.
In this study, 1429 fishes of 18 different species (12 native and six exotic) were sampled from 29 localities to compare the levels of parasitism between native and exotic fish species and to examine the relationship between environmental degradation and parasite diversity. Forty‐four putative species of parasites were found and most of these appear to be native parasites, which have not previously been described. Two parasite species, Lernaea cyprinacea and Ligula intestinalis, are probably introduced. Both were found on or in a range of native fish species, where they may cause severe disease. Levels of parasitism and parasite diversity were significantly greater in native fishes than in exotic species, and this may contribute to an enhanced demographic performance and competitive ability in invading exotics. Levels of parasitism and parasite diversity in native fishes were negatively related to habitat disturbance, in particular to a suite of factors that indicate increased human use of the river and surrounding environment. This was due principally to the absence in more disturbed habitats of a number of species of endoparasites with complex life cycles, involving transmission between different host species.  相似文献   

8.
9.
Lionfish (Pterois volitans), venomous predators from the Indo-Pacific, are recent invaders of the Caribbean Basin and southeastern coast of North America. Quantification of invasive lionfish abundances, along with potentially important physical and biological environmental characteristics, permitted inferences about the invasion process of reefs on the island of San Salvador in the Bahamas. Environmental wave-exposure had a large influence on lionfish abundance, which was more than 20 and 120 times greater for density and biomass respectively at sheltered sites as compared with wave-exposed environments. Our measurements of topographic complexity of the reefs revealed that lionfish abundance was not driven by habitat rugosity. Lionfish abundance was not negatively affected by the abundance of large native predators (or large native groupers) and was also unrelated to the abundance of medium prey fishes (total length of 5–10 cm). These relationships suggest that (1) higher-energy environments may impose intrinsic resistance against lionfish invasion, (2) habitat complexity may not facilitate the lionfish invasion process, (3) predation or competition by native fishes may not provide biotic resistance against lionfish invasion, and (4) abundant prey fish might not facilitate lionfish invasion success. The relatively low biomass of large grouper on this island could explain our failure to detect suppression of lionfish abundance and we encourage continuing the preservation and restoration of potential lionfish predators in the Caribbean. In addition, energetic environments might exert direct or indirect resistance to the lionfish proliferation, providing native fish populations with essential refuges.  相似文献   

10.
1.?Describing and explaining the structure of species interaction networks is of paramount importance for community ecology. Yet much has to be learned about the mechanisms responsible for major patterns, such as nestedness and modularity in different kinds of systems, of which large and diverse networks are a still underrepresented and scarcely studied fraction. 2.?We assembled information on fishes and their parasites living in a large floodplain of key ecological importance for freshwater ecosystems in the Paraná River basin in South America. The resulting fish-parasite network containing 72 and 324 species of fishes and parasites, respectively, was analysed to investigate the patterns of nestedness and modularity as related to fish and parasite features. 3.?Nestedness was found in the entire network and among endoparasites, multiple-host life cycle parasites and native hosts, but not in networks of ectoparasites, single-host life cycle parasites and non-native fishes. All networks were significantly modular. Taxonomy was the major host's attribute influencing both nestedness and modularity: more closely related host species tended to be associated with more nested parasite compositions and had greater chance of belonging to the same network module. Nevertheless, host abundance had a positive relationship with nestedness when only native host species pairs of the same network module were considered for analysis. 4.?These results highlight the importance of evolutionary history of hosts in linking patterns of nestedness and formation of modules in the network. They also show that functional attributes of parasites (i.e. parasitism mode and life cycle) and origin of host populations (i.e. natives versus non-natives) are crucial to define the relative contribution of these two network properties and their dependence on other ecological factors (e.g. host abundance), with potential implications for community dynamics and stability.  相似文献   

11.
A number of hypotheses exist to explain aggregated distributions, but they have seldom been used to investigate differences in parasite spatial distribution between native and introduced hosts. We applied two aggregation models, the negative binomial distribution and Taylor’s power law, to study the aggregation patterns of helminth populations from Liza haematocheilus across its native (Sea of Japan) and introduced (Sea of Azov) distribution ranges. In accordance with the enemy release hypothesis, we predicted that parasite populations in the introduced host range would be less aggregated than in the native host area, because aggregation is tightly constrained by abundance. Contrary to our expectation, aggregation of parasite populations was higher in the introduced host range. However, the analyses suggested that the effect of host introduction on parasite aggregation depends on whether parasite species, or higher level taxonomic groups, were acquired in or carried into the new area. The revealed similarity in the aggregation parameters of co-introduced monogeneans can be attributed to the repeatability and identity of the host–parasite systems. In contrast, the degree of aggregation differed markedly between regions for higher level taxa, which are represented by the native parasites in the Sea of Japan versus the acquired species in the Sea of Azov. We propose that the host species plays a crucial role in regulating infra-population sizes of acquired parasites due to the high rate of host-induced mortality. A large part of the introduced host population may remain uninfected due to their resistance to native naïve parasites. The core concept of our study is that the comparative analysis of aggregation patterns of parasites in communities and populations, and macroecological relationships, can provide a useful tool to reveal cryptic relationships in host–parasite systems of invasive hosts and their parasites.  相似文献   

12.
Points of origin and pathways of spread are often poorly understood for introduced parasites that drive disease emergence in imperiled native species. Co‐introduction of parasites with non‐native hosts is of particular concern in remote areas like the Hawaiian Islands, where the introduced nematode Camallanus cotti has become the most prevalent parasite of at‐risk native stream fishes. In this study, we evaluated the prevailing hypothesis that C. cotti entered the Hawaiian Islands with poeciliid fishes from the Americas, and spread by translocation of poeciliid hosts across the archipelago for mosquito control. We also considered the alternative hypothesis of multiple independent co‐introductions with host fishes originating from Asia. We inferred conduits of introduction and spread of C. cotti across the archipelago from geographic patterns of mtDNA sequence variation and allelic variation across 11 newly developed microsatellite markers. The distribution of haplotypes suggests that C. cotti spread across the archipelago following an initial introduction on O'ahu. Approximate Bayesian Computation modeling and allelic variation also indicate that O'ahu is the most likely location of introduction, from which C. cotti dispersed to Maui followed by spread to the other islands in the archipelago. Evidence of significant genetic structure across islands indicates that contemporary dispersal is limited. Our findings parallel historical records of non‐native poeciliid introductions and suggest that remediating invasion hotspots could reduce the risk of infection in native stream fishes, which illustrates how inferences on parasite co‐introductions can improve conservation efforts by guiding responses to emerging infectious disease in species of concern.  相似文献   

13.
Duong  B.  Blomberg  S. P.  Cribb  T. H.  Cowman  P. F.  Kuris  A. M.  McCormick  M. I.  Warner  R. R.  Sun  D.  Grutter  A. S. 《Coral reefs (Online)》2019,38(2):199-214

The pelagic larval stage is a critical component of the life cycle of most coral reef fishes, but the adaptive significance of this stage remains controversial. One hypothesis is that migrating through the pelagic environment reduces the risk a larval fish has of being parasitised. Most organisms interact with parasites, often with significant, detrimental consequences for the hosts. However, little is known about the parasites that larval fish have upon settlement, and the factors that affect the levels of parasitism. At settlement, coral reef fishes vary greatly in size and age (pelagic larval duration), which may influence the degree of parasitism. We identified and quantified the parasites of pre-settlement larvae from 44 species of coral reef fishes from the Great Barrier Reef and explored their relationship with host size and age at settlement, and phylogeny. Overall, less than 50% of the larval fishes were infected with parasites, and over 99% of these were endoparasites. A Bayesian phylogenetic regression was used to analyse host-parasite (presence and intensity) associations. The analysis showed parasite presence was not significantly related to fish size, and parasite intensity was not significantly related to fish age. A phylogenetic signal was detected for both parasite presence and intensity, indicating that, overall, closely related fish species were likely to have more similar susceptibility to parasites and similar levels of parasitism when compared to more distantly related species. The low prevalence of infection with any parasite type and the striking rarity of ectoparasites is consistent with the ‘parasite avoidance hypothesis’, which proposes that the pelagic phase of coral reef fishes results in reduced levels of parasitism.

  相似文献   

14.
PATE  J. S.; BELL  T. L. 《Annals of botany》2000,85(2):203-213
Populations of the introduced annual root hemiparasite, Parentucelliaviscosa (L.) Caruel (Scrophulariaceae), were examined in habitatswhere introduced, mixed introduced plus native, or solely nativespecies provided potential hosts. Presence of haustoria on hostroots confirmed parasitism of 17 introduced and ten native taxaacross the sites investigated. Paired plots, one with all hostsremoved early in the season, the other left intact, showed overallincreases in shoot dry matter of the parasites over 3 monthsof growth. Results indicated a substantial growth benefit tothe parasite from continued access to introduced and indigenousplant species, although the parasite continued growing to alimited extent after removal of hosts. Carbon isotope discriminationvalues (  相似文献   

15.
Invasive lionfish (Pterois volitans/miles complex) now permeate the entire tropical western Atlantic, Caribbean Sea, and Gulf of Mexico, but lionfish abundance has been measured only in select locations in the field. Despite its rapid range expansion, a comprehensive meta-population analysis of lionfish ‘sources’ and ‘sinks’ and consequentially the invader’s potential abundance and impacts on economically important, sympatric reef fishes have not been assessed. These data are urgently needed to spatially direct control efforts and to plan for and perhaps mitigate lionfish-caused damage. Here, we use a biophysical computer model to: (1) forecast larval lionfish sources and sinks that are also delineated as low to high lionfish ‘density zones’ throughout their invaded range, and (2) assess the potential vulnerability of five grouper and snapper species—Epinephelus morio, Mycteroperca microlepis, Epinephelus flavolimbatus, Lutjanus campechanus, and Rhomboplites aurorubens—to lionfish within these density zones in the Gulf of Mexico. Our results suggest that the west Florida shelf and nearshore waters of Texas, USA, and Guyana, South America, function both as lionfish sources and sinks and should be a high priority for targeted lionfish control. Furthermore, of the five groupers and snappers studied, the high fishery value E. morio (red grouper) is the Gulf of Mexico species most at risk from lionfish. Lacking a comprehensive lionfish control policy, these risk exposure data inform managers where removals should be focused and demonstrate the risk to five sympatric native groupers and snappers in the Gulf of Mexico that may be susceptible to dense lionfish aggregations, should control efforts fail.  相似文献   

16.
The biogeographic patterns of abundance and prevalence of helminths from Liza haematocheilus were studied across its native (Sea of Japan) and introduced (Sea of Azov) distribution ranges. Abundance-occupancy relationships (AORs) were tested for the core-satellite and enemy release (ERH) species hypotheses in eight and 14 host samples from the native and introduced host ranges, respectively. The AOR model fitted parasite data extremely well, irrespective of whether the host or the parasite species were native or invasive. Except for co-introduced monogeneans, species were less abundant and prevalent in the introduced host population than in the native one, which agrees well with the ERH. Two occupancy patterns were observed. A unimodal, right-skewed distribution of prevalence frequency was common for the acquired groups of helminth parasites in the introduced range, whereas a bimodal distribution was more common in the native range. Core species in the native range were monogeneans, adult and larval digeneans, whereas host-specific, co-introduced monogeneans were the only core species in the introduced range. Acquired grey-mullet specialists and host generalists infected only a small portion of the introduced host population with low mean abundance. These results indicate that strict host specificity, together with a direct life cycle, are the traits that enabled helminth species to entirely occupy the invasive host population. The AORs showed that parasite individuals tend to accumulate in a relatively small fraction of susceptible introduced hosts, probably as an adaptation to enhance mating opportunities, thereby providing a mechanistic explanation of the ERH. All this evidence suggests that co-introduced and acquired species use the introduced host population in very different ways. Therefore, we posit that the examination of AORs can be instrumental in understanding the role of co-introduced parasites in invasion theory.  相似文献   

17.
Lionfish (Pterois volitans/miles) have invaded the majority of the Caribbean region within five years. As voracious predators of native fishes with a broad habitat distribution, lionfish are poised to cause an unprecedented disruption to coral reef diversity and function. Controls of lionfish densities within its native range are poorly understood, but they have been recorded in the stomachs of large-bodied Caribbean groupers. Whether grouper predation of lionfish is sufficient to act as a biocontrol of the invasive species is unknown, but pest biocontrol by predatory fishes has been reported in other ecosystems. Groupers were surveyed along a chain of Bahamian reefs, including one of the region's most successful marine reserves which supports the top one percentile of Caribbean grouper biomass. Lionfish biomass exhibited a 7-fold and non-linear reduction in relation to the biomass of grouper. While Caribbean grouper appear to be a biocontrol of invasive lionfish, the overexploitation of their populations by fishers, means that their median biomass on Caribbean reefs is an order of magnitude less than in our study. Thus, chronic overfishing will probably prevent natural biocontrol of lionfishes in the Caribbean.  相似文献   

18.
The success of introduced species is often facilitated by escape from the effects of natural predators and parasites. Introduced species can profit from this favourable situation, attaining higher population densities and greater individual sizes in novel areas. In this study, somatic condition and parasite infection were compared between native and non-native populations of Neogobius kessleri Günther; introduced only within the interconnected Danube and Rhine River system, and N. melanostomus (Pallas); widely introduced throughout several river systems in Europe and North America. Higher values of Fulton’s condition factor were observed in non-native populations of both goby species. Neogobius melanostomus attained higher gonadosomatic index values in non-native populations, indicating potential increased investment in reproduction in its new area. A lower splenosomatic index was observed in non-native populations, especially in N. melanostomus. Parasite infracommunity richness and mean abundance were higher in N. kessleri in both native and non-native populations, suggesting higher susceptibility of N. kessleri to these parasites. Non-native populations of both hosts showed higher infra-community richness as a result of acquiring parasites native to the new area, but lower parasite abundance. Differences in success of the introduction and establishment in new areas between the two fish species may be associated with a relatively low parasite infection rate and a higher gonadosomatic index in non-native populations of N. melanostomus in comparison to N. kessleri.  相似文献   

19.
While anthropogenic impacts on parasitism of wildlife are receiving growing attention, whether these impacts vary in a sex‐specific manner remains little explored. Differences between the sexes in the effect of parasites, linked to anthropogenic activity, could lead to uneven sex ratios and higher population endangerment. We sampled 1108 individual bats in 18 different sites across an agricultural mosaic landscape in southern Costa Rica to investigate the relationships between anthropogenic impacts (deforestation and reductions in host species richness) and bat fly ectoparasitism of 35 species of Neotropical bats. Although female and male bat assemblages were similar across the deforestation gradient, bat fly assemblages tracked their hosts closely only on female bats. We found that in female hosts, parasite abundance per bat decreased with increasing bat species richness, while in male hosts, parasite abundance increased. We hypothesize the differences in the parasite–disturbance relationship are due to differences in roosting behavior between the sexes. We report a sex‐specific parasite–disturbance relationship and argue that sex differences in anthropogenic impacts on wildlife parasitism could impact long‐term population health and survival.  相似文献   

20.
Studies on species of Monogenea have shown that these parasites often infect only a specific host species, genus, or family, and that they attach only to specific sites within hosts. Few studies, however, examine habitat specificity across host and habitat scales. In this study, we focused on host, macrohabitat, and microhabitat specificity in the monogenean diplozoon Afrodiplozoon polycotyleus, a gill parasite of African cyprinid fishes, Barbus spp. We first compared the occurrence of A. polycotyleus among 4 species of Barbus from a single location in the Mpanga River of western Uganda; Barbus neumayeri was the only species infected with the parasite. We then quantified parasite prevalence and mean abundance in B. neumayeri from a series of river and swamp sites in the same drainage, looking for environmental predictors of diplozoon prevalence and abundance over a broad habitat scale. The prevalence and mean abundance of A. polycotyleus on gills of B. neumayeri was highest in the hypoxic swamp habitat, followed by the intermittent stream sites, and faster flowing river sites. Parasite prevalence and mean abundance across habitats were negatively related to both water current and dissolved oxygen concentration. Within hosts, A. polycotyleus was strongly specific among hemibranchs in poorly oxygenated water and was found on arch 2, hemibranch 4 most frequently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号