首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   0篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   7篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2001年   3篇
  2000年   2篇
  1993年   1篇
  1988年   2篇
  1985年   1篇
  1980年   2篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有51条查询结果,搜索用时 31 毫秒
1.
2.
In some of the most complex animal societies, individuals exhibit a cooperative division of labour to form castes. The most pronounced types of caste formation involve reproductive and non-reproductive forms that are morphologically distinct. In colonies comprising separate or mobile individuals, this type of caste formation has been recognized only among the arthropods, sea anemones and mole-rats. Here, we document physical and behavioural caste formation in a flatworm. Trematode flatworm parasites undergo repeated clonal reproduction of ‘parthenitae’ within their molluscan hosts forming colonies. We present experimental and observational data demonstrating specialization among trematode parthenitae to form distinct soldier and reproductive castes. Soldiers do not reproduce, have relatively large mouthparts, and are much smaller and thinner than reproductives. Soldiers are also more active, and are disproportionally common in areas of the host where invasions occur. Further, only soldiers readily and consistently attack heterospecifics and conspecifics from other colonies. The division of labour described here for trematodes is strongly analogous to that characterizing other social systems with a soldier caste. The parallel caste formation in these systems, despite varying reproductive mode and taxonomic affiliation, indicates the general importance of ecological factors in influencing the evolution of social behaviour. Further, the ‘recognition of self’ and the defence of the infected host body from invading parasites are comparable to aspects of immune defence. A division of labour is probably widespread among trematodes and trematode species encompass considerable taxonomic, life history and environmental diversity. Trematodes should therefore provide new, fruitful systems to investigate the ecology and evolution of sociality.  相似文献   
3.
Introduced species can alter the topology of food webs. For instance, an introduction can aid the arrival of free-living consumers using the new species as a resource, while new parasites may also arrive with the introduced species. Food-web responses to species additions can thus be far more complex than anticipated. In a subarctic pelagic food web with free-living and parasitic species, two fish species (arctic charr Salvelinus alpinus and three-spined stickleback Gasterosteus aculeatus) have known histories as deliberate introductions. The effects of these introductions on the food web were explored by comparing the current pelagic web with a heuristic reconstruction of the pre-introduction web. Extinctions caused by these introductions could not be evaluated by this approach. The introduced fish species have become important hubs in the trophic network, interacting with numerous parasites, predators and prey. In particular, five parasite species and four predatory bird species depend on the two introduced species as obligate trophic resources in the pelagic web and could therefore not have been present in the pre-introduction network. The presence of the two introduced fish species and the arrival of their associated parasites and predators increased biodiversity, mean trophic level, linkage density, and nestedness; altering both the network structure and functioning of the pelagic web. Parasites, in particular trophically transmitted species, had a prominent role in the network alterations that followed the introductions.  相似文献   
4.
An outbreak of the nemertean, Carcinonemertes epialti, was observed on Hemigrapsus oregonensis during October, 1982 at Campbell Cove, Bodega Harbor, California. Mean worm intensity (296 worms/crab) was the highest recorded for this nemertean egg predator on H. oregonensis. During the outbreak, male crabs were found to harbor more worms than both non-ovigerous and ovigerous females. Crab egg mortality was substantial; 83% of the ovigerous females experienced 75–100% brood mortality. The seasonal peak in worm abundance coincided with the seasonal low in crab reproduction at this locality. A method for estimating the impact of C. epialti on H. oregonensis natality was developed using crab size and fecundity, and worm prevalence and intensity. For a non-outbreak sampling period, a mean of 5.6% egg mortality was experienced by infested crabs for the period selected. Thus, brood mortality during the outbreak was much greater than that experienced at non-outbreak periods. Heavy fishing pressure on some commercially important crab species has been suggested as a possible factor inducing worm outbreaks and facilitating their continued persistence. These observations suggest that fisheries are not necessarily responsible for the outbreaks of nemerteans on commercially important crab species. However, fishing pressure may still be a sufficient condition to promote nemertean outbreaks.  相似文献   
5.
Lafferty KD  Shaw JC  Kuris AM 《EcoHealth》2008,5(3):338-345
We compared parasite communities at two coral atolls in the Line Islands chain of the central Pacific (Kiritimati Island and Palmyra Atoll). Palmyra Atoll is relatively pristine while Kiritimati Island is heavily fished. At each island, we sampled five fish species for helminth and arthropod endoparasites: Chromis margaritifer, Plectroglyphidodon dickii, Paracirrhites arcatus, Acanthurus nigricans, and Lutjanus bohar. The surveys found monogeneans, digeneans, cestodes, nematodes, acanthocephalans, and copepods. Parasite richness was higher at Palmyra compared to Kiritimati for all five fish species. Fishes from Palmyra also tended to have more parasites species per host, higher parasite prevalence, and higher parasite abundance than did fishes from Kiritimati. The lower parasitism at Kiritimati may result from a simplified food web due to over fishing. Low biodiversity could impair parasite transmission by reducing the availability of hosts required by parasites with complex life cycles. Most notably, the lower abundances of larval shark tapeworms at Kiritimati presumably reflect the fact that fishing has greatly depleted sharks there in comparison to Palmyra.  相似文献   
6.
Based on morphological evidence and preliminary physicochemical data, we report the first picornavirus from crustacean hosts. The viral particles are widespread in the tissues of an isopodan parasitic castrator, Portunion conformis, and its shore crab host, Hemigrapsus oregonensis, collected in San Francisco Bay, California. Less frequently, infected cells of the parasitic isopod also contain larger viral particles.  相似文献   
7.
8.
The green crab Carcinus maenas was introduced to Australian temperate waters in the late 1800s, has since become established, and is now considered to be a pest. We undertook an extensive parasite survey to find potential natural enemies of C. maenas and found it to be infected in Australia by 2 species of larval trypanorhynch tapeworm, Trimacracanthus aetobatidis and Dollfusiella martini. We describe the gross pathology and histopathology of the parasites' new host (C. maenas) and note that the plerocercoid larvae are located in the lumen of the digestive gland tubules. The presence of D. martini in C. maenas with low population numbers suggests that either D. martini has an impact (direct or indirect) on the survival of C. maenas, or that the parasite may be an indicator of high predation pressure. If the former were true, this would contribute to the control of this introduced pest species.  相似文献   
9.
Although parasites represent an important component of ecosystems, few field and theoretical studies have addressed the structure of parasites in food webs. We evaluate the structure of parasitic links in an extensive salt marsh food web, with a new model distinguishing parasitic links from non-parasitic links among free-living species. The proposed model is an extension of the niche model for food web structure, motivated by the potential role of size (and related metabolic rates) in structuring food webs. The proposed extension captures several properties observed in the data, including patterns of clustering and nestedness, better than does a random model. By relaxing specific assumptions, we demonstrate that two essential elements of the proposed model are the similarity of a parasite’s hosts and the increasing degree of parasite specialization, along a one-dimensional niche axis. Thus, inverting one of the basic rules of the original model, the one determining consumers’ generality appears critical. Our results support the role of size as one of the organizing principles underlying niche space and food web topology. They also strengthen the evidence for the non-random structure of parasitic links in food webs and open the door to addressing questions concerning the consequences and origins of this structure.  相似文献   
10.
Introduced species often seem to perform better than conspecifics in their native range. This is apparent in the high densities they may achieve or the larger individual sizes they attain. A prominent hypothesis explaining the success of introduced terrestrial species is that they are typically free of or are less affected by the natural enemies (competitors, predators, and parasites) they encounter in their introduced range compared to their native range. To test this hypothesis in a marine system, we conducted a global assessment of the effect of parasitism and predation on the ecological performance of European green crab populations. In Europe, where the green crab is native, crab body size and biomass were negatively associated with the prevalence of parasitic castrators. When we compared native crab populations with those from introduced regions, limb loss (an estimator of predation) was not significantly lower in introduced regions, parasites infected introduced populations substantially less and crabs in introduced regions were larger and exhibited a greater biomass. Our results are consistent with the general prediction that introduced species suffer less from parasites compared to populations where they are native. This may partly explain why the green crab is such a successful invader and, subsequently, why it is a pest in so many places.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号