首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosynthesis and leaf traits of five species in genus Cypripedium were compared in natural habitats and transplant nursery to develop effective strategy for cultivation and conservation. Among five species, C. guttatum had the highest photosynthetic capacity (P Nmax) in the natural habitat and nursery, while C. lichiangense the lowest. The differences in P Nmax among species were correlated with leaf N content (LNC) and leaf dry mass per unit area (LMA). After transplanting from natural habitats to nursery, the P Nmax of C. lichiangense and C. yunnanense decreased, that of C. guttatum increased, while those of C. flavum and C. tibeticum remained relatively constant. The variations in LNC and biochemical efficiency would be responsible for the differences in P Nmax between plants in natural habitats and in the nursery, but not the relative stomatal limitation. After transplanting, the Fv/Fm of C. lichiangense and C. yunnanense were declined. Meanwhile, the temperature ranges maintaining 90 % P Nmax of C. lichiangense and C. yunnanense were narrower than those of the other three species. Thus the biochemical process in five species played a major role in the differences of P Nmax after transplanting, and the widespread species had higher photosynthetic adaptability than the narrow-spread species.  相似文献   

2.
Y. Jia  V. M. Gray 《Photosynthetica》2004,42(4):535-542
The influence of phosphorus (P) and nitrogen (N) supply on biomass, leaf area, photon saturated photosynthetic rate (Pmax), quantum yield efficiency (), intercellular CO2 concentration (Ci), and carboxylation efficiency (CE) was investigated in Vicia faba. The influence of P on N accumulation, biomass, and leaf area production was also investigated. An increase in P supply was consistently associated with an increase in N accumulation and N productivity in terms of biomass and leaf area production. Furthermore, P increased the photosynthetic N use efficiency (NUE) in terms of Pmax and . An increase in P supply was also associated with an increase in CE and a decrease in Ci. Under variable daily meteorological conditions specific leaf nitrogen content (NL), specific leaf phosphorus content (PL), specific leaf area (L), root mass fraction (Rf), Pmax, and remained constant for a given N and P supply. A monotonic decline in the steady-state value of Rf occurred with increasing N supply. L increased with increasing N supply or with increasing NL. We tested also the hypothesis that P supply positively affects both N demand and photosynthetic NUE by influencing the upper limit of the asymptotic values for Pmax and CE, and the lower limit for Ci in response to increasing N.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

3.
At the grain-filling stage, net photosynthetic rate (P N), stomatal conductance (g s), and ribulose-1,5-bisphosphate carboxylation efficiency (CE) were correlated in order to find the determinant of photosynthetic capacity in rice leaves. For a flag leaf, P N in leaf middle region was higher than in its upper region, and leaf basal region had the lowest P N value. The differences in g s and CE were similar. P N, g s, and CE gradually declined from upper to basal leaves, showing a leaf position gradient. The correlation coefficient between P N and CE was much higher than that between P N and g s in both cases, and P N was negatively correlated with intercellular CO2 concentration (C i). Hence the carboxylation activity or activated amount of ribulose-1,5-bisphosphate carboxylase/oxygenase rather than gs was the determinant of the photosynthetic capacity in rice leaves. In addition, in flag leaves of different tillers P N was positively correlated with g s, but negatively correlated with C i. Thus g s is not the determinant of the photosynthetic capacity in rice leaves.The study was supported by the State Key Basic Research and Development Plan (No.G1998010100).  相似文献   

4.
Srinivas  P.  Smith  B.N.  Swamy  P.M. 《Photosynthetica》2000,37(4):633-637
The net photosynthetic rate (P N), intercellular CO2 concentration (C i), stomatal conductance (g s), transpiration rate (E), water use efficiency (WUE), and leaf biomass production of four American flue-cured tobacco (Nicotiana tabacum L.) cultivars K 326, K 358, and Speight G 28 were compared with three local Indian cultivars 16/103, Special FCV, and PCT-7, during 1994 and 1995 crop seasons under irrigated and rainfed production systems (Northern light soils, NLS, and Karnataka light soils, KLS) in India. By comparison, the American tobacco cv. K 326 showed the highest P N and g s. A positive correlation was found between P N and biomass production in all the varieties tested (r = 0.55 in NLS and 0.73 in KLS). The American cultivars were superior than the local cultivars in their biomass production and P N under Indian farming conditions.  相似文献   

5.
In a field rain-fed trial with 15 cassava cultivars, leaf gas exchanges and carbon isotope discrimination (Δ) of the same leaves were determined to evaluate genotypic and within-canopy variations in these parameters. From 3 to 7 months after planting leaf gas exchange was measured on attached leaves from upper, middle, and lower canopy layers. All gas exchange parameters varied significantly among cultivars as well as canopy layers. Net photosynthetic rate (P N) decreased from top canopy to bottom indicating both shade and leaf age effects. The same trend, but in reverse, was found with respect to Δ, with the highest values in low canopy level and the lowest in upper canopy. There were very significant correlations, with moderate and low values, among almost all these parameters, with P N negatively associated with intercellular CO2 concentration (C i), ratio of C i to ambient CO2 concentration C i/C a, and Δ. Across all measured leaves, Δ correlated negatively with leaf water use efficiency (WUE = photosynthesis/stomatal conductance, g s) and with g s, but positively with C i and C i/C a. The later parameters negatively correlated with leaf WUE. Across cultivars, both P N and correlated positively with storage root yield. These results are in agreement with trends predicted by the carbon isotope discrimination model.  相似文献   

6.
Response of net photosynthetic rate (P N), stomatal conductance (g s), intercellular CO2 concentration (c i), and photosynthetic efficiency (Fv/Fm) of photosystem 2 (PS2) was assessed in Eucalyptus cladocalyx grown for long duration at 800 (C800) or 380 (C380) μmol mol-1 CO2 concentration under sufficient water supply or under water stress. The well-watered plants at C800 showed a 2.2 fold enhancement of P N without any change in g s. Under both C800 and C380, water stress decreased P N and g s significantly without any substantial reduction of c i, suggesting that both stomatal and non-stomatal factors regulated P N. However, the photosynthetic efficiency of PS2 was not altered. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Abutilon theophrasti (C3) and Amaranthus retroflexus (C4), were grown from seed at four partial pressures of CO2: 15 Pa (below Pleistocene minimum), 27 Pa (pre-industrial), 35 Pa (current), and 70 Pa (future) in the Duke Phytotron under high light, high nutrient, and wellwatered conditions to evaluate their photosynthetic response to historic and future levels of CO2. Net photosynthesis at growth CO2 partial pressures increased with increasing CO2 for C3 plants, but not C4 plants. Net photosynthesis of Abutilon at 15 Pa CO2 was 70% less than that of plants grown at 35 Pa CO2, due to greater stomatal and biochemical limitations at 15 Pa CO2. Relative stomatal limitation (RSL) of Abutilon at 15 Pa CO2 was nearly 3 times greater than at 35 Pa CO2. A photosynthesis model was used to estimate ribulose-1,5-bisphosphate carboxylase (rubisco) activity (Vcmax), electron transport mediated RuBP regeneration capacity (J max), and phosphate regeneration capacity (PiRC) in Abutilon from net photosynthesis versus intercellular CO2 (AC i) curves. All three component processes decreased by approximately 25% in Abutilon grown at 15 Pa compared with 35 Pa CO2. Abutilon grown at 15 Pa CO2 had significant reductions in total rubisco activity (25%), rubisco content (30%), activation state (29%), chlorophyll content (39%), N content (32%), and starch content (68%) compared with plants grown at 35 Pa CO2. Greater allocation to rubisco relative to light reaction components and concomitant decreases in J max and PiRC suggest co-regulation of biochemical processes occurred in Abutilon grown at 15 Pa CO2. There were no significant differences in photosynthesis or leaf properties in Abutilon grown at 27 Pa CO2 compared with 35 Pa CO2, suggesting that the rise in CO2 since the beginning of the industrial age has had little effect on the photosynthetic performance of Abutilon. For Amaranthus, limitations of photosynthesis were balanced between stomatal and biochemical factors such that net photosynthesis was similar in all CO2 treatments. Differences in photosynthetic response to growth over a wide range of CO2 partial pressures suggest changes in the relative performance of C3 and C4 annuals as atmospheric CO2 has fluctuated over geologic time.  相似文献   

8.
Mediavilla  S.  Santiago  H.  Escudero  A. 《Photosynthetica》2002,40(4):553-559
In the evergreen Quercus rotundifolia and the co-existing deciduous Q. faginea we studied the diurnal variations in photosynthetic capacity (P max), measured as the rate of O2 evolution at photon and CO2 saturation, and in the rate of net CO2 assimilation (P N) in the field during the period of maximum photosynthetic activity. Our aim was to check the contribution of stomatal and non-stomatal limitations to the diurnal variation in photosynthesis, and to study the differences between both species. Q. faginea leaves displayed lower mass per unit area and higher nitrogen content than Q. rotundifolia leaves. The maximum stomatal conductance and P N in the field were higher in Q. faginea than in Q rotundifolia. Also P max of Q. faginea was higher than that of Q. rotundifolia. Both species attained in the field a high percentage of the P max (around 82 % for Q. faginea and 73 % for Q. rotundifolia). This indicates reduced stomatal limitation of photosynthesis under favourable conditions, especially in Q. faginea. P N underwent a sharp decrease towards mid-day in association with increase in the atmospheric vapour pressure deficit and decrease in the leaf water potential. P max was also reduced during mid-day. This demonstrated the contribution of mesophyll limitations to the P N in the two species under stress. The mesophyll limitation of photosynthesis seemed to be similar for both species, independently from the differences in leaf traits between them.  相似文献   

9.
Niu  S.L.  Jiang  G.M.  Li  Y.G.  Gao  L.M.  Liu  M.Z. 《Photosynthetica》2003,41(2):221-226
Net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), leaf water potential (ψleaf), leaf nitrogen content, and photosynthetic nitrogen use efficiency (PNUE) were compared between a typical C4 plant, Agriophyllum squarrosum and a C3 plant, Leymus chinensis, in Hunshandak Sandland, China. The plant species showed different diurnal gas exchange patterns on June 12–14 when photosynthetic photon flux density (PPFD), air temperature (T air), and water potential were moderate. P N, E, and g s of A. squarrosum showed distinct single peak while those of L. chinensis were depressed at noon and had two peaks in their diurnal courses. Gas exchange traits of both species showed midday depression under higher photosynthetic photon flux density (PPFD) and T air when Ψleaf was significantly low down on August 6–8. However, those of A. squarrosum were depressed less seriously. Moreover, A. squarrosum had higher P N, Ψleaf, water use efficiency (WUE), and PNUE than L. chinensis. Thus A. squarrosum was much more tolerant to heat and high irradiance and could utilise the resources on sand area more efficiently than L. chinensis. Hence species like A. squarrosum may be introduced and protected to reconstruct the degraded sand dunes because of their higher tolerance to stress and higher resource use efficiency. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Abstract Maximum photosynthetic rate (Pmax in Zea mays L. was reduced to a much greater extent by neutral shading during growth than in the shade-adapted C4 grass Paspalum conjugatum Berg., although under a high light regime the Pmax of Z. mays was two-fold higher than that of P. conjugatum. In both species the shade-induced reductions of Pmax were not of stomatal origin since the intercellular CO2 concentration (Ci) was not decreased by growth under low light levels. The Ci of P. conjugatum (~200 μPa Pa?1) measured at air levels of CO2 and high photon flux densities was 30% greater than that of Z. mays and, concomitantly, leaf water use efficiency was less. As with Pmax, specific leaf weight, leaf thickness and chlorenchyma volume were reduced to a greater extent by shading in Z. mays than in P. conjugatum. In contrast to Z. mays, bundle sheath chloroplasts of P. conjugatum contained well-defined stacks of grana. Mesophyll chloroplasts of P. conjugatum developed under a high light regime also contained large amounts of starch. This was not the case with Z. mays.  相似文献   

11.
Variation in light demand is a major factor in determining the growth and survival of trees in a forest. There is strong relation between the light‐demand and the effect of growth irradiance on leaf morphology and photosynthesis in three Acer species: A. rufinerve (light‐demanding), A. mono (intermediate) and A. palmatum (shade‐tolerant). The increase in mesophyll thickness and surface area of chloroplasts facing the intercellular airspaces (Sc) with growth irradiance was highest in A. rufinerve. Although the increase in light‐saturated photosynthesis (Amax) was similar among the species, the increase in water use efficiency (WUE) was much higher in A. rufinerve than that in the other species, indicating that the response to water limitation plays an important role in leaf photosynthetic acclimation to high light in A. rufinerve. The low CO2 partial pressure at the carboxylation site (Cc) in A. rufinerve (130 µmol mol?1) at high irradiance was caused by low stomatal and internal conductance to CO2 diffusion, which minimized the increase in Amax in A. rufinerve despite its high Rubisco content. Under shade conditions, interspecific differences in leaf features were relatively small. Thus, difference in light demand related to leaf acclimation to high light rather than that to low light in the Acer species.  相似文献   

12.
Net photosynthetic rate (P N), transpiration rate (E), water use efficiency (WUE), stomatal conductance (g s), and stomatal limitation (Ls) were investigated in two Syringa species. The saturation irradiance (SI) was 400 µmol m-2s-1 for S. pinnatifolia and 1 700 µmol m-2s-1 for S. oblata. Compared with S. oblata, S. pinnatifolia had extremely low gs. Unlike S. oblata, the maximal photosynthetic rate (P max) in S. pinnatifoliaoccurred around 08:00 and then fell down, indicating this species was sensitive to higher temperature and high photosynthetic photon flux density. However, such phenomenon was interrupted by the leaf development rhythms before summer. A relatively lower P N together with a lower leaf area and shoot growth showed the capacity for carbon assimilation was poorer in S. pinnatifolia.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

13.
Changes in net photosynthetic rate (PN), stomatal conductance (gs), intercellular CO2 concentrations (Ci), transpiration rate (E) and water use efficiency (WUE) were measured in Plantago major L. plants grown under sufficient soil water supply or under soil water stress conditions. The plants had high PN in a wide range of soil water potential and temperature regimes. Soil water had little effect on PN under ambient CO2 concentrations, which was explained by a high carboxylation rate, but increased the dark respiration rate. Carboxylation activity at low Ci depended on RuBP regeneration, whereas at high Ci it depended on the phosphate regeneration rate. The gs and E values were low in plants under stress as compared to the controls that resulted in an increase of WUE. The results obtained show that Plantago major plants have different ways of adaptation to soil water deficit conditions.  相似文献   

14.
Paphiopedilum and Cypripedium are close relatives in the subfamily Cypripedioideae. Cypripedium leaves contain guard cell chloroplasts, whereas Paphiopedilum do not. It is unclear whether the lack of guard cell chloroplasts affects photosynthetic induction, which is important for understory plants to utilize sunflecks. To understand the role of guard cell chloroplasts in photosynthetic induction of Paphiopedilum and Cypripedium, the stomatal anatomy and photosynthetic induction of Paphiopedilum armeniacum and Cypripedium flavum were investigated at different ratios of red to blue light. The highest stomatal opening and photosynthesis of intact leaves in P. armeniacum were induced by irradiance enriched with blue light. Its stomatal opening could be induced by red light 250 µmol m?2 s?1, but the magnitude of stomatal opening was lower than those at the other light qualities. However, the stomatal opening and photosynthesis of C. flavum were highly induced by mixed blue and red light rather than pure blue or red light. The two orchid species did not differ in stomatal density, but P. armeniacum had smaller stomatal size than C. flavum. The stomata of P. armeniacum were slightly sunken into the leaf epidermis, while C. flavum protruded above the leaf surface. The slower photosynthetic induction and lower photosynthetic rate of P. armeniacum than C. flavum were linked to the lack of guard cell chloroplasts and specific stomatal structure, which reflected an adaptation of Paphiopedilum to periodic water deficiency in limestone habitats. These results provide evidence for the morphological and physiological evolution of stomata relation for water conservation under natural selection.  相似文献   

15.
Net photosynthetic rate (P N), stomatal conductance (g S), transpiration rate (E), intercellular CO2 concentration (C i), leaf water potential (w), leaf area, chlorophyll (Chl) content, and the activities of photosynthetic carbon reduction cycle (PCR) enzymes in two mulberry (Morus alba L.) cultivars (drought tolerant Anantha and drought sensitive M-5) were studied during water stress and recovery. During water stress, P N, g S, and E declined whereas C i increased. P N, g S, and E were less affected in Anantha than in M-5, which indicates tolerance nature of Anantha over M-5. Activities of ribulose-5-phosphate kinase, NAD- and NADP-glyceraldehyde-3-phosphate dehydrogenases, and 3-phosphoglycerate kinase decreased with increasing stress in both the cultivars. The enzyme activities less affected in tolerant (Anantha) than in sensitive cultivar (M-5) were restored after re-watering to almost initial values in both the cultivars. Re-watering of the plants led to an almost complete recovery of P N, E, and g S, indicating that a short-term stress brings about reversible effect in these two cultivars of mulberry.  相似文献   

16.
研究外源GA3对盐胁迫下黄瓜种子萌发和幼苗生长的影响。结果表明,添加不同质量浓度GA3的各处理,其发芽率、发芽势和发芽指数均显著高于NaCl胁迫处理,其中以100 mg/L GA3处理的发芽势、发芽率和发芽指数最高,幼苗的叶面积、根长、根冠比也最大,同时叶片中叶绿素含量最高,幼苗叶片的光合速率(Pn)、气孔导度(Gs)、胞间CO2摩尔分数(Ci)及蒸腾速率(Tr)等均达到最大;而当赤霉素的质量浓度为50 mg/L时,叶片中的POD活性为2 005 U/(g·min),达最大值。  相似文献   

17.
The spatial patterns of photosynthetic characteristics and leaf physical traits of 171 plants belonging to nine life-forms or functional groups (trees, shrubs, herbs, evergreen trees, deciduous trees, C3 and C4 herbaceous plants, leguminous and non-leguminous species) and their relationships with environmental factors in seven sites, Yangling, Yongshou, Tongchuan, Fuxian, Ansai, Mizhi and Shenmu, ranging from south to north in the Loess Plateau of China were studied. The results showed that the leaf light-saturated photosynthetic rate (Pmax), photosynthetic nitrogen use efficiency (PNUE), chlorophyll content (Chl), and leaf mass per area (LMA) of all the plants in the Loess Plateau varied significantly among three life-form groups, i.e., trees, shrubs and herbs, and two groups, i.e., evergreen trees and deciduous trees, but leaf nitrogen content differed little among different life-form groups. For the 171 plants in the Loess Plateau, leaf Pmax was positively correlated with PNUE. The leaf nitrogen content per unit area (Narea) was positively correlated but Chl was negatively correlated with the LMA. When controlling the LMA, the Narea was positively correlated with the Chl (partial r = 0.20, P < 0.05). With regard to relationships between photosynthetic characteristics and leaf physical traits, the Pmax was positively correlated with N area, while the PNUE was positively correlated with the Chl and negatively correlated with the Narea and LMA. For all the species in the Loess Plateau, the PNUE was negatively correlated with the latitude and annual solar radiation (ASR), but positively correlated with the mean annual rainfall (MAR) and mean annual temperature (MAT). With regard to the leaf physical traits, the leaf Chl was negatively correlated with the latitude and ASR, but positively correlated with the MAR and MAT. However, the Narea and LMA were positively correlated with the latitude and ASR, but negatively correlated with the MAR and MAT. In general, leaf Narea and LMA increased, while PNUE and Chl decreased with increases in the latitude and ASR and decreases in MAR and MAT. Electronic supplementary material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

18.
Concurrent measurements of leaf gas exchange and on-line 13C discrimination were used to evaluate the CO2 conductance to diffusion from the stomatal cavity to the sites of carboxylation within the chloroplast (internal conductance; gi). When photon irradiance was varied it appeared that gi and/or the discrimination accompanying carboxylation also varied. Despite this problem, gi, was estimated for leaves of peach (Prunus persica), grapefruit (Citrus paradisi), lemon (C. limon) and macadamia (Macadamia integrifolia) at saturating photon irradiance. Estimates for leaves of C. paradisi, C. limon and M. integrifolia were considerably lower than those previously reported for well-nourished herbaceous plants and ranged from 1.1 to2.2μmol CO2 m?2 s?1 Pa?1, whilst P. persica had a mean value of 3.5 μmol CO2 m?2 s?1 Pa?1. At an ambient CO2 partial pressure of 33Pa, estimates of chloroplastic partial pressure of CO2 (Cc) using measurements of CO2 assimilation rate (A) and calculated values of gi, and of partial pressure of CO2 in the stomatal cavity (Cst) were as low as 11.2 Pa for C. limon and as high as 17.8Pa for peach. In vivo maximum rubisco activities (Vmax) were also determined from estimates of Cc. This calculation showed that for a given leaf nitrogen concentration (area basis) C. paradisi and C. limon leaves had a lower Vmax than P. persica, with C. paradisi and C. limon estimated to have only 10% of leaf nitrogen present as rubisco. Therefore, low CO2 assimilation rates despite high leaf nitrogen concentrations in leaves of the evergreen species examined were explained not only by a low Cc but also by a relatively low proportion of leaf nitrogen being used for photosynthesis. We also show that simple one-dimensional equations describing the relationship between leaf internal conductance from stomatal cavities to the sites of carboxylation and carbon isotope discrimination (Δ) can lead to errors in the estimate of gi. Potential effects of heterogeneity in stomatal aperture on carbon isotope discrimination may be particularly important and may lead to a dependence of gi upon CO2 assimilation rate. It is shown that for any concurrent measurement of A and Δ, the estimate of Cc is an overestimate of the correct photosynthetic capacity-weighted value, but this error is probably less than 1.0 Pa.  相似文献   

19.
Drutaă  A. 《Photosynthetica》2001,39(2):289-297
The effect of two elevated carbon dioxide concentrations, 700 µmol(CO2) mol–1 (C700) and 1 400 µmol(CO2) mol–1 (C1400), on photosynthetic performances of 1-year-old Prunus avium L. plant was studied. Plants grown at C700 were characterised by increased net photosynthetic rate (P N) as compared to those grown at C1400. Plant photosynthetic adjustment to C1400 resulted in 27 % higher P N than in control at atmospheric CO2 concentration (C a) at the beginning of the experiment (3–4 weeks) with a consequent decline to the end of the experiment. Thus, 1 400 µmol(CO2) mol–1 had short-term stimulatory effect on plant P N. Both chlorophyll (Chl) a and b concentrations dramatically decreased during exposure to C1400. Compensation irradiance was increased by 57 % in C700 and by 87 % in C1400. Photochemical efficiency () was affected by balloon environment, however, a clear stimulatory effect of C700 was detected. Opposite influence of both elevated CO2 concentrations on P Nmax was established: slight increase by C700 (2.7 % at Ca), but considerable decrease by C1400 (63 % at Ca). Exposure to C700 enhanced compensation irradiance by 42 %, while C1400 by only 21 %. Either C700 or C1400 did not reduce stomatal conductance (g s). Leaf area per plant (LAR) was more stimulated by C700 than by C1400. High unit area leaf mass, specific leaf area, and dry matter accumulation in roots without affecting tissue density characterised plants grown in C1400. However, when considering the root : shoot ratio, these plants allocated less carbon to the roots than plants from other treatments.  相似文献   

20.
采用盆栽实验,通过向土壤(每盆8kg)中添加0g·pot-1(CK)、20g·pot-1(L)、40g·pot-1(M)和80g·pot-1(H)天竺桂(Cinnamomum japonicum)凋落叶,模拟其自然分解对凤仙花(Impatiens balsamina)生长和光合特性的影响。结果显示:(1)添加天竺桂凋落叶M和H处理下,凤仙花生物量和地径均显著降低,而株高无明显变化;其叶绿素含量受到显著抑制,净光合速率(Pn)和水分利用效率(WUE)显著低于CK,而气孔导度(Gs)、胞间二氧化碳浓度(Ci)和蒸腾速率(Tr)3个气体交换参数显著高于CK。(2)Pn-PAR曲线和Pn-Ci曲线拟合表明,凤仙花在光饱和以及CO2饱和状态下的最大净光合速率(Pn max)、表观量子效率(AQY)、暗呼吸速率(Rd)、RuBP羧化效率(CE)和光呼吸速率(Rp)均随添加天竺桂凋落叶处理量的增加而呈下降趋势。(3)添加天竺桂凋落叶36d和67d时对凤仙花生长影响不明显,而处理58d时有明显抑制作用。研究表明,在模拟天竺桂凋落叶自然分解的土壤环境中,凤仙花的光合色素含量降低,抑制了其光合能力,对环境适应能力降低,导致凤仙花的生长受到抑制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号