首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
During metamorphosis, most amphibians undergo rapid shifts in their morphology that allow them to move from an aquatic to a more terrestrial existence. Two important challenges associated with this shift in habitat are the necessity to switch from an aquatic to terrestrial mode of locomotion and changes in the thermal environment. In this study, I investigated the consequences of metamorphosis to the burst swimming and running performance of the European newt Triturus cristatus to determine the nature and magnitude of any locomotor trade-offs that occur across life-history stages. In addition, I investigated whether there were any shifts in the thermal dependence of performance between life-history stages of T. cristatus to compensate for changes in their thermal environment during metamorphosis. A trade-off between swimming and running performance was detected across life-history stages, with metamorphosis resulting in a simultaneous decrease in swimming and increase in running performance. Although the terrestrial habitat of postmetamorphic stages of the newt T. cristatus experienced greater daily fluctuations in temperature than the aquatic habitat of the larval stage, no differences in thermal sensitivity of locomotor performance were detected between the larval aquatic and postmetamorphic stages. The absence of variation across life-history stages of T. cristatus may indicate that thermal sensitivity may be a conservative trait across ontogenetic stages in amphibians, but further studies are required to investigate this assertion.  相似文献   

2.
Yellow‐lipped sea kraits (Laticauda colubrina) are amphibious in their habits. We measured their locomotor speeds in water and on land to investigate two topics: (1) to what degree have adaptations to increase swimming speed (paddle‐like tail etc.) reduced terrestrial locomotor ability in sea kraits?; and (2) do a sea krait’s sex and body size influence its locomotor ability in these two habitats, as might be expected from the fact that different age and sex classes of sea kraits use the marine and terrestrial environments in different ways? To estimate ancestral states for locomotor performance, we measured speeds of three species of Australian terrestrial elapids that spend part of their time foraging in water. The evolutionary modifications of Laticauda for marine life have enhanced their swimming speeds by about 60%, but decreased their terrestrial locomotor speed by about 80%. Larger snakes moved faster than smaller individuals in absolute terms but were slower in terms of body lengths travelled per second, especially on land. Male sea kraits were faster than females (independent of the body‐size effect), especially on land. Prey items in the gut reduced locomotor speeds both on land and in water. Proteroglyphous snakes may offer exceptional opportunities to study phylogenetic shifts in locomotor ability, because (1) they display multiple independent evolutionary shifts from terrestrial to aquatic habits, and (2) one proteroglyph lineage (the laticaudids) displays considerable intraspecific and interspecific diversity in terms of the degree to which they use terrestrial vs. aquatic habitats.  相似文献   

3.
The evolution of ecological trade-offs is an important component of ecological specialization and adaptive radiation. However, the pattern that would show that evolutionary trade-offs have occurred between traits among species has not been clearly defined. In this paper, we propose a phylogeny-based definition of an evolutionary trade-off, and apply it to an analysis of the evolution of trade-offs in locomotor performance in emydid turtles. We quantified aquatic and terrestrial speed and endurance for up to 16 species, including aquatic, semi-terrestrial and terrestrial emydids. Emydid phylogeny was reconstructed from morphological characters and nuclear and mitochondrial DNA sequences. Surprisingly, we find that there have been no trade-offs in aquatic and terrestrial speed among species. Instead, specialization to aquatic and terrestrial habitats seems to have involved trade-offs in speed and endurance. Given that trade-offs between speed and endurance may be widespread, they may underlie specialization to different habitats in many other groups.  相似文献   

4.
Transitions from Drag-based to Lift-based Propulsion in Mammalian Swimming   总被引:7,自引:5,他引:2  
The evolution of fully aquatic mammals from quadrupedal, terrestrialmammals was associated with changes in morphology and swimmingmode. Drag is minimized by streamlining body shape and appendages.Improvement in speed, thrust production and efficiency is accomplishedby a change of swimming mode. Terrestrial and semiaquatic mammalsemploy drag-based propulsion with paddling appendages, whereasfully aquatic mammals use lift-based propulsion with oscillatinghydrofoils. Aerobic efficiencies are low for drag-based swimming,but reach a maximum of 30% for lift-based propulsion. Propulsiveefficiency is over 80% for lift-based swimming while only 33%for paddling. In addition to swimming mode, the transition tohigh performance propulsion was associated with a shift fromsurface to submerged swimming providing a reduction in transportcosts. The evolution of aquatic mammals from terrestrial ancestorsrequired increased swimming performance with minimal compromiseto terrestrial movement. Examination of modern analogs to transitionalswimming stages suggests that only slight modification to theneuromotor pattern used for terrestrial locomotion is requiredto allow for a change to lift-based propulsion.  相似文献   

5.
Locomotion accounts for a significant proportion of the energy budget in birds, and selection is likely to act on its economy, particularly where energy conservation is essential for survival. Birds are capable of different forms of locomotion, such as walking/running, swimming, diving and flying, and adaptations for these affect the energetic cost [cost of locomotion (CoL)] and kinematics of terrestrial locomotion. Furthermore, seasonal changes in climate and photoperiod elicit physiological and behavioural adaptations for survival and reproduction, which also influence energy budget. However, little is understood about how this might affect the CoL. Birds are also known to exhibit sex differences in size, behaviour and physiology; however, sex differences in terrestrial locomotion have only been studied in two cursorially adapted galliform species in which males achieved higher maximum speeds, and in one case had a lower mass-specific CoL than females. Here, using respirometry and high-speed video recordings, we sought to determine whether season and sex would affect the CoL and kinematics of a principally aquatic diving bird: the circumpolar common eider (Somateria mollissima). We demonstrate that eiders are only capable of a walking gait and exhibit no seasonal or sex differences in mass-specific CoL or maximum speed. Despite sharing identical limb morphometrics, the birds exhibited subtle sex differences in kinematic parameters linked to the greater body mass of the males. We suggest that their principally aquatic lifestyle accounts for the observed patterns in their locomotor performance. Furthermore, sex differences in the CoL may only be found in birds in which terrestrial locomotion directly influences male reproductive success.  相似文献   

6.
Patterns of phenotypic evolution can abruptly shift as species move between adaptive zones. Extant salamanders display three distinct life cycle strategies that range from aquatic to terrestrial (biphasic), to fully aquatic (paedomorphic) and to fully terrestrial (direct development). Life cycle variation is associated with changes in body form such as loss of digits, limb reduction or body elongation. However, the relationships among these traits and life cycle strategy remain unresolved. Here, we use a Bayesian modelling approach to test whether life cycle transitions by salamanders have influenced rates, optima and integration of primary locomotory structures (limbs and trunk). We show that paedomorphic salamanders have elevated rates of limb evolution with optima shifted towards smaller size and fewer digits compared to all other salamanders. Rate of hindlimb digit evolution is shown to decrease in a gradient as life cycles become more terrestrial. Paedomorphs have a higher correlation between hindlimb digit loss and increases in vertebral number, as well as reduced correlations between limb lengths. Our results support the idea that terrestrial plantigrade locomotion constrains limb evolution and, when lifted, leads to higher rates of trait diversification and shifts in optima and integration. The basic tetrapod body form of most salamanders and the independent losses of terrestrial life stages provide an important framework for understanding the evolutionary and developmental mechanisms behind major shifts in ecological zones as seen among early tetrapods during their transition from water to land.  相似文献   

7.
The shape of the human female pelvis is thought to reflect an evolutionary trade-off between two competing demands: a pelvis wide enough to permit the birth of large-brained infants, and narrow enough for efficient bipedal locomotion. This trade-off, known as the obstetrical dilemma, is invoked to explain the relative difficulty of human childbirth and differences in locomotor performance between men and women. The basis for the obstetrical dilemma is a standard static biomechanical model that predicts wider pelves in females increase the metabolic cost of locomotion by decreasing the effective mechanical advantage of the hip abductor muscles for pelvic stabilization during the single-leg support phase of walking and running, requiring these muscles to produce more force. Here we experimentally test this model against a more accurate dynamic model of hip abductor mechanics in men and women. The results show that pelvic width does not predict hip abductor mechanics or locomotor cost in either women or men, and that women and men are equally efficient at both walking and running. Since a wider birth canal does not increase a woman’s locomotor cost, and because selection for successful birthing must be strong, other factors affecting maternal pelvic and fetal size should be investigated in order to help explain the prevalence of birth complications caused by a neonate too large to fit through the birth canal.  相似文献   

8.
Aquatic pedestrian locomotion represents an important mode oflocomotion for many aquatic and amphibious animals, both extantand extinct. Unlike terrestrial locomotion where weight is thedefining force, in aquatic locomotion buoyancy and hydrodynamicforces may be as important as weight. Aquatic pedestrian locomotiondiffers fundamentally from swimming because pedestrians mustmaintain contact with the substratum in order to locomote. Ambientwater motion may constrain or prevent locomotion of aquaticpedestrians by requiring that they actively grip the substratum.A comprehensive biomechanical analysis of aquatic pedestrianlocomotion will require an integration of hydrodynamics withterrestrial locomotor dynamics.  相似文献   

9.
Undulatory swimming animals exhibit diverse ranges of body shapes and motion patterns and are often considered as having superior locomotory performance. The extent to which morphological traits of swimming animals have evolved owing to primarily locomotion considerations is, however, not clear. To shed some light on that question, we present here the optimal shape and motion of undulatory swimming organisms obtained by optimizing locomotive performance measures within the framework of a combined hydrodynamical, structural and novel muscular model. We develop a muscular model for periodic muscle contraction which provides relevant kinematic and energetic quantities required to describe swimming. Using an evolutionary algorithm, we performed a multi-objective optimization for achieving maximum sustained swimming speed U and minimum cost of transport (COT)--two conflicting locomotive performance measures that have been conjectured as likely to increase fitness for survival. Starting from an initial population of random characteristics, our results show that, for a range of size scales, fish-like body shapes and motion indeed emerge when U and COT are optimized. Inherent boundary-layer-dependent allometric scaling between body mass and kinematic and energetic quantities of the optimal populations is observed. The trade-off between U and COT affects the geometry, kinematics and energetics of swimming organisms. Our results are corroborated by empirical data from swimming animals over nine orders of magnitude in size, supporting the notion that optimizing U and COT could be the driving force of evolution in many species.  相似文献   

10.
《Zoology (Jena, Germany)》2014,117(4):269-281
Studies of center of mass (COM) motion are fundamental to understanding the dynamics of animal movement, and have been carried out extensively for terrestrial and aerial locomotion. But despite a large amount of literature describing different body movement patterns in fishes, analyses of how the center of mass moves during undulatory propulsion are not available. These data would be valuable for understanding the dynamics of different body movement patterns and the effect of differing body shapes on locomotor force production. In the present study, we analyzed the magnitude and frequency components of COM motion in three dimensions (x: surge, y: sway, z: heave) in three fish species (eel, bluegill sunfish, and clown knifefish) swimming with four locomotor modes at three speeds using high-speed video, and used an image cross-correlation technique to estimate COM motion, thus enabling untethered and unrestrained locomotion. Anguilliform swimming by eels shows reduced COM surge oscillation magnitude relative to carangiform swimming, but not compared to knifefish using a gymnotiform locomotor style. Labriform swimming (bluegill at 0.5 body lengths/s) displays reduced COM sway oscillation relative to swimming in a carangiform style at higher speeds. Oscillation frequency of the COM in the surge direction occurs at twice the tail beat frequency for carangiform and anguilliform swimming, but at the same frequency as the tail beat for gymnotiform locomotion in clown knifefish. Scaling analysis of COM heave oscillation for terrestrial locomotion suggests that COM heave motion scales with positive allometry, and that fish have relatively low COM oscillations for their body size.  相似文献   

11.
The evolutionary history of marine mammals involved marked physiologicaland morphological modifications to change from terrestrial toaquatic locomotion. A consequence of this ancestry is that swimmingis energetically expensive for mammals in comparison to fish.This study examined the use of behavioral strategies by marinemammals to circumvent these elevated locomotor costs duringhorizontal swimming and vertical diving. Intermittent formsof locomotion, including wave-riding and porpoising when nearthe water surface, and prolonged gliding and a stroke and glidemode of propulsion when diving, enabled marine mammals to increasethe efficiency of aquatic locomotion. Video instrumentationpacks (8-mm camera, video recorder and time-depth microprocessor)deployed on deep diving bottlenose dolphins (Tursiops truncatus),northern elephant seals (Mirounga angustirostris), and Weddellseals (Leptonychotes weddellii) revealed exceptionally longperiods of gliding during descent to depth. Glide duration dependedon depth and represented nearly 80% of the descent for divesexceeding 200 m. Transitions in locomotor mode during divingwere attributed to buoyancy changes with compression of thelungs at depth, and were associated with a 9–60% reductionin the energetic cost of dives for the species examined. Bychanging to intermittent locomotor patterns, marine mammalsare able to increase travelling speed for little additionalenergetic cost when surface swimming, and to extend the durationof submergence despite limitations in oxygen stores when diving.  相似文献   

12.
Most studies of salamander locomotion have focused either on swimming or terrestrial walking, but some salamanders also use limb-based locomotion while submerged under water (aquatic walking). In this study we used video motion analysis to describe the aquatic walking gait of Siren lacertina, an elongate salamander with reduced forelimbs and no hindlimbs. We found that S. lacertina uses a bipedal-undulatory gait, which combines alternating use of the forelimbs with a traveling undulatory wave. Each forelimb is in contact with the substrate for about 50% of the stride cycle and forelimbs have little temporal overlap in contact intervals. We quantified the relative timing and frequency of limb and tail movements and found that, unlike the terrestrial gaits of most salamanders, axial and appendicular movements are decoupled during aquatic walking. We found no significant relationship between stride frequency and aquatic walking velocity, but we did find a statistically significant relationship between tailbeat frequency and aquatic walking velocity, which suggests that aquatic walking speed is mainly modulated by axial movements. By comparing axial wavespeed and distance traveled per tailbeat during swimming (forelimbs not used) and aquatic walking (forelimbs used), we found lower wavespeed and greater distance traveled per tailbeat during aquatic walking. These findings suggest that the reduced forelimbs of S. lacertina contribute to forward propulsion during aquatic walking.  相似文献   

13.
Differences in predation intensity experienced by organisms can lead to divergent natural selection, driving evolutionary change. Western mosquitofish (Gambusia affinis) exhibit larger caudal regions and higher burst-swimming capabilities when coexisting with higher densities of predatory fish. It is hypothesized that a trade-off between steady (constant-speed cruising; important for acquiring resources) and unsteady (rapid bursts and turns; important for escaping predators) locomotion, combined with divergent selection on locomotor performance (favouring steady swimming in high-competition scenarios of low-predation environments, but unsteady swimming in high-predation localities) has caused such phenotypic divergence. Here, I found that morphological differences had a strong genetic basis, and low-predation fish required less hydromechanical power during steady swimming, leading to increased endurance. I further found individual-level support for cause-and-effect relationships between morphology, swimming kinematics and endurance. Results indicate that mosquitofish populations inhabiting low-predation environments have evolved increased steady-swimming abilities via stiffer bodies, larger anterior body/head regions, smaller caudal regions and greater three-dimensional streamlining.  相似文献   

14.
The evolution of larval morphology and swimming performance in ascidians   总被引:1,自引:0,他引:1  
The complexity of organismal function challenges our ability to understand the evolution of animal locomotion. To meet this challenge, we used a combination of biomechanics, phylogenetic comparative analyses, and theoretical morphology to examine evolutionary changes in body shape and how those changes affected swimming performance in ascidian larvae. Results of phylogenetic comparative analyses suggest that coloniality evolved at least three times among ascidians and that colonial species have a convergent larval morphology characterized by a large trunk volume and shorter tail length in proportion to the trunk. To explore the functional significance of this evolutionary change, we first verified the accuracy of a mathematical model of swimming biomechanics in a solitary (C. intestinalis) and a colonial (D. occidentalis) species and then ran numerous simulations of the model that varied in tail length and trunk volume. The results of these simulations were used to construct landscapes of speed and cost of transport predictions within a trunk volume/tail length morphospace. Our results suggest that the reduction of proportionate tail length in colonial species resulted in improved energetic economy of swimming. The increase in the size of larvae with the origin of coloniality facilitated faster swimming with negligible energetic cost, but may have required a reduction in adult fecundity. Therefore, the evolution of ascidians appears to be influenced by a trade-off between the fecundity of the adult stage and the swimming performance of larvae.  相似文献   

15.
Many phenotypic traits perform more than one function, and so can influence organismal fitness in more than one way. Sexually dimorphic traits offer an exceptional opportunity to clarify such complexity, especially if the trait involved is subject to natural as well as sexual selection, and if the sexes differ in ecology as well as reproductive behaviour. Relative tail length in sea-snakes fulfils these conditions. Our field studies on a Fijian population of yellow-lipped sea kraits ( Laticauda colubrina ) show that relative tail lengths in male sea kraits have strong consequences for individual fitness, both via natural and sexual selection. Males have much longer tails (relative to snout-vent length) than do females. Mark-recapture studies revealed a trade-off between growth and survival: males with relatively longer tails grew more slowly, but were more likely to survive, than were shorter-tailed males. A male snake's tail length relative to body length influenced not only his growth rate and probability of survival, but also his locomotor ability and mating success. Relative tail length in male sea kraits was thus under a complex combination of selective forces. These forces included directional natural selection (through effects on survival, growth and swimming speed) as well as stabilizing natural selection (males with average-length tails swam faster) and stabilizing sexual selection (males with average-length tails obtained more matings). In contrast, our study did not detect significant selection on relative tail length in females. This sex difference may reflect the fact that females use their tails primarily for swimming, whereas males also must frequently use the tail in terrestrial locomotion and in courtship as well as for swimming.  相似文献   

16.
Semi-aquatic mammals move between two very different media (air and water), and are subject to a greater range of physical forces (gravity, buoyancy, drag) than obligate swimmers or runners. This versatility is associated with morphological compromises that often lead to elevated locomotor energetic costs when compared to fully aquatic or terrestrial species. To understand the basis of these differences in energy expenditure, this study examined the interrelationships between limb morphology, cost of transport and biomechanics of running in a semi-aquatic mammal, the North American river otter. Oxygen consumption, preferred locomotor speeds, and stride characteristics were measured for river otters (body mass=11.1 kg, appendicular/axial length=29%) trained to run on a treadmill. To assess the effects of limb length on performance parameters, kinematic measurements were also made for a terrestrial specialist of comparable stature, the Welsh corgi dog (body mass=12.0 kg, appendicular/axial length=37%). The results were compared to predicted values for long legged terrestrial specialists. As found for other semi-aquatic mammals, the net cost of transport of running river otters (6.63 J kg(-1)min(-1) at 1.43 ms(-1)) was greater than predicted for primarily terrestrial mammals. The otters also showed a marked reduction in gait transition speed and in the range of preferred running speeds in comparison to short dogs and semi-aquatic mammals. As evident from the corgi dogs, short legs did not necessarily compromise running performance. Rather, the ability to incorporate a period of suspension during high speed running was an important compensatory mechanism for short limbs in the dogs. Such an aerial period was not observed in river otters with the result that energetic costs during running were higher and gait transition speeds slower for this versatile mammal compared to locomotor specialists.  相似文献   

17.
Ecological diversification into new environments presents new mechanical challenges for locomotion. An extreme example of this is the transition from a terrestrial to an aquatic lifestyle. Here, we examine the implications of life in a neutrally buoyant environment on adaptations of the axial skeleton to evolutionary increases in body size. On land, mammals must use their thoracolumbar vertebral column for body support against gravity and thus exhibit increasing stabilization of the trunk as body size increases. Conversely, in water, the role of the axial skeleton in body support is reduced, and, in aquatic mammals, the vertebral column functions primarily in locomotion. Therefore, we hypothesize that the allometric stabilization associated with increasing body size in terrestrial mammals will be minimized in secondarily aquatic mammals. We test this by comparing the scaling exponent (slope) of vertebral measures from 57 terrestrial species (23 felids, 34 bovids) to 23 semi‐aquatic species (pinnipeds), using phylogenetically corrected regressions. Terrestrial taxa meet predictions of allometric stabilization, with posterior vertebral column (lumbar region) shortening, increased vertebral height compared to width, and shorter, more disc‐shaped centra. In contrast, pinniped vertebral proportions (e.g. length, width, height) scale with isometry, and in some cases, centra even become more spool‐shaped with increasing size, suggesting increased flexibility. Our results demonstrate that evolution of a secondarily aquatic lifestyle has modified the mechanical constraints associated with evolutionary increases in body size, relative to terrestrial taxa.  相似文献   

18.
The evolutionary history of aquatic invasion in birds would be incomplete without incorporation of extinct species. We show that aquatic affinities in fossil birds can be inferred by multivariate analysis of skeletal features and locomotion of 245 species of extant birds. Regularized discriminant analyses revealed that measurements of appendicular skeletons successfully separated diving birds from surface swimmers and flyers, while also discriminating among different underwater modes of swimming. The high accuracy of this method allows detection of skeletal characteristics that are indicative of aquatic locomotion and inference of such locomotion in bird species with insufficient behavioural information. Statistical predictions based on the analyses confirm qualitative assessments for both foot‐propelled (Hesperornithiformes) and wing‐propelled (Copepteryx) underwater locomotion in fossil birds. This is the first quantitative inference of underwater modes of swimming in fossil birds, enabling future studies of locomotion in extinct birds and evolutionary transitions among locomotor modes in avian lineage.  相似文献   

19.
Life-history theory predicts that “costs” of reproduction may be important evolutionary determinants of reproductive investment; previous studies on reptiles indicate that decrements to maternal mobility may be among the most important components of such costs. Biomechanical models suggest that reproductive investment in aquatic snakes may be constrained by the important locomotory role of the posterior part of the body during swimming: carrying eggs or offspring in this region would more seriously impair locomotory efficiency in swimming than in terrestrial lateral undulation. If this constraint is important, aquatic snakes would be expected to have lower clutch masses relative to body mass than terrestrial species and to carry the clutch in a more anterior position (commencing at the same proportion of maternal body length anteriorly, but not extending as far posteriorly). Comparisons between aquatic and terrestrial snakes of several families confirm these predictions. Phylogenetic analysis suggests that this pattern of reduced reproductive investment has evolved independently in each of the four ophidian lineages that contain marine species (acrochordids, homalopsine colubrids, laticaudid sea snakes, and hydrophiid sea snakes). Although it thus seems likely that these patterns represent adaptations to aquatic versus terrestrial life, the nature of the selective forces involved remains speculative. The hypothesis based on locomotory impairment of gravid females has better empirical support than any alternative hypothesis, as it successfully predicts modifications in the position of the clutch within the female's body, as well as overall reduced reproductive investment.  相似文献   

20.
SPEED AND STAMINA TRADE-OFF IN LACERTID LIZARDS   总被引:5,自引:0,他引:5  
Abstract.— Morphological and physiological considerations suggest that sprinting ability and endurance capacity put conflicting demands on the design of an animal's locomotor apparatus and therefore cannot be maximized simultaneously. To test this hypothesis, we correlated size‐corrected maximal sprint speed and stamina of 12 species of lacertid lizards. Phylogenetically independent contrasts of sprint speed and stamina showed a significant negative relationship, giving support to the idea of an evolutionary trade‐off between the two performance measures. To test the hypothesis that the trade‐off is mediated by a conflict in morphological requirements, we correlated both performance traits with snout‐vent length, size‐corrected estimates of body mass and limb length, and relative hindlimb length (the residuals of the relationship between hind‐ and forelimb length). Fast‐running species had hindlimbs that were long compared to their forelimbs. None of the other size or shape variables showed a significant relationship with speed or endurance. We conclude that the evolution of sprint capacity may be constrained by the need for endurance capacity and vice versa, but the design conflict underlying this trade‐off has yet to be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号