首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   3篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
1.
Differences in rhythmicity (relative variance in cycle period) among mammal, fish, and lizard feeding systems have been hypothesized to be associated with differences in their sensorimotor control systems. We tested this hypothesis by examining whether the locomotion of tachymetabolic tetrapods (birds and mammals) is more rhythmic than that of bradymetabolic tetrapods (lizards, alligators, turtles, salamanders). Species averages of intraindividual coefficients of variation in cycle period were compared while controlling for gait and substrate. Variance in locomotor cycle periods is significantly lower in tachymetabolic than in bradymetabolic animals for datasets that include treadmill locomotion, non‐treadmill locomotion, or both. When phylogenetic relationships are taken into account the pooled analyses remain significant, whereas the non‐treadmill and the treadmill analyses become nonsignificant. The co‐occurrence of relatively high rhythmicity in both feeding and locomotor systems of tachymetabolic tetrapods suggests that the anatomical substrate of rhythmicity is in the motor control system, not in the musculoskeletal components.  相似文献   
2.
3.
Trade-offs arise when two functional traits impose conflicting demands on the same design trait. Consequently, excellence in one comes at the cost of performance in the other. One of the most widely studied performance trade-offs is the one between sprint speed and endurance. Although biochemical, physiological and (bio)mechanical correlates of either locomotor trait conflict with each other, results at the whole-organism level are mixed. Here, we test whether burst (speed, acceleration) and sustained locomotion (stamina) trade off at both the isolated muscle and whole-organism level among 17 species of lacertid lizards. In addition, we test for a mechanical link between the organismal and muscular (power output, fatigue resistance) performance traits. We find weak evidence for a trade-off between burst and sustained locomotion at the whole-organism level; however, there is a significant trade-off between muscle power output and fatigue resistance in the isolated muscle level. Variation in whole-animal sprint speed can be convincingly explained by variation in muscular power output. The variation in locomotor stamina at the whole-organism level does not relate to the variation in muscle fatigue resistance, suggesting that whole-organism stamina depends not only on muscle contractile performance but probably also on the performance of the circulatory and respiratory systems.  相似文献   
4.
Caribbean Anolis lizards are often cited as a textbook example of adaptive radiation. Similar morphologies (ecomorphs) have originated in similar ecological settings on different large islands in the West Indies. However, relatively little is known about one of the morphologically most specialized and divergent ecomorphs: the twig anoles. Here, we investigate aspects of morphology, dewlap size, locomotor and bite performance, structural habitat and diet of the poorly known twig anole, Anolis sheplani from Hispaniola. Few observations have previously been made of this species in its natural habitat, and few quantitative data on its natural history are available. A. sheplani is an extreme twig anole with respect to its morphology, performance capacities, and ecological niche. Males and females of this species do not differ from each other in body dimensions, performance or habitat use, but males do have a bigger dewlap than females. We present data for 25 individuals and compare them with data for other Greater Antillean anoles. It becomes apparent that twig anoles constitute a large component of the morphological, functional, and ecological diversity of Anolis lizards. Small twig anoles such as A. sheplani appear to be pushing the boundaries of morphospace and are thus crucial in our understanding of the evolution of phenotypic diversity.  相似文献   
5.
To understand the evolution of biological traits, information on the degree and origins of intraspecific variation is essential. Because adaptation can take place only if the trait shows heritable variation, it is important to know whether (at least) part of the trait variation is genetically based. We describe intra- and interindividual variation in three performance measures (sprint speed, climbing, and clambering speed) in juvenile Gallotia galloti lizards from three populations and examine how genetic, environmental (incubation temperature), and ontogenetic (age, size) effects interact to cause performance variation. Moreover, we test whether the three performance traits are intercorrelated phenotypically and genetically. Sprint speed is highest in juveniles incubated at the lowest temperature (26 degrees C) irrespective of population. Climbing speed differs among populations, and the differences persist at least until the lizards are 30 wk old. This suggests that the three populations experience different selective pressures. Moreover, mass, snout-vent length, and hindlimb length seem to affect climbing performance differently in the three populations. The variation in sprinting and climbing ability appears to be genetically based. Moreover, the two performance traits are intercorrelated and thus will not evolve independently from each other. Clambering speed (i.e., capacity to climb up an inclined mesh) varies among individuals, but the origin of this variation remains obscure.  相似文献   
6.
As more data have become available on lizard diets in the past few decades, researchers have stressed the importance of lizards as pollinators and seed dispersers. Whereas large body size has been traditionally put forward as a major biological factor allowing herbivory and frugivory in lizards, a recent review of frugivory and seed dispersal by lizards showed that frugivory might be considered to be a typical island phenomenon, independent of body size. Here we show that frugivory is correlated with lizard body size among a group of syntopic Anolis species in Jamaica, with larger species eating more fruit. Additionally, the size of the fruits consumed is significantly related to lizard body size. Multiple regression analyses show that this is largely a pure body size effect as head shape or residual bite force are uncorrelated to overall fruit size. Moreover, we demonstrate that among polychrotid (Anolis-like) lizards in general, those that consume fruit are on average larger than those that do not. Lizards from the mainland were not significantly different in body size from island species. We thus suggest that fruit consumption in polychrotid lizards is mediated by large body size whether living on islands or not.  相似文献   
7.
8.
A key assumption in evolutionary studies of locomotor adaptation is that standard laboratory measures of performance accurately reflect what animals do under natural circumstances. One widely examined measure of performance is maximum sprint speed, which is believed to be important for eluding predators, capturing prey, and defending territories. Previous studies linking maximum sprint speed to fitness have focused on laboratory measurements, and we suggest that such analyses may be appropriate for some species and intraspecific classes, but not others. We provide evidence for a general inverse relationship between maximum laboratory sprint speed and the percentage of maximum capacity that animals use when escaping from a threat in the field (the model of locomotor compensation). Further, absolute values of field escape speed and maximum laboratory speed are not significantly related when comparing across a diverse group of Anolis and lacertid lizards. We show that this pattern of locomotor compensation holds both within (i.e., among intraspecific classes) and among lizard species (with some exceptions). We propose a simple method of plotting field escape speed (y-axis) versus maximum laboratory speed (x-axis) among species and/or intraspecific classes that allows researchers to determine whether their study organisms are good candidates for relating laboratory performance to fitness. We suggest that species that reside directly on, or near the "best fitness line" (field escape speed = maximum laboratory speed) are most likely to bear fruit for such studies.  相似文献   
9.
Locomotion is important to animals because it has direct implications for fitness through its role in predator escape, prey capture, and territory defence. Despite significant advances in our understanding of animal locomotion, studies exploring how substrate properties affect locomotor performance remain scant. In the present study, we explore how variation in substrate (sand, slate, cork) affects locomotor performance in lacertid lizards that differ in morphology. Moreover, we explore whether substrate effects are the same for different types of locomotor performance (speed, acceleration, and stamina). Our results show that the substrate affected most types of locomotor performance studied but not always in the same way. Although substrate effects were species‐dependent for the maximal speed over 50 cm and the distance run to exhaustion, this was not the case for acceleration capacity. These results suggest that substrate texture differentially affects burst performance vs. longer duration measures of locomotor performance. Finally, straightforward relationships between habitat use and the substrate on which performance was maximized were not observed. This suggests that the evolution of locomotor capacity is complex and that animals may show compromise phenotypes allowing them to deal with a variety of substrates in their natural environment. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, ●●, ●●–●●.  相似文献   
10.
Permanent colour polymorphisms may be maintained by complex interactions between physiological traits (e.g. immunity) and environmental pressures. In this study we investigate morph specific variation in parasite load and cellular immune response (induced by a Phytohaemagglutinin, PHA injection) in a colour polymorphic population of the Dalmatian wall lizard (Podarcis melisellensis), where adult males have bright white, yellow or orange throats and ventral sides. Orange males have larger heads and can bite harder than the others. To examine seasonal effects, analyses were performed at an early and late stage in the reproductive season (May and September). Infection with mites and ticks did not differ among morphs, but was more severe at the end of the reproductive season. Fewer orange individuals were infected with haemogregarines at the end of the season, but white males were always more infected (higher number of haemogregarines in their blood) than other morphs. White and yellow males showed an increased PHA response towards the end of the season, but PHA response decreased in the orange morph. Finally, across all morphs, a relationship was found between ectoparasite load and PHA response. Our study provides indications of alternative life-history strategies among colour morphs and evidence for an up-regulation of the immune function at the end of the reproductive season.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号