首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The coxsackie B virus and adenovirus (Ad) receptor (CAR) functions as an attachment receptor for multiple Ad serotypes. Here we show that the Ad serotype 9 (Ad9) fiber knob binds to CAR with much reduced affinity compared to the binding by Ad5 and Ad12 fiber knobs as well as the knob of the long fiber of Ad41 (Ad41L). Substitution of Asp222 in Ad9 fiber knob with a lysine that is conserved in Ad5, Ad12, and Ad41L substantially improved Ad9 fiber knob binding to CAR, while the corresponding substitution in Ad5 (Lys442Asp) significantly reduced Ad5 binding. The presence of an aspartic acid residue in Ad9 therefore accounts, at least in part, for the reduced CAR binding affinity of the Ad9 fiber knob. Site-directed mutagenesis of CAR revealed that CAR residues Leu73 and Lys121 and/or Lys123 are critical contact residues, with Tyr80 and Tyr83 being peripherally involved in the binding interaction with the Ad5, Ad9, Ad12, and Ad41L fiber knobs. The overall affinities and the association and dissociation rate constants for wild-type CAR as well as Tyr80 and Tyr83 CAR mutants differed between the serotypes, indicating that their binding modes, although similar, are not identical.  相似文献   

2.
Common human adenovirus (Ad) vectors are derived from serotype 2 or 5, which use the coxsackie-adenovirus receptor (CAR) as their primary cell receptor. We investigated the receptor usage of mouse adenovirus type 1 (MAV-1), which in vivo is characterized by a pronounced endothelial cell tropism. Alignment of the fiber knob sequences of MAV-1 and those of CAR-using adenoviruses, revealed that amino acid residues, critical for interaction with CAR, are not conserved in the MAV-1 fiber knob. Attachment of MAV-1 to Chinese hamster ovary (CHO) cells was not increased by stable transfection with mouse CAR, whereas the binding efficiency of Ad2 was 20-fold higher in the mouse CAR-transfectant compared to the wild type cells. Also, purified fiber knob of Ad5, which is interchangeable with the Ad2 fiber knob, did not compete with MAV-1 for receptor binding, indicating that MAV-1 binds to a receptor different from CAR. These results support further exploration of an MAV-1-derived vector as a potential vehicle for gene delivery to cell types which are not efficiently transduced by human adenovirus vectors.  相似文献   

3.
Attachment of an adenovirus (Ad) to a cell is mediated by the capsid fiber protein. To date, only the cellular fiber receptor for subgroup C serotypes 2 and 5, the so-called coxsackievirus-adenovirus receptor (CAR) protein, has been identified and cloned. Previous data suggested that the fiber of the subgroup D serotype Ad9 also recognizes CAR, since Ad9 and Ad2 fiber knobs cross-blocked each other’s cellular binding. Recombinant fiber knobs and 3H-labeled Ad virions from serotypes representing all six subgroups (A to F) were used to determine whether the knobs cross-blocked the binding of virions from different subgroups. With the exception of subgroup B, all subgroup representatives cross-competed, suggesting that they use CAR as a cellular fiber receptor as well. This result was confirmed by showing that CAR, produced in a soluble recombinant form (sCAR), bound to nitrocellulose-immobilized virions from the different subgroups except subgroup B. Similar results were found for blotted fiber knob proteins. The subgroup F virus Ad41 has both short and long fibers, but only the long fiber bound sCAR. The sCAR protein blocked the attachment of all virus serotypes that bound CAR. Moreover, CHO cells expressing human CAR, in contrast to untransformed CHO cells, all specifically bound the sCAR-binding serotypes. We conclude therefore that Ad serotypes from subgroups A, C, D, E, and F all use CAR as a cellular fiber receptor.  相似文献   

4.
One of the objectives in adenovirus (Ad) vector development is to target gene delivery to specific cell types. Major attention has been given to modification of the Ad fiber knob, which is thought to determine virus tropism. However, among the human Ad serotypes with different tissue tropisms, not only the knob but also the length of the fiber shaft domain varies significantly. In this study we attempted to delineate the role of fiber length in coxsackievirus-adenovirus receptor (CAR)- and non-CAR-mediated infection. A series of Ad serotype 5 (Ad5) capsid-based vectors containing long or short fibers with knob domains derived from Ad5, Ad9, or Ad35 was constructed and tested in adsorption, internalization, and transduction studies. For Ad5 or Ad9 knob-possessing vectors, a long-shafted fiber was critical for efficient adsorption/internalization and transduction of CAR/alphav integrin-expressing cells. Ad5 capids containing short CAR-recognizing fibers were affected in cell adsorption and infection. In contrast, for the chimeric vectors possessing Ad35 knobs, which enter cells by a CAR/alphav integrin-independent pathway, fiber shaft length had no significant influence on binding or infectibility on tested cells. The weak attachment of short-shafted Ad5 or Ad9 knob-possessing vectors seems to be causally associated with a charge-dependent repulsion between Ad5 capsid and acidic cell surface proteins. The differences between short- and long-shafted vectors in attachment or infection were abrogated by preincubation of cells with polycations. This study demonstrates that the fiber-CAR interaction is not the sole determinant for tropism of Ad vectors containing chimeric fibers. CAR- and alphav integrin-mediated infections are influenced by other factors, including the length of the fiber shaft.  相似文献   

5.
The established mechanism for infection of most cells with adenovirus serotype 5 (Ad5) involves fiber capsid protein binding to coxsackievirus-adenovirus receptor (CAR) at the cell surface, followed by penton base capsid protein binding to alpha(v) integrins, which triggers clathrin-mediated endocytosis of the virus. Here we determined the identity of the capsid proteins responsible for mediating Ad5 entry into the acinar epithelial cells of the lacrimal gland. Ad5 transduction of primary rabbit lacrimal acinar cells was inhibited by excess Ad5 fiber or knob (terminal region of the fiber) but not excess penton base. Investigation of the interactions of recombinant Ad5 penton base, fiber, and knob with lacrimal acini revealed that the penton base capsid protein remained surface associated, while the knob domain of the fiber capsid protein was rapidly internalized. Introduction of rabbit CAR-specific small interfering RNA (siRNA) into lacrimal acini under conditions that reduced intracellular CAR mRNA significantly inhibited Ad5 transduction, in contrast to a control (nonspecific) siRNA. Preincubation of Ad5 with excess heparin or pretreatment of acini with a heparinase cocktail each inhibited Ad5 transduction by a separate and apparently additive mechanism. Functional and imaging studies revealed that Ad5, fiber, and knob, but not penton base, stimulated macropinocytosis in acini and that inhibition of macropinocytosis significantly reduced Ad5 transduction of acini. However, inhibition of macropinocytosis did not reduce Ad5 uptake. We propose that internalization of Ad5 into lacrimal acini is through a novel fiber-dependent mechanism that includes CAR and heparan sulfate glycosaminoglycans and that the subsequent intracellular trafficking of Ad5 is enhanced by fiber-induced macropinocytosis.  相似文献   

6.
The initial recognition and binding of adenovirus vector to the host cell surface is mediated by interaction between the adenovirus fiber knob protein and its receptor, the coxsackievirus and adenovirus receptor (CAR). This natural tropism of adenovirus vector needs to be ablated in order to achieve targeted gene transfer. To this end, we noted that adenovirus serotype 40 (Ad40) contains two distinct long and short fibers; the short fiber is unable to recognize CAR, while the long fiber binds CAR. We generated adenovirus serotype 5-based mutants with chimeric Ad40-derived fibers, which were composed of either long or short shafts together with CAR binding or nonbinding knobs. The capacity of these adenovirus mutants for in vitro and in vivo gene transfer to liver cells was examined. In the case of primary human hepatocytes displaying a high expression level of CAR and alphav integrin, both CAR binding ability and fiber shaft length played important roles in efficient transduction. Most significantly, the high transduction efficiency observed in the liver and spleen following intravenous administration of adenovirus vector was dramatically reduced by both ablation of fiber-CAR interaction and the use of replaceable short fiber. In other tissues displaying a low level of transduction, no significant differences in transduction efficiency were observed among adenovirus vector mutants. Furthermore, incorporation of a 7-lysine-residue motif at the C-terminal end of CAR-nonbinding short fiber efficiently achieved transduction of target cells via the heparan-containing receptor. Our results demonstrated that the natural tropism of adenovirus in vivo is influenced not only by fiber-CAR interaction but also by fiber shaft length. Furthermore, our strategy may be useful for retargeting adenovirus to particular tumors and tissue types with specific receptors.  相似文献   

7.
The majority of adenovirus serotypes can bind to the coxsackievirus and adenovirus receptor (CAR) on human cells despite only limited conservation of the amino acid residues that comprise the receptor-binding sites of these viruses. Using a fluorescence anisotropy-based assay, we determined that the recombinant knob domain of the fiber protein from adenovirus serotype (Ad) 2 binds the soluble, N-terminal domain (domain 1 (D1)) of CAR with 8-fold greater affinity than does the recombinant knob domain from Ad12. Homology modeling predicted that the increased affinity of Ad2 knob for CAR D1 could result from additional contacts within the binding interface contributed by two residues, Ser408 and Tyr477, which are not conserved in the Ad12 knob. Consistent with this structural model, substitution of serine and tyrosine for the corresponding residues in the Ad12 knob (P417S and S489Y) increased the binding affinity by 4- and 8-fold, respectively, whereas the double mutation increased binding affinity 10-fold. X-ray structure analysis of Ad12 knob mutants P417S and S489Y indicated that both substituted residues potentially could form additional hydrogen bonds across the knob-CAR interface. Structural changes resulting from these mutations were highly localized, implying that the high tolerance for surface variation conferred by the stable knob scaffold can minimize the impact of antigenic drift on binding specificity and affinity during evolution of virus serotypes. Our results suggest that the interaction of knob domains from different adenovirus serotypes with CAR D1 can be accurately modeled using the Ad12 knob-CAR D1 crystal structure as a template.  相似文献   

8.
The primary receptor, the coxsackievirus and adenovirus receptor (CAR), and the secondary receptor, αv integrins, are the tropism determinants of adenovirus (Ad) type 5. Inhibition of the interaction of both the fiber with CAR and the penton base with the αv integrin appears to be crucial to the development of targeted Ad vectors, which specifically transduce a given cell population. In this study, we developed Ad vectors with ablation of both CAR and αv integrin binding by mutating the fiber knob and the RGD motif of the penton base. We also replaced the fiber shaft domain with that derived from Ad type 35. High transduction efficiency in the mouse liver was suppressed approximately 130- to 270-fold by intravenous administration of the double-mutant Ad vectors, which mutated two domains each of the fiber knob and shaft and the RGD motif of the penton base compared with those of conventional Ad vectors (type 5). Most significantly, the triple-mutant Ad vector containing the fiber knob with ablation of CAR binding ability, the fiber shaft of Ad type 35, and the penton base with a deletion of the RGD motif mediated a >30,000-fold lower level of mouse liver transduction than the conventional Ad vectors. This triple-mutant Ad vector also mediated reduced transduction in other organs (the spleen, kidney, heart, and lung). Viral DNA analysis showed that systemically delivered triple-mutant Ad vector was primarily taken up by liver nonparenchymal cells and that most viral DNAs were easily degraded, resulting in little gene expression in the liver. These results suggest that the fiber knob, fiber shaft, and RGD motif of the penton base each plays an important role in Ad vector-mediated transduction to the mouse liver and that the triple-mutant Ad vector exhibits little tropism to any organs and appears to be a fundamental vector for targeted Ad vectors.  相似文献   

9.
After intravenous administration, adenovirus (Ad) vectors are predominantly sequestered by the liver. Delineating the mechanisms for Ad accumulation in the liver is crucial for a better understanding of Ad clearance and Ad-associated innate toxicity. To help address these issues, in this study, we used Ad vectors with different fiber shaft lengths and either coxsackievirus-Ad receptor (CAR)-interacting Ad serotype 9 (Ad9) or non-CAR-interacting Ad35 fiber knob domains. We analyzed the kinetics of Ad vector accumulation in the liver, uptake into hepatocytes and Kupffer cells, and induction of cytokine expression and release in response to systemic vector application. Immediately after intravenous injection, all Ad vectors accumulated equally efficiently in the liver; however, only genomes of long-shafted Ads were maintained in the liver tissue over time. We found that Kupffer cell uptake of long-shafted Ads was mediated by the fiber knob domain and was CAR independent. The short-shafted Ads were unable to efficiently interact with hepatocellular receptors and were not taken up by Kupffer cells. Moreover, our studies indicated that Kupffer cells were not the major reservoir for the observed accumulation of Ads (used in this study) in the liver within the first 30 min after virus infusion. The lower level of liver cell transduction by short-shafted Ads correlated with a significantly reduced inflammatory anti-Ad response as well as liver damage induced by the systemic administration of these vectors. This study contributes to a better understanding of the biology of systemically applied Ad and will help in designing safer vectors that can efficiently transduce target tissues.  相似文献   

10.
The adenovirus (Ad) fiber protein mediates Ad binding to the coxsackievirus and Ad receptor (CAR) and is thus a major determinant of viral tropism. The fiber contains three domains: an N-terminal tail that anchors the fiber to the viral capsid, a central shaft region of variable length and flexibility, and a C-terminal knob domain that binds to cell receptors. Ad type 37 (Ad37), a subgroup D virus associated with severe ocular infections, is unable to use CAR efficiently to infect host cells, despite containing a CAR binding site in its fiber knob. We hypothesized that the relatively short, inflexible Ad37 fiber protein restricts interactions with CAR at the cell surface. To test this hypothesis, we analyzed the infectivity and binding of recombinant Ad particles containing modified Ad37 or Ad5 fiber proteins. Ad5 particles equipped with a truncated Ad5 fiber or with a chimeric fiber protein comprised of the Ad5 knob fused to the short, rigid Ad37 shaft domain had significantly reduced infectivity and attachment. In contrast, placing the Ad37 knob onto the long, flexible Ad5 shaft allowed CAR-dependent virus infection and cell attachment, demonstrating the importance of the shaft domain in receptor usage. Increasing fiber rigidity by substituting the predicted flexibility modules in the Ad5 shaft with the corresponding regions of the rigid Ad37 fiber dramatically reduced both virus infection and cell attachment. Cryoelectron microscopy (cryo-EM) single-particle analysis demonstrated the increased rigidity of this chimeric fiber. These studies demonstrate that both length and flexibility of the fiber shaft regulate CAR interaction and provide a molecular explanation for the use of alternative receptors by subgroup D Ad with ocular tropism. We present a molecular model for Ad-CAR interactions at the cell surface that explains the significance of fiber flexibility in cell attachment.  相似文献   

11.
Adenovirus type 11 uses CD46 as a cellular receptor   总被引:6,自引:0,他引:6       下载免费PDF全文
The 51 human adenovirus serotypes are divided into six species (A to F). Many adenoviruses use the coxsackie-adenovirus receptor (CAR) for attachment to host cells in vitro. Species B adenoviruses do not compete with CAR-binding serotypes for binding to host cells, and it has been suggested that species B adenoviruses use a receptor other than CAR. Species B adenoviruses mainly cause disease in the respiratory tract, the eyes, and in the urinary tract. Here we demonstrate that adenovirus type 11 (Ad11; of species B) binds to Chinese hamster ovary (CHO) cells transfected with CD46 (membrane cofactor protein)-cDNA at least 10 times more strongly than to CHO cells transfected with cDNAs encoding CAR or CD55 (decay accelerating factor). Nonpermissive CHO cells were rendered permissive to Ad11 infection upon transfection with CD46-cDNA. Soluble Ad11 fiber knob but not Ad7 or Ad5 knob inhibited binding of Ad11 virions to CD46-transfected cells, and anti-CD46 antibodies inhibited both binding of and infection by Ad11. From these results we conclude that CD46 is a cellular receptor for Ad11.  相似文献   

12.
A major limitation of adenovirus type 5 (Ad5)-based gene therapy, the inability to target therapeutic genes to selected cell types, is attributable to the natural tropism of the virus for the widely expressed coxsackievirus-adenovirus receptor (CAR) protein. Modifications of the Ad5 fiber knob domain have been shown to alter the tropism of the virus. We have developed a novel system to rapidly evaluate the function of modified fiber proteins in their most relevant context, the adenoviral capsid. This transient transfection/infection system combines transfection of cells with plasmids that express high levels of the modified fiber protein and infection with Ad5.beta gal.Delta F, an E1-, E3-, and fiber-deleted adenoviral vector encoding beta-galactosidase. We have used this system to test the adenoviral transduction efficiency mediated by a panel of fiber protein mutants that were proposed to influence CAR interaction. A series of amino acid modifications were incorporated via mutagenesis into the fiber expression plasmid, and the resulting fiber proteins were subsequently incorporated onto adenoviral particles. Mutations located in the fiber knob AB and CD loops demonstrated the greatest reduction in fiber-mediated gene transfer in HeLa cells. We also observed effects on transduction efficiency with mutations in the FG loop, indicating that the binding site may extend to the adjacent monomer in the fiber trimer and in the HI loop. These studies support the concept that modification of the fiber knob domain to diminish or ablate CAR interaction should result in a detargeted adenoviral vector that can be combined simultaneously with novel ligands for the development of a systemically administered, targeted adenoviral vector.  相似文献   

13.
Adenovirus (Ad) entry into cells is initiated by the binding of the fiber knob to a cell surface receptor. The coxsackie- and adenovirus receptor (CAR) functions as the attachment receptor for many, but not all, Ad serotypes. Ad type 37 (Ad37), a subgroup D virus that causes keratoconjunctivitis in humans, does not infect cells via CAR despite demonstrated binding of the Ad37 knob to CAR. We have pseudotyped a fiber deletion Ad5 vector with the Ad37 fiber (Ad37f), and this vector retains the ocular tropism of Ad37. Here we present a cryo-electron microscopy reconstruction of Ad37f that shows the entire Ad37 fiber, including the shaft and knob domains. We have previously proposed that Ad37 may not utilize CAR for cell entry because of the geometric constraints imposed by a rigid fiber (E. Wu, J. Fernandez, S. K. Fleck, D. Von Seggern, S. Huang, and G. R. Nemerow, Virology 279:78-89, 2001). Consistent with this hypothesis, our structural results show that the Ad37 fiber is straight and rigid. Modeling of the interaction between Ad37f and host cell receptors indicates that fiber flexibility or rigidity, as well as length, can affect receptor usage and cellular tropism.  相似文献   

14.
The binding of adenovirus (Ad) fiber knob to its cellular receptor, the coxsackievirus and Ad receptor (CAR), promotes virus attachment to cells and is a major determinant of Ad tropism. Analysis of the kinetics of binding of Ad type 5 (Ad5) fiber knob to the soluble extracellular domains of CAR together (sCAR) and each immunoglobulin (Ig) domain (IgV and IgC2) independently by surface plasmon resonance demonstrated that the IgV domain is necessary and sufficient for binding, and no additional membrane components are required to confer high-affinity binding to Ad5 fiber knob. Four Ad5 fiber knob mutations, Ser408Glu and Pro409Lys in the AB loop, Tyr477Ala in the DG loop, and Leu485Lys in beta strand F, effectively abolished high-affinity binding to CAR, while Ala406Lys and Arg412Asp in the AB loop and Arg481Glu in beta strand E significantly reduced the level of binding. Circular dichroism spectroscopy showed that these mutations do not disorder the secondary structure of the protein, implicating Ser408, Pro409, Tyr477, and Leu485 as contact residues, with Ala406, Arg412, and Arg481 being peripherally or indirectly involved in CAR binding. The critical residues have exposed side chains that form a patch on the surface, which thus defines the high-affinity interface for CAR. Additional site-directed mutagenesis of Ad5 fiber knob suggests that the binding site does not extend to the adjacent subunit or toward the edge of the R sheet. These findings have implications for our understanding of the biology of Ad infection, the development of novel Ad vectors for targeted gene therapy, and the construction of peptide inhibitors of Ad infection.  相似文献   

15.
The extracellular region of the coxsackievirus and adenovirus receptor (CAR) is predicted to consist of two immunoglobulin (Ig)-related structural domains. We expressed the isolated CAR amino-terminal domain (D1) and a CAR fragment containing both extracellular Ig domains (D1/D2) in Escherichia coli. Both D1 and D1/D2 formed complexes in vitro with the recombinant knob domain of adenovirus type 12 (Ad12) fiber, and D1 inhibited adenovirus type 2 (Ad2) infection of HeLa cells. These results indicate that the adenovirus-binding activity of CAR is localized in the amino-terminal IgV-related domain and confirm our earlier observation that Ad2 and Ad12 bind to the same cellular receptor. Preliminary crystallization studies suggest that complexes of Ad12 knob bound to D1 will be suitable for structure determination.  相似文献   

16.
Recent evidence supports a role for vitamin K-dependent coagulation zymogens in adenovirus serotype 5 (Ad5, subgroup C) infection of hepatocytes. Here, we assessed the effect of virus-zymogen interaction on cellular transduction using a panel of fiber (f)-pseudotyped viruses derived from subgroup D (f47, f33, f24, f45, f17, f30). Each virus directly bound factor X (FX) as determined by surface plasmon resonance, resulting in enhanced cell surface binding. Infection of HepG2 cells was promoted by FX but not by FVII or FIX, while transduction of CHO cells was blocked in heparan sulfate proteoglycan-deficient cells. This suggests a broad role for FX in adenovirus infectivity.  相似文献   

17.
To explore gene therapy strategies for amelogenesis imperfecta (AI), a human ameloblast-like cell population was established from third molars of an AI-affected patient. These cells were characterized by expression of cytokeratin 14, major enamel proteins and alkaline phosphatase staining. Suboptimal transduction of the ameloblast-like cells by an adenovirus type 5 (Ad5) vector was consistent with lower levels of the coxsackie-and-adenovirus receptor (CAR) on those cells relative to CAR-positive A549 cells. To overcome CAR -deficiency, we evaluated capsid-modified Ad5 vectors with various genetic capsid modifications including "pK7" and/or "RGD" motif-containing short peptides incorporated in the capsid protein fiber as well as fiber chimera with the Ad serotype 3 (Ad3) fiber "knob" domain. All fiber modifications provided an augmented transduction of AI-ameloblasts, revealed following vector dose normalization in A549 cells with a superior effect (up to 404-fold) of pK7/RGD double modification. This robust infectivity enhancement occurred through vector binding to both α(v)β3/α(v)β5 integrins and heparan sulfate proteoglycans (HSPGs) highly expressed by AI-ameloblasts as revealed by gene transfer blocking experiments. This work thus not only pioneers establishment of human AI ameloblast-like cell population as a model for in vitro studies but also reveals an optimal infectivity-enhancement strategy for a potential Ad5 vector-mediated gene therapy for AI.  相似文献   

18.
The adenovirus fiber knob causes the first step in the interaction of adenovirus with cell membrane receptors. To obtain information on the receptor binding site(s), the interaction of labeled cell membrane proteins to synthetic peptides covering the adenovirus type 3 (Ad3) fiber knob was studied. Peptide P6 (amino acids [aa] 187 to 200), to a lesser extent P14 (aa 281 to 294), and probably P11 (aa 244 to 256) interacted specifically with cell membrane proteins, indicating that these peptides present cell receptor binding sites. Peptides P6, P11, and P14 span the D, G, and I β-strands of the R-sheet, respectively. The other reactive peptides, P2 (aa 142 to 156), P3 (aa 153 to 167), and P16 (aa 300 to 319), probably do not present real receptor binding sites. The binding to these six peptides was inhibited by Ad3 virion and was independent of divalent cations. We have also screened the antigenic epitopes on the knob with recombinant Ad3 fiber, recombinant Ad3 fiber knob, and Ad3 virion-specific antisera by enzyme-linked immunosorbent assay. The main antigenic epitopes were presented by P3, P6, P12 (aa 254 to 269), P14, and especially the C-terminal P16. Peptides P14 and P16 of the Ad3 fiber knob were able to inhibit Ad3 infection of cells.  相似文献   

19.
Vitamin K-dependent coagulation factors can promote adenoviral cell transduction in vitro. In vivo, warfarin pretreatment ablates liver targeting of an adenovirus serotype 5 (Ad5) vector deleted of CAR binding capability. Here, we assess in vivo transduction and biodistribution of Ad5 vectors with nonmodified fibers (Ad5) and a serotype 47 fiber-pseudotyped Ad5 (Ad5/47; subgroup D) virus following intravascular injection. Warfarin reduced liver transduction by both viruses. However, no impact on early liver virus accumulation was observed, suggesting no effect on Kupffer cell interactions. Hence, coagulation factors play a pivotal role in selectively mediating liver hepatocyte transduction of Ad5 and Ad5/47 vectors.  相似文献   

20.
The coxsackie B virus and adenovirus receptor (CAR) and the major histocompatibility complex (MHC) class I alpha2 domain have been identified as high-affinity cell receptors for adenovirus type 5 (Ad5) fiber. In this study we show that CAR but not MHC class I allele HLA-A*0201 binds to Ad5 with high affinity when expressed on hamster cells. When both receptors are coexpressed on the cell surface of hamster cells, Ad5 fiber bind to a single high-affinity receptor, which is CAR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号