首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluctuating asymmetry (FA) represents small, random variation from symmetry and can be used as an indicator of plant susceptibility to herbivory. We investigated the effects of FA of two oak species, Quercus laevis and Q. geminata, and the responses of three herbivore guilds: leaf miners, gallers, and chewers. To examine differences in FA and herbivory between individuals, 40 leaves from each tree were collected, and FA indices were calculated. To examine differences in FA and herbivory within-individuals, we sampled pairs of mined and unmined leaves for asymmetry measurements. Differences in growth of leaf miners between leaf types were determined by tracing 50 mines of each species on symmetric leaves and asymmetric leaves. Asymmetric leaves contained significantly lower concentrations of tannins and higher concentrations of nitrogen than symmetric leaves for both plant species. Both frequency of asymmetric leaves on plants and levels of asymmetry positively influenced the abundance of Brachys, Stilbosis and other leaf miners, but no significant relationship between asymmetry and herbivory was observed for Acrocercops. Brachys and Stilbosis mines were smaller on asymmetric leaves, but differences in mine survivorship between symmetric and asymmetric leaves were observed only for Stilbosis mines. This study indicated that leaf miners might use leaf FA as a cue to plant quality, although differential survivorship among leaf types was not observed for all species studied. Reasons for the different results between guilds are discussed.  相似文献   

2.
We studied patterns of fluctuating asymmetry (FA) in leaves of four populations of the neotropical vine Dalechampia scandens to obtain insight into the origin of leaf FA and the level at which it is controlled. We analysed correlations in signed and unsigned asymmetry at different organizational levels. We also analysed the ontogeny of FA during leaf expansion to test whether asymmetry is regulated during cell expansion, and whether fast-expanding leaves are more or less asymmetrical. Signed asymmetry was negatively correlated between successive leaves, that is, when the right side of a leaf was larger than the left side, the next leaf on the shoot tended to show the opposite pattern. The magnitude of FA, however, was very weakly correlated among successive leaves or among leaves measured on different shoots. The direction of asymmetry did not change during leaf expansion, but the relative asymmetry, that is, asymmetry corrected for difference in trait size, decreased during expansion. We found a weak negative relationship between leaf expansion rate and relative asymmetry on the fully expanded leaves. These results suggest that leaf asymmetry in Dalechampia originates from perturbations in cell proliferation in the stem, creating asymmetries in opposite directions in successive leaves. These asymmetries persist during leaf expansion, but tend to be reduced by unknown mechanisms.  相似文献   

3.
Fluctuating asymmetry (FA) represents small, random variation from symmetry and it has been used as an indicator of plant quality and susceptibility to herbivory. In this study, the effects of FA on the responses of distinct herbivore species belonging to several guilds were examined along an environmental gradient in south Florida. This approach was chosen because it relies on a multi-species approach to the study of fluctuating asymmetry and patterns of herbivory between and within plants along an environmental gradient of salinity and plant stress. To examine differences in FA between and within plant communities, seven plant species were investigated. Four of these plants were coastal species and three species occurred in upland communities. Levels of FA were assessed before herbivory and plants were followed for the whole herbivory season in 2006. Coastal plants exhibited significantly higher salt concentration, higher percentage of asymmetric leaves and higher asymmetry levels than upland plants. Herbivore abundance varied widely amongst the seven species studied, but quantitative syntheses of our results indicated significant and positive responses of insect herbivores to leaf asymmetry: insects were 25.11% more abundant on more asymmetric plants and stronger effects of asymmetry were observed for leaf miners compared to gall-formers. As demonstrated by other recent studies, FA might be used as a reliable stress indicator, leading to similar responses of insect herbivores to variation in leaf symmetry.  相似文献   

4.
Fluctuating asymmetry (FA) is used to describe developmental instability in bilateral structures. In trees, high FA of leaves has been assumed to indicate the level of environmental or genetic stress, and for herbivores leaves from such trees have been shown to be in some cases (though not invariably) of higher quality compared to trees with symmetrical leaves. We demonstrated that FA of birch leaves correlated positively with growth rate of leaves, and with the amount of leaf biomass consumed by larvae of the geometrid Epirrita autumnata. Since asymmetry per se cannot define leaf quality for a herbivore, we determined the biochemical compounds which covary with the degree of foliage FA, in order to elucidate relationships between leaf FA, chemistry and herbivory. High foliar FA was characteristic of birches with high initial concentrations, and rapid seasonal decline in the concentrations of gallic acid and hydrolysable tannins, and with rapid seasonal changes in the concentrations of flavonoid-glycosides and sugars. In contrast, leaf FA was not related to concentrations of proanthocyanidins, protein-bound amino acids or soluble phenylalanine, the precursor of proanthocyanidins and proteins with aromatic amino acids. The positive correlation between leaf FA and consumption by E. autumnata was presumably related to the previously demonstrated compensatory consumption of E. autumnata to high concentrations of foliar gallotannins. Furthermore, sugars are well-known feeding stimulants. We propose that the variable results in studies correlating leaf FA and herbivory may stem from variable chemical associations of FA in different plants and of species-specific effects of compounds on insects. Received: 15 July 1999 / Accepted: 24 September 1999  相似文献   

5.
Fluctuating asymmetry (FA), i.e. small, non-directional deviations from perfect symmetry in morphological characters, increases under genetic and/or environmental stress. Ecological and evolutionary studies addressing FA became popular in past decades; however, their outcomes remain controversial. The discrepancies might be at least partly explained by inconsistent and non-standardised methodology. Our aim was to improve the methodology of these studies by identifying factors that affect the reproducibility of FA measurements in plant leaves. Six observers used a highly standardised measurement protocol to measure FA using the width, area and weight of the same set of leaves of 10 plant species that differed in leaf size, shape of the leaf margin and other leaf traits. On average, 24% of the total variation in the data was due to measurement error. Reproducibility of measurements varied with the shape of leaf margin, leaf size, the measured character and the experience of the observer. The lowest reproducibility of the width of leaf halves was found for simple leaves with serrate margins and the highest for simple leaves with entire margins and for compound pinnate leaves. The reproducibility was significantly lower for the weight of leaf halves than for either their width or area, especially for plants with small leaves. The reproducibility was also lower for measurements made by experienced observers than by naïve observers. The size of press-dried leaves decreased slightly but significantly relative to fresh leaves, but the FA of press-dried leaves adequately reflected the FA of fresh leaves. In contrast, preservation in 60% ethanol did not affect leaf size, but it decreased the width-based values of FA to 89.3% of the values measured from fresh leaves. We suggest that although reproducibility of leaf FA measurements depends upon many factors, the shape of the leaf margin is the most important source of variation. We recommend, whenever possible, choosing large-leaved plants with entire leaf margins as model objects for studies involving measurements of FA using the width of leaf halves. These measurements should be conducted with high accuracy from images of fresh or press-dried leaves.  相似文献   

6.
Fluctuating asymmetry (FA) is often used as a measure of developmental instability and has been proposed as an indicator of both environmental and genetic stress. However, the empirical evidence for the effects of stress on FA in plants is inconsistent, and there are few controlled experimental studies. We analyzed different distance- and shape-based measures of the fluctuating asymmetry of the leaves of clonally replicated self- and cross-pollinated lineages of Silene vulgaris (Moench) Garcke (Caryophyllaceae) grown under a control and seven different stress treatments (drought, copper, simulated herbivory, and two levels of nutrient deficiency and of shade). Overall, FA differed among stress treatments, but was not generally higher under stress and even reduced in some treatments. Different measures of FA were only weakly correlated. Inbreeding increased only one measure of leaf FA, and only under high stress intensities. Our findings suggest that in S. vulgaris leaf fluctuating asymmetry does not serve as an indicator of environmental stress or of genetic stress by inbreeding.  相似文献   

7.
It has been suggested that plant physical and chemical traits vary considerably in space and time. Hence, leaf‐mining insects may adjust their oviposition in response to leaf attributes representing high quality. Moreover, herbivorous insects can modify leaf morphology by acting as stressors, increasing, for example, fluctuating asymmetry (FA) levels. Here, we investigate oviposition preference in Agnippe sp.2, a leaf‐mining moth of Erythroxylum tortuosum, in relation to differences in leaf nutritional quality (i.e. levels of water, nitrogen and tannin content), leaf area (i.e. quantity of resource hypothesis) and FA. We also verify whether temporal variation in plant nutritional quality emerges as an alternative hypothesis to explain oviposition distribution in time, and whether this leaf miner is a stress‐causing agent, increasing FA during larval development. Mined leaves and leaves with and without eggs were periodically collected from plants located in a Cerrado fragment in Brazil. In the laboratory, leaf traits were assessed (using image analysis software) and quantified (biochemical analysis) according to the aims previously determined. Oviposition probability did not change in relation to variations in nitrogen, tannins and FA of leaves. However, leaf‐miner females preferred to oviposit on leaves having large areas and low water contents. It was also verified that new leaves of E. tortuosum, which carried most leaf‐miner eggs, presented significantly lower tannins and greater levels of nitrogen and water than old leaves. The oviposition choice exhibited by leaf miners was found to be non‐random because they appear to use resource quantity and water content as cues as where to lay their eggs. The temporal variation of plant nutritional quality is likely to influence the time of leaf‐miner oviposition; and leaf FA was not increased during larval feeding, suggesting that these herbivores do not cause variations in FA levels.  相似文献   

8.
Fluctuating asymmetry (FA) represents small, random variation from symmetry in otherwise bilaterally symmetrical characters. Significant increases in FA have been found for several species of plants and animals in response to various stresses, including environmental and genetic factors. In this study, we investigated the effects of elevated CO2 on leaf symmetry of two oak species, Quercus geminata and Q. myrtifolia, and the responses of three species of leaf miners and one gall‐making species to random variation in leaf morphology. Leaf FA decreased with an increase in CO2 concentration. There were fewer asymmetric leaves and lower levels of asymmetry on leaf width and leaf area on elevated CO2 compared with ambient CO2. Leaf miners responded to leaf asymmetry, attacking asymmetric leaves more frequently than expected by chance alone. Differences in secondary chemistry and nitrogen (N) content between symmetric and asymmetric leaves may be responsible for these results due to lower levels of tannins and higher levels of N found on asymmetric leaves of Q. myrtifolia and Q. geminata.  相似文献   

9.
Herbivory is a major source of plant stress and its effects can be severe, decreasing plant fitness, or subtle, affecting the development of leaves by influencing the normal pattern of growth and expansion of leaf blades. Fluctuating asymmetry (FA) analysis is recognized as a measure of plant stress, and can be used to evaluate subtle effects of herbivory on the imperfect growth of bilaterally symmetrical traits, such as leaves. One general issue is that authors usually consider FA as an indicator of stress, which can attract herbivores (plant stress hypothesis), and studies showing that herbivores themselves affect leaf symmetry (herbivory-induced stress hypothesis) are scarce, with mixed results. Here, we investigated the relationship between herbivory by thrips and leaf FA in Banisteriopsis malifolia and Heteropterys escallonifolia (Malpighiaceae). Pseudophilothrips obscuricornis is a free-living, non-pest, sucking species that feeds mainly on leaf buds. We hypothesized that herbivory by thrips in the early stages of leaf development would provoke increased FA levels in mature leaves. The results showed that thrips herbivory rate was low, affecting barely more than 1% of the leaf blade. Nonetheless, thrips-attacked leaves of B. malifolia and H. escallonifolia presented increases of 15 and 27% in leaf asymmetry, respectively, compared to uninjured leaves, corroborating the herbivory-induced stress hypothesis. Since herbivory by thrips in leaf buds was related to significant increases in the stress of mature leaves, we assume that under these circumstances, FA can be used as a biomarker for plant stress following herbivory damage. To be useful as a biomarker of stress, FA in plants must be investigated with caution, taking into account the natural history of the herbivore species and timing of leaf damage.  相似文献   

10.
1. Plants represent a highly heterogeneous resource for herbivores. One dimension of this heterogeneity is reflected by the within‐plant variation in the leaf fluctuating asymmetry (FA), i.e. in the magnitude of the random deviations from the symmetry in leaf shape. 2. This study is the first to test experimentally the hypothesis that variation in the quality of individual leaves for defoliating insects (11 species) within a plant (seven tree and shrub species) is associated with the FA of these leaves. 3. It was demonstrated that specialist defoliators generally distinguish between nearly symmetric (low FA) and highly asymmetric (high FA) leaves, but do not distinguish between discs cut from these leaves. Low‐FA leaves of Salix caprea, Salix myrsinifolia and Populus tremula were of better quality for insects than high‐FA leaves, as demonstrated by both preference tests and performance trials. By contrast, high‐FA leaves of Betula pubescens were of better quality for insects than low‐FA leaves, whereas insects feeding on Alnus incana showed similar responses to high‐ and low‐FA leaves. 4. It is concluded that insect herbivores can distinguish between leaves with high and low FA, and that FA may be associated with the quality of an individual leaf for insects, although the direction and strength of the effect of leaf FA on insect preference and performance vary among study systems. The ecological significance of substantial within‐plant variation in leaf FA remains to be explored.  相似文献   

11.
Fluctuating asymmetry (FA) represents small, random variations in traits, presumably with bilateral symmetry, and is widely used as a tool to measure developmental instability in plants and animals. Because FA is a quick, simple and reliable measure, it has been frequently used for monitoring levels of environmental stress. This study investigated whether FA can be used as a predictor of individual developmental instability for four sympatric Melastomataceae species. To achieve that aim, 20 individuals of Trembleya laniflora, T. parviflora, Lavoisiera campos‐portoana and Tibouchina heteromalla were marked in southeastern Brazil and monitored before and during the flowering season. The FA index was calculated as the mean of the difference in the width or length between the left and right sides measured for each leaf or flower. All studied species exhibited asymmetry in the leaves and flowers, but the leaves of L. campos‐portoana and the petal width of T. heteromalla exhibited directional asymmetry, also an indicator of developmental instability. The highest level of leaf asymmetry was found in T. heteromalla and on flowers of L. campos‐portoana. None of the studied species exhibited a significant relationship between the FA level of the leaves and flowers on an individual basis, indicating that environmental and/or genetic sources of stress might act differently on different plant traits. For the studied species, measurements of FA can be suggested as useful tools to biomonitor levels of stress experienced by both leaves and flowers within the Melastomataceae family.  相似文献   

12.
Several studies of fluctuating asymmetry (FA) in animals show that secondary sexual characters used in signalling have a negative relationship between size and asymmetry. Larger sexual traits are presumably more costly to produce, which should lead to greater developmental stress and corresponding increases in asymmetry. In the absence of among individual variation in the ability to handle these costs, the relationship between size and asymmetry should thus be positive. A negative relationship therefore suggests that expression of these traits is condition-dependent. In plants, flowers act as signals for pollinators and may show similar trends to animal signals. Leaves which are uninvolved in signalling should not. Moller & Eriksson (1994) found that 89% of species ( n = 16 of 18) with insect-pollinated flowers showed a negative relationship between petal size and asymmetry, while 79% of species ( n = 15 of 19) showed a positive relationship between leaf size and asymmetry. I carried out a similar study of 18 plant species. The average relationship between petal size and asymmetry did not differ significantly from zero in those species showing measurable FA in flowers ( n = 12). The relationship was significantly negative in one species, and significandy positive in another. On average, leaves in species with FA did not show a significant positive relationship between size and asymmetry ( n = 7). There was no significant difference in the slopes of the relationship between size and asymmetry for leaves and flowers. Levels of floral asymmetry for species with FA were significandy repeatable on individual plants in 33% ( n = 4 of 12) of species, but leaf asymmetry was not significantly repeatable in any species. It is argued that condition-dependence of traits need not result in a negative relationship between size and asymmetry.  相似文献   

13.
Four natural populations of Clarkia tembloriensis, whose levels of heterozygosity and rates of outcrossing were previously found to be correlated, are examined for developmental instability in their leaves. From the northern end of the species range, we compare a predominantly selfing population (t? = 0.26) with a more outcrossed population (t? = 0.84), which is genetically similar. From the southern end of the range, we compare a highly selfing population (t? = 0.03) with a more outcrossed population (t? = 0.58). We measured developmental stability in the populations using two measures of within-plant variation in leaf length as well as calculations of fluctuating asymmetry (FA) for several leaf traits. Growth-chamber experiments show that selfing populations are significantly more variable in leaf length than more outcrossed populations. Developmental instability can contribute to this difference in population-level variance. Plants from more homozygous populations tend to have greater within-plant variance over developmentally comparable nodes than plants from more heterozygous populations, but the difference is not significant. At the upper nodes of the plant, mature leaf length declines steadily with plant age, allowing for a regression of leaf length on node. On average, the plants from more homozygous populations showed higher variance about the regression (MSE) and lower R2 values, suggesting that the decline in leaf length with plant age is less stable in plants from selfing populations than in plants from outcrossing populations. Fluctuating asymmetry (FA) was calculated for four traits within single leaves at up to five nodes per plant. At the early nodes of the plant where leaf arrangement is opposite, FA was also calculated for the same traits between opposite leaves at a node. Fluctuating asymmetry is significantly greater in the southern selfing population than in the neighboring outcrossed population. Northern populations do not differ in FA. Fluctuating asymmetry can vary significantly between nodes. The FA values of different leaf traits were not correlated. We show that developmental stability can be measured in plants using FA and within-plant variance. Our data suggest that large differences in breeding system are associated with differences in stability, with more inbred populations being the least stable.  相似文献   

14.
张浩  王祥荣 《生态学杂志》2005,24(7):719-723
对采自上海市区14个样点的二球悬铃木叶片发育稳定度、叶片气孔密度和气孔长径进行研究。结果表明,在3个采样时期,根据叶片宽度确定的非稳态不对称指数(FA1)和根据叶片侧脉长度确定的偏向性不对称指数(RDA1)在不同环境胁迫程度(UESL)下均表现出显著的差异,但进一步分析表明,各样点FA1与环境胁迫程度UESL之间呈显著的非线性回归关系,而RDA1与环境胁迫程度之间却未显示类似关系。此外,FA1与叶片气孔密度和气孔长径之间的显著相关关系表明,它们可共同作为指示小尺度上环境胁迫的有效指标,而RDA1是叶片的一种正常发育状态参数,并不适于反映环境胁迫状态。  相似文献   

15.
The developmental stability indices,leaf width based fluctuating asymmetry (FA1),and lateral vein length based directional asymmetry (RDA1) of Platanus acerifolia were studied.All the leaves were sampled from 14 sites that were categorized based on different urban environmental stress levels (UESL) in Shanghai metropolitan,China.Besides,foliar stomatal density and stomatal length were also studied as the subsidiary indices to test the availability of developmental stability indices as the indicator under a stressful environment.Results showed seasonal variation of FA1 and RDA1 existed among the 14 sites,but the data showed significant negative correlation between FA1 and UESL (FA1=0.029-0.000 9UESL+0.000 3UESL2,r=0.766 5,P=0.001 4).However,a similar trend was not found between RDA1 and UESL.Furthermore,the significant correlation among FA1 and leaf stomatal length and stomatal density implied they could be used as indicators of urban stress levels on a small scale.It seemed that RDA1 was possibly a normal parameter during leaf development but it was unavailable for use as an indicator of urban stresses.  相似文献   

16.
Developmental instability of floral traits is examined in four populations of Clarkia tembloriensis (Onagraceae) with different natural outcrossing rates. Developmental instability is estimated using fluctuating asymmetry (FA) and within plant variance. The results are coupled with those from a previous study of leaf traits. In the first experiment, flowers were collected from the same growth chamber-grown plants that had been previously used to estimate leaf developmental stability in two C. tembloriensis populations. These populations differed in FA for only one floral trait, long filament length. After adjusting for organ size differences, we found floral FA values were about half those of leaves. These are the first quantitative data indicating that flowers are more developmentally stable than leaves. In a second experiment, greenhouse grown plants from two other C. tembloriensis populations (one highly outcrossing and one predominantly self-pollinating) did not differ significantly in floral FA or in within-plant variance of floral traits, though earlier studies of the same populations revealed significant differences in FA of leaf traits. In both experiments, FA values of different floral traits were uncorrelated. We attribute the lack of significant differences in floral stability between populations to the greater canalization of floral organs and to the magnification of measurement error that occurs when calculating FA. We also found that the shorter styles of selfers are the greatest difference in flower form between predominantly self-pollinating and predominantly outcrossing populations of C. tembloriensis.  相似文献   

17.
Abstract

In the present study, an additional combination of end‐points was applied on the natural populations of the common plantain, previously estimated using morphometric assays. Here, besides measuring developmental instability (DI), by determining the level of fluctuating asymmetry (FA) and the total amount of phenotypic variability (PV), we tried to distinguish the three natural populations under contrasting environmental conditions using the morphological data. Results obtained using both FA indices were the same; higher asymmetry levels in the reference than in the polluted environments were detected for leaf width, vein distances within a leaf and lobe length. The one‐way analysis of variance results revealed that there were significant differences in PV values among populations analysed for each character. When all leaf traits were considered together, the PV median value was significantly higher in Crni Lug leaves compared with leaves from other sites. The multivariate analysis of variance results revealed the significant effect of environment on both FA4 and PV values. The component scores of first factor (PC1) were significantly different between the Karaburma and Crni Lug populations. Besides, component scores of both PC1 and PC2 were significantly different between the Zemun and Crni Lug samples. The stepwise discriminant functional analysis results allowed us to identify a set of four variables, with a sufficient discriminating ability (75%).  相似文献   

18.
A key scientific challenge relating to the threat of invasive plants on agriculture at the region level is to understand their adaptation and evolution in functional traits. Leaf functional traits, related to growth and resource utilization, might lead to adaptation of invasive plants to the geographical barriers (region or elevation). In the field experiment, we discussed the effects of region and elevation on leaf functional traits on invasive plant Erigeron annuus in farmland habitats in China. We compared leaf size, coefficient of variation (CV) of leaf traits, and fluctuating asymmetry (FA) of E. annuus from three regions (east vs. center vs. west) and two leaf types (vegetative vs. reproductive leaf), and from nine elevations (980–2100 m) in the west region of China. Our results indicated region and leaf type influenced leaf functional traits, and leaf size was significantly higher and CV of leaf traits and FA in reproductive leaves were significantly lower in the east region than in the west and center regions. Elevation and leaf type affected leaf functional traits, and leaf size was significantly higher and CV of leaf traits in reproductive leaves were significantly lower in moderate elevation. E. annuus has higher leaf size and developmental stability (lower CV and FA) in the eastern region due to the longer adaptation period. Therefore, leaf functional traits play an important role in the adaptation of different longitudes and elevations. It can also facilitate the understanding of the invasiveness and adaptation of leaf traits of invasive plants in the agricultural ecosystem during their spread process in China.  相似文献   

19.
The structures on leaf surfaces, e.g. trichomes, can act as effective antiherbivory mechanisms as chemical repellents. Structural defences usually represent constitutive resistance, but there are also a few cases of inducible morphological defences. We tested whether defoliation may induce changes in trichome production in white birch (Betula pubescens). The studied birches were either 0, 50 or 100% defoliated during the previous or current summer, and we measured the alterations in the production of glandular vs. nonglandular leaf trichomes, developmental instability (fluctuating asymmetry, FA) and leaf and shoot growth. We detected a clear shift from glandular to nonglandular leaf trichomes following previous‐year defoliation but not after current‐year defoliation. Furthermore, the density of nonglandular trichomes around the mid‐vein of leaves increased following previous‐year defoliation but decreased after current‐year defoliation. While leaf and shoot growth showed a distinct decrease in response to defoliation, FA turned out to be less sensitive. Consequently, previous‐year defoliation can induce the production of nonglandular trichomes in birch leaves. Because this response was accompanied by a reduction in glandular trichomes, the present results may suggest a trade‐off between the different trichome types of birch leaves.  相似文献   

20.
We analysed the links between herbivory, anthraquinone content and developmental instability of leaves in Rhamnus alpinus, taking into account possible effects of sexual dimorphism. The amount of leaf loss caused by herbivores averaged 3%, rarely exceeding 25%. Leaf losses were evenly distributed in the shrubs, with highest variability among leaves of the same shoot, thus hiding possible shrub, sex or population effects. This pattern of herbivory implies a shifting of caterpillars from one leaf to another before consuming all readily available material. We suggest that this behaviour might be triggered by a short-term change in leaf palatability by means of an increase in the production of secondary compounds. Supporting this hypothesis, we have found a higher anthraquinone content in damaged leaves compared with undamaged ones. The leaves of male plants exhibited a higher concentration of anthraquinones than those of females, which contrasts with classic hypotheses. We relate this to the lower rate of biomass increase in males, which should allow them to allocate more resources to defence. Leaves showed fluctuating asymmetry (FA), but we did not find any relationship between the degree of asymmetry and sex, herbivory or anthraquinone content at any level considered. Therefore, FA cannot be considered as an indicator of susceptibility to damage by herbivores or of the ability to induce the production of defensive compounds in R. alpinus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号