首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Cosme M  Stout MJ  Wurst S 《Mycorrhiza》2011,21(7):651-658
Root-feeding insects are important drivers in ecosystems, and links between aboveground oviposition preference and belowground larval performance have been suggested. The root-colonizing arbuscular mycorrhizal fungi (AMF) play a central role in plant nutrition and are known to change host quality for root-feeding insects. However, it is not known if and how AMF affect the aboveground oviposition of insects whose offspring feed on roots. According to the preference–performance hypothesis, insect herbivores oviposit on plants that will maximize offspring performance. In a greenhouse experiment with rice (Oryza sativa), we investigated the effects of AMF (Glomus intraradices) on aboveground oviposition of rice water weevil (Lissorhoptrus oryzophilus), the larvae of which feed belowground on the roots. Oviposition (i.e., the numbers of eggs laid by weevil females in leaf sheaths) was enhanced when the plants were colonized by AMF. However, the leaf area consumed by adult weevils was not affected. Although AMF reduced plant biomass, it increased nitrogen (N) and phosphorus concentrations in leaves and N in roots. The results suggest that rice water weevil females are able to discriminate plants for oviposition depending on their mycorrhizal status. The discrimination is probably related to AMF-mediated changes in plant quality, i.e., the females choose to oviposit more on plants with higher nutrient concentrations to potentially optimize offspring performance. AMF-mediated change in plant host choice for chewing insect oviposition is a novel aspect of below- and aboveground interactions.  相似文献   

2.
In a greenhouse experiment we examined the effect of willow genotype and irrigation regime (moderate drought and well‐watered) on plant growth parameters, foliar nitrogen, and phenolic concentrations, as well as on the preference and performance of the blue leaf beetle, Phratora vulgatissima (L.) (Coleoptera: Chrysomelidae). The 10 vegetatively propagated willow genotypes in the experiments were F2 full‐sibling hybrids, originated from a cross between Salix viminalis (L.) (Salicaceae) (high in condensed tannins) and Salix dasyclados (L.) (Salicaceae) (rich in phenolic glycosides). Insect bioassays were conducted on detached leaves in Petri dishes as well as with free‐living insects on intact potted plants. The 10‐week long irrigation treatments caused statistically significant phenotypic differences in the potted willow saplings. Total biomass was somewhat higher in the well‐watered treatment. The root to total biomass ratio was higher in the drought‐treatment plants. There was significant genotypic variation in foliar nitrogen concentrations, and they were higher in the drought‐treatment plants. There was also a strong genotypic variation in each of the phenolic substances analyzed. Condensed tannins, which accounted for the greatest proportion of total phenolic mass, were higher in the well‐watered treatment. There was, however, no difference in levels of the other phenolics (salicylates, cinnamic acid, flavonoids, and chlorogenic acid) between irrigation treatments. The sum of these phenolics was higher in the well‐watered treatment. There was a strong variation in P. vulgatissima larval development on different willow genotypes, and larval performance was negatively correlated with levels of salicylates and cinnamic acid. There was, however, no effect of irrigation treatment on larval performance. Phratora vulgatissima preferred to feed on well‐watered plants, and we found a preference for oviposition there, but neither feeding nor oviposition site preference was affected by willow genotype. Adult feeding and oviposition preferences were not correlated with larval performance.  相似文献   

3.
1. Plants represent a highly heterogeneous resource for herbivores. One dimension of this heterogeneity is reflected by the within‐plant variation in the leaf fluctuating asymmetry (FA), i.e. in the magnitude of the random deviations from the symmetry in leaf shape. 2. This study is the first to test experimentally the hypothesis that variation in the quality of individual leaves for defoliating insects (11 species) within a plant (seven tree and shrub species) is associated with the FA of these leaves. 3. It was demonstrated that specialist defoliators generally distinguish between nearly symmetric (low FA) and highly asymmetric (high FA) leaves, but do not distinguish between discs cut from these leaves. Low‐FA leaves of Salix caprea, Salix myrsinifolia and Populus tremula were of better quality for insects than high‐FA leaves, as demonstrated by both preference tests and performance trials. By contrast, high‐FA leaves of Betula pubescens were of better quality for insects than low‐FA leaves, whereas insects feeding on Alnus incana showed similar responses to high‐ and low‐FA leaves. 4. It is concluded that insect herbivores can distinguish between leaves with high and low FA, and that FA may be associated with the quality of an individual leaf for insects, although the direction and strength of the effect of leaf FA on insect preference and performance vary among study systems. The ecological significance of substantial within‐plant variation in leaf FA remains to be explored.  相似文献   

4.
The oviposition patterns of adults and the movement and feeding patterns of larvae of Epilachna cucurbitae on two species of cucurbits, Cucurbita maxima cv Queensland Blue and C. pepo cv Blackjack, were studied in the field and laboratory. The physical and nutritional characteristics of host plant leaves of different ages were described. Younger leaves had higher nitrogen contents but were less abundant, smaller and had higher trichome densities than older leaves. The development of first instar larvae was delayed by the leaf hairs on young and mature pumpkin leaves which prevented larvae from reaching the leaf surface to feed First instal larvae developed more quickly on leaves rich in nitrogen. Neither the total developmental time of larvae nor the size of pupae was affected by leafage because larvae on poor quality leaves compensated by eating more. Female beetles oviposited on all but the youngest and oldest leaves of the host plant. The trichomes on young leaves prevented females from attaching eggs to the leaf surface. First instar larvae remained where they hatched, but older larvae were more mobile, Changing feeding sites frequently and moving progressively to younger, more nutritious leaves. Final instar larvae moved onto adjacent vegetation to pupate. The adaptive significance of these patterns is discussed in relation to the nutritional value, hairiness and abundance of host plant leaves of different ages and the physical limitations of different larval instars.  相似文献   

5.
Abstract 1. Leaf mining insects feed within plant tissue and thus have close physical associations with their host plants. Little is known about the evolution of relationships between leaf miners and their host species. 2. The prevalence of leaf mining was examined in relation to the phylogeny of a dominant family of Australian plants, the Myrtaceae. Sixty‐eight species from the 10 major phylogenetic groups within the family were sampled in south‐eastern Australia. 3. Fifty‐seven per cent of the plant species examined were found to be mined. Several leaf traits were compared between mined and unmined plant species to investigate the potential role of both physical and nutritional characteristics in determining host‐plant susceptibility to these herbivores. 4. The physical leaf traits measured were leaf area, specific leaf area (SLA), lamina thickness, toughness, and amount of fibre (percentage hemicellulose). The nutritional traits were water content, and concentrations of carbon, nitrogen, total phenols and condensed tannins. Principal component analysis showed mined plant species differed from unmined in terms of several leaf traits. 5. In a post hoc regression weighted for phylogeny, leaf miner presence was significantly positively correlated with plant species having thinner laminas and higher phenol concentrations, and was positively correlated with marginal significance to SLA and water content.  相似文献   

6.
1. According to the preference-performance hypothesis, female insects select resources that maximize offspring performance. To achieve high fitness, leaf miner females should then adjust their oviposition behaviour in response to leaf attributes signalling high host quality. 2. Here we investigate resource selection in Tischeria ekebladella, a leaf-mining moth of the pedunculate oak (Quercus robur), in relation to two alternative hypotheses: (1) females select their resources with respect to their future quality for developing larvae; or (2) temporal changes in resource quality prevent females from selecting the best larval resources. 3. Specifically, we test whether females show the strongest selection at the levels at which quality varies the most (shoots and leaves); whether they respond to specific leaf attributes (leaf size, phenolic content and conspecific eggs); and whether female preference is reflected in offspring performance. 4. Female choice of leaves was found to be non-random. Within trees, the females preferred certain shoots, but when the shoots were on different trees the degree of discrimination was about four times larger than when they were on the same trees. 5. While females typically lay more eggs on large leaves, this is not a result of active selection of large leaves, but rather a result of females moving at random and ovipositing at regular intervals. 6. The females in our study did not adjust their oviposition behaviour in response to leaf phenolic contents (as measured by the time of larval feeding). Neither did they avoid leaves with conspecific eggs. 7. Female choice of oviposition sites did not match patterns of offspring performance: there was no positive association between offspring survival and counts of eggs. 8. We propose that temporal variation in resource quality may prevent female moths from evaluating resource quality reliably. To compensate for this, females may adopt a risk-spreading strategy when selecting their resources.  相似文献   

7.
8.
Plants have evolved a number of defences to ameliorate herbivore attacks including chemicals induced by mechanical wounding. Such changes in plant chemical composition are potential confounding factors in experiments on plant – insect interactions, which often present cuttings of potential host plants to phytophagous insects. In particular, this could affect studies of female egg‐laying preference and larval performance, because the same plant chemicals that deter certain generalist insects can elevate attacks from more specialized insects. Furthermore, plant cuttings are by definition smaller than intact plants, and any female host size preference could thus affect experiments using plant cuttings. We first assessed female preference and larval performance of a specialist herbivore, Pieris napi (L.) (Lepidoptera: Pieridae, Pierini), confronted with either intact plants or leaf‐cuttings of four Brassicaceae host plants, Alliaria petiolata (Bieb.) Cavara & Grande, Barbarea vulgaris (L.) WT Aiton, Berteroa incana (L.) DC., and Brassica napus (L.). Egg and larval survival did not differ between intact plants and leaf‐cuttings, whereas larval growth was slightly, but significantly, faster on leaf‐cuttings. Females, however, significantly preferred to lay eggs on intact plants of all four hosts, although the preference hierarchy for the intact plants was largely mirrored by that for leaf‐cuttings. We then tested the female preference for different size‐classes of intact B. napus plants. Small individuals received more eggs than larger individuals, and follow‐up experiments showed that this difference was largely generated by a strong female preference for cotyledon leaves; there was no significant difference in female preference for large and small individuals when both carried cotyledons, and females landing on cotyledons were more likely to oviposit compared to when landing on a true leaf. Our study concludes that plant cuttings can serve as adequate proxies for live plants for preference/performance studies, but that experimentalists should be aware of the variation imposed both by plant handling and plant phenology for female oviposition preference.  相似文献   

9.
The preference–performance hypothesis predicts that moth behaviour links plant variations with caterpillar attack and distribution, and the plant‐age hypothesis states that specialist herbivores are more successful in exploring younger plant tissue. We integrated these predictions to investigate underlying mechanisms by which moths and caterpillars of Plutella xylostella L. (Lepidoptera: Plutellidae) track and exploit within‐plant variability of leaf age and stratification. We measured leaf proteins, glucosinolates and fibre, as well as larval choice, developmental performance, and moth oviposition preference with regard to leaf age classes (young, mature and senescent) of three varieties (collard, cauliflower and cabbage) of the main host plant Brassica oleracea L. Larvae consistently fit the prediction that specialist herbivores prefer and perform better on young, upper leaves that have the highest protein level, despite the highest content of defence compounds. Conversely, moths laid more eggs on fibrous and less nutritious leaves from the lower and senescent stratum. We argue that the leaf stratification of host plants imposes conflicting selective pressures concerning offspring feeding and protection on adult females. If egg mortality is catastrophic on the upper nutritious leaves in a particular microclimatic context (e.g. sun, heat, winds, drought or rain‐washing), then oviposition preference will remain for the suboptimal lower and senescent leaves. The ability of larvae to spread upwards over the plant to access the more nutritious leaf stratum is critical when eggs are preferentially laid on the protective low‐quality leaves.  相似文献   

10.
In sequentially planted oat stands, the cereal leaf beetle (CLB), Oulema melanopus (L.) (Coleoptera: Chrysomelidae: Lemini), is found in greater numbers, and lays more eggs, on later planted (younger) oats (Avena sativa L.) (Poaceae). Plant characteristics that could explain this ovipositional preference were examined in a series of experiments. Cage and open field whole plant preference tests confirmed the attraction of ovipositing females to younger oats. A cage effect illustrated the role of plant architecture (plant height) in CLB host selection. Two multiple‐choice and one no‐choice excised leaf experiments determined that characteristics of individual leaves associated with leaf insertion level (leaf number from base to apex) and age influence ovipositional site selection. Leaves of higher insertion level have higher nitrogen content, but fewer eggs are laid on those leaves. Two experiments examining the interaction between total leaf nitrogen and leaf insertion level showed that only leaf insertion level affected oviposition choice. Published literature suggests variation in secondary plant compounds cannot explain O. melanopus ovipositional preference among leaves. Grass leaves of higher insertion level have more extensively developed cells associated with tissue toughness and hardness. The data and supporting literature suggest tissue toughness and hardness are deterring oviposition on oat leaves of higher insertion level. However, newly eclosed larvae are able to feed on leaves usually avoided as oviposition sites. The explanation for this result may be a lack of correlation between host suitability and ovipositional preference.  相似文献   

11.
1. The plant phenological age hypothesis predicts that phytophagous insects should prefer and perform better on phenologically young plants than on old plants because plant nutritional quality decreases with plant phenological age. This hypothesis was tested under field and laboratory conditions with the grass miner Chromatomyia milii on the free‐growth species Holcus lanatus. 2. The field experiment was conducted at four sample sites in Belgium where nutritional quality of H. lanatus leaves and performance of C. milii were monitored throughout the growth season. Foliar nutritional quality was highest early in the season due to high levels of proteins and soluble carbohydrates and low levels of lignin. Offspring performance (pupal size) decreased with plant phenological age, due at least partially to the decreasing foliar nutritional quality. 3. In the laboratory experiment, preference and performance of C. milii were determined on three different age classes of H. lanatus. Multiple‐choice experiments demonstrated that oviposition preference did not differ among age classes. Offspring survival decreased with plant phenological age, while pupal size did not differ among age classes. The relationship between foliar nutritional quality and plant phenological age was equivocal and did not correspond to the predictions of the plant phenological age hypothesis. 4. The results of the field experiment were consistent with the idea that the phenological age hypothesis holds in free‐growth species. The laboratory experiment gave only little support to the plant phenological age hypothesis. Possible causes for the differences between field and laboratory experiments are discussed.  相似文献   

12.
Fluctuating asymmetry (FA) represents small, random variation from symmetry and can be used as an indicator of plant susceptibility to herbivory. We investigated the effects of FA of two oak species, Quercus laevis and Q. geminata, and the responses of three herbivore guilds: leaf miners, gallers, and chewers. To examine differences in FA and herbivory between individuals, 40 leaves from each tree were collected, and FA indices were calculated. To examine differences in FA and herbivory within-individuals, we sampled pairs of mined and unmined leaves for asymmetry measurements. Differences in growth of leaf miners between leaf types were determined by tracing 50 mines of each species on symmetric leaves and asymmetric leaves. Asymmetric leaves contained significantly lower concentrations of tannins and higher concentrations of nitrogen than symmetric leaves for both plant species. Both frequency of asymmetric leaves on plants and levels of asymmetry positively influenced the abundance of Brachys, Stilbosis and other leaf miners, but no significant relationship between asymmetry and herbivory was observed for Acrocercops. Brachys and Stilbosis mines were smaller on asymmetric leaves, but differences in mine survivorship between symmetric and asymmetric leaves were observed only for Stilbosis mines. This study indicated that leaf miners might use leaf FA as a cue to plant quality, although differential survivorship among leaf types was not observed for all species studied. Reasons for the different results between guilds are discussed.  相似文献   

13.
Abstract
  • 1 The autumn gum moth, Mnesampela privata, is an endemic Australian geometrid that utilizes a number of species within the genus Eucalyptus as hosts. Based on field observations, the moth is thought to be leaf‐type specific for juvenile as opposed to adult eucalypt foliage.
  • 2 Laboratory binary choice assays of the oviposition preference of host novice M. privata confirmed that eggs were more likely to be laid upon juvenile rather than adult foliage of Eucalyptus dunnii and two subspecies of E. globulus. This oviposition preference was not influenced by differences in leaf size or adherence to leaves by ovipositing moths. The high specific leaf weights common to adult leaves were associated with reduced oviposition.
  • 3 Although neonates fed on both juvenile and adult leaves of most of the trees studied, performance was greater on juvenile as opposed to adult foliage. Juvenile leaves typically had lower specific leaf weights and were nutritionally superior to their adult counterparts. Specific leaf weights above 0.236 mg/mm2 (associated with low water, i.e. = 56.5%, and nitrogen, i.e. = 1.23%, contents) were associated with reduced larval performance. Younger adult leaves, those with lower specific leaf weights, allowed slightly greater larval consumption.
  • 4 When ovipositing, this eucalypt‐specific moth discriminates between leaf types of its heterophyllous hosts in favour of types with the lowest specific leaf weight. Less tough leaf types, which are also higher in nitrogen, enable neonates to attain larger body weights.
  相似文献   

14.
1 The tri‐voltine moth Prays oleae Bern. spends its larval stages on the native olive tree (Olea europaea L. var. sylvestris Brot. and five cultivars, Oleaceae) mining the leaves, the flowers and the fruits in each generation; it seldom switches to other native or introduced confamilial plant species. 2 In this study the pattern of oviposition of the olive moth was examined in olive fields and natural vegetation, in relation to in situ recruitment as an outcome of processes such as density dependence or risk spreading. 3 Larval body size (width of epicranial sclerites) was also examined and compared between host substrates, years and morphological, physiological, ecological and nutritional attributes of the host. 4 The factors influencing the oviposition pattern of the olive moth such as the carbon/nitrogen ratio, number of flowers, branch length and previous leaf damage were ranked differently in different cultivars. 5 ‘Hot spots’, i.e. olive trees or parts of trees receiving a high egg load, were found to be the result of in situ recruitment. 6 Physiological mortality among first instar larvae was significantly negatively correlated with the number of oviposited upon leaves; suggesting that the adult selects for oviposition the best available substrate. 7 As adult moths selected leaves with minimal probability of abscission for oviposition, leaf abscission was not a major mortality factor, although first instar larvae reduced leaf longevity. 8 Host quality did not affect all larval stages in the same way. 9 The more nutritionally poor the substrate, the longer the duration of the larval stage feeding on it. The phenological timing of the insect life stages very closely tracks the phenological phases of its host plant, primarily focusing on the most nutritious host stage in terms of larval performance.  相似文献   

15.
Herbivorous insects may be informed about the presence of competitors on the same host plant by a variety of cues. These cues can derive from either the competitor itself or the damaged plant. In the mustard leaf beetle Phaedon cochleariae (Coleoptera, Chrysomelidae), adults are known to be deterred from feeding and oviposition by the exocrine glandular secretion of conspecific co-occurring larvae. We hypothesised that the exocrine larval secretion released by feeding larvae may adsorb to the surface of Chinese cabbage leaves, and thus, convey the information about their former or actual presence. Further experiments tested the influence of leaves damaged by conspecific larvae, mechanically damaged leaves, larval frass and regurgitant on the oviposition and feeding behaviour of P. cochleariae. Finally, the effect of previous conspecific herbivory on larval development and larval host selection was assessed. Our results show that (epi)chrysomelidial, the major component of the exocrine secretion from P. cochleariae larvae, was detectable by GC-MS in surface extracts from leaves upon which larvae had fed. However, leaves exposed to volatiles of the larval secretion were not avoided by female P. cochleariae for feeding or oviposition. Thus, we conclude that secretion volatiles did not adsorb in sufficient amounts on the leaf surface to display deterrent activity towards adults. By contrast, gravid females avoided to feed and lay their eggs on leaves damaged by second-instar larvae for three days when compared to undamaged leaves. Mechanical damage of leaves and treatment of artificially damaged leaves with larval frass or regurgitant did not affect oviposition and feeding of P. cochleariae. Since no adverse effects of previous herbivory on larval development were detected, we suggest that female P. cochleariae avoid Chinese cabbage leaves damaged by feeding larvae for other reasons than escape from competition or avoidance of direct negative effects that result from consuming induced plant material.  相似文献   

16.
Gall-forming insects usually have very restricted host ranges, but plant traits affecting patterns of host use have rarely been examined. The sawfly Phyllocolpa sp. (Hymenoptera: Tenthredinidae) forms leaf-roll galls on three of seven Salix (Salicaceae) species that occur together on riverbanks in central Japan. We have attempted to explain this host-use pattern by invoking three plant traits: synchrony of leaf flush with the oviposition period of the sawfly, intrinsic leaf quality as a potential larval food, and leaf morphology. Two Salix species frequently used by the sawfly, Salix eriocarpa and Salix pierotii, had similar leaf traits suitable for larval survival. The third species, Salix serissaefolia, was used relatively less often and the sawfly frequently stopped laying eggs on the plant during oviposition, suggesting ovipositional selection. S. serissaefolia had the smallest leaves, and survival of sawfly larvae was lower on S. serissaefolia than on S. eriocarpa and S. pierotii, because of gall destruction, by other herbivorous insects, and leaf-size restrictions. Among the four unused species, Salix chaenomeloides had a late leaf-flush phenology, Salix gracilistyla had inferior leaf quality, and Salix gilgiana had linear leaves; these seemed to be critical factors for non-use. Salix subfragilis was also unused, but the reason for this could not be explained by the three leaf traits studied.  相似文献   

17.
Summary Phytomyza ilicicola (Diptera: Agromyzidae), a univoltine specialist leafminer, is one of the few insect herbivores of American holly. Adult emergence is closely synchronized with leaf flush in spring, and females make numerous feeding punctures on and oviposit in new leaves. Larvae hatch in late May and June, but their feeding period and development are prolonged so that more than 80% of the mine enlargement occurs from January until March of the following year. We propose that this unusual life cycle reflects adaptation to constraints imposed by seasonal and age-related changes in chemical and structural defenses, and in nutritional quality of holly foliage. As holly leaves age, there is a shift in allocation of defense investment away from allelochemicals, including phenolic compounds and saponins, toward leaf sclerophylly, spinose teeth, and low foliar nitrogen and water. Rapid increases in leaf toughness and decreases in nutritional quality limit availability of leaf tissues for adult feeding and oviposition to a two-to threeweek phenological window during leaf flush. Mature holly foliage is a nutritionally poor resource by nearly all criteria known to affect food quality for herbivores. This may be the main reason for the prolonged larval development of P. ilicicola. Alternatively, winter feeding and pupation in spring may be adaptations which help to ensure synchrony of adult emergence with leaf flush. Repeated puncturing by female P. ilicicola does not render leaves more suitable for larvae, nor is it a means by which females sample leaf exudate to assess leaf quality prior to oviposition. Rather, leaf puncturing occurs mostly on leaves that are relatively high in soluble nitrogen, and is apparently a means by which females obtain protein and sugars prior to and during oviposition.The investigation reported in this paper (No. 85-7-8-208) is in connection with a project of the Kentucky Agricultural Experiment Station and is published with the approval of the Director  相似文献   

18.
Oviposition deterrence is common in many insects as an evolutionary mechanism to reduce subsequent larval competition. We investigated a suspected case of oviposition deterrence by the paropsine chrysomelid, Chrysophtharta bimaculata. In paired choice tests, gravid females were found to prefer ovipositing on host leaves without conspecific eggs, confirming the presence of an apparent oviposition deterrence mechanism. Washing egg batches in water, hexane, or ethanol did not change this preference, suggesting that a soluble marking pheromone was not involved. Furthermore, it is unlikely that a plant-derived oviposition deterring substance is produced as beetles showed no significant oviposition preference between leaves which had been oviposited upon, but then had the eggs removed, and those that had never been oviposited upon. In trials using artificial leaves and mimic egg batches, “leaves” with “egg batches” placed near the tip of the leaf (the preferred site of oviposition in this species) were significantly less likely to be laid upon than artificial leaves where mimic eggs were placed away from the tip. In combination, the results strongly infer that oviposition deterrence in C. bimaculata is due to the mechanical blocking of the oviposition site by the first laid egg-batch, rather than a specific oviposition deterring cue. The apparent oviposition deterrence in this insect may well be an outcome or evolutionary effect of oviposition-site selection, rather than a clear adaptive mechanism to decrease larval competition.  相似文献   

19.
Summary Wyeomyia smithii mosquitoes distribute their eggs across available oviposition sites (water-holding pitcher plant leaves) of varying quality. I experimentally examined responses to three components of site quality: conspecific larval density, larval density of the pitcher plant midge,Metriocnemus knabi, and pitcher size. Responses to larval treatments were complex and apparently suboptimal. Although mosquito larval performance is better in leaves with fewer conspecific and more midge larvae, females did not lay more eggs in such pitchers. Instead, more eggs were laid in experimental pitchers containing either midge or mosquito larvae, but fewer eggs in pitchers with neither or both. More eggs were laid in larger pitchers, which tend to accumulate more resources and dry out less often. Therefore, although the oviposition decisions made were suboptimal, they were better than random.  相似文献   

20.
Field observations and laboratory experiments have demonstrated that infestation by the serpentine leaf miner, Liriomyza trifolii Burgess (Diptera: Agromyzidae), begins in the lower leaves of the potato plant, and proceeds through the middle leaves to those of the upper canopy. In choice and no‐choice experiments, mated adult L. trifolii females were given access for 48 h to potato plants, and caged on differently aged leaves. The extent of their feeding and oviposition on the 5–7 leaflets of the upper, middle, and lower leaves were recorded. The life history variables of the next generation were estimated: percentage egg hatch, number of mines formed, larval survival, number of pupae formed, size and weight of pupae, percentage pupation, number of adults formed, percentage emergence, size and weight of adults, sex ratio, adult longevity, and their reproductive performance. The results showed that L. trifolii females laid fewer eggs on the upper leaves, which were poor hosts for larvae. However, a comparison of oviposition behavior between the middle and lower leaves showed that the data did not fit the oviposition preference–offspring performance hypothesis, which postulates that females preferentially oviposit on hosts on which larvae perform best. Females exhibited a preference for the larger, older, lower leaves, although the middle leaves were superior for the growth and development of the young stages. It is hypothesized that adult ovipositional preference for the older, larger, and thicker leaves of the lower foliage may be influenced by factors other than resource quality for larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号