首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. The early events of sperm entry in Saccoglossus and Hydroides are described and examined in relation to present knowledge of the acrosome reaction and of egg membrane lysins. In Saccoglossus and several other species these events occur in two phases. First. The acrosome filament of the spermatozoön spans the egg membrane barriers, reaches the reactive egg protoplasm, and causes the egg to begin its fertilization reaction. Second. The filament and its connected sperm head move through the egg membrane barriers and enter the egg proper. The first phase is completed in a matter of seconds but the second phase usually requires several minutes. 2. The peripheral areas of the eggs of the two species differ as seen in sections. In Hydroides, but not in Saccoglossus, the vitelline membrane is bounded by a distinct outer border layer of small concentrically differentiated bodies and penetrated by microvilli from the egg. 3. The acrosome filament, seen in the living condition as a delicate thread in Hydroides and as an exceedingly tenuous thread in Saccoglossus, appears to be tubular in both species when seen in electron micrographs of thin sections. 4. The acrosomal region of Hydroides appears to consist of two components—a peripheral one, which may collapse during the acrosome reaction, and a central one related to the acrosome filament. 5. Deliberately induced polyspermic material was used to increase the probability of finding examples of sperm penetration in thin sections. 6. As seen in sections, areas of low electron density, interpreted as spaces or pits from which the material of the membrane is absent, surround the attached or penetrating spermatozoa. (a) In Hydroides the spaces vary greatly in many characteristics including shape, position in the membrane, and size with relation to the enclosed sperm head. In one specimen a portion of the membrane is missing from border to border; no spermatozoön is seen but immediately beneath the space is the apex of a fertilization cone. (b) In every case in which a determination could be made, the spermatozoön in the membrane has undergone its acrosome reaction. (c) In Saccoglossus some pits are found with which several spermatozoa are associated. Generally, where the spermatozoa are more numerous the pit is larger. (d) Pits similar to those seen in Saccoglossus sections are observed in living eggs. They remain in Membrane I after sperm entry. (e) From the above and other considerations it is suggested that the pits and spaces are formed by local action of a lysin or lysins emanating from the individual spermatozoön at the site of sperm entry. 7. It is considered that the suggested lysin would participate in sperm entry by eroding the membrane barrier in the vicinity of the sperm head, thus permitting the sperm head to pass through the membrane. Since the acrosome filament much earlier stimulates the egg's initial fertilization response, this lysin would facilitate the second phase of the early events of sperm entry.  相似文献   

2.
An earlier paper showed that in Saccoglossus the acrosomal tubule makes contact with the egg plasma membrane. The present paper includes evidence that the sperm and egg plasma membranes fuse to establish the single continuous zygote membrane which, consequently, is a mosaic. Contrary to the general hypothesis of Tyler, pinocytosis or phagocytosis plays no role in zygote formation. Contact between the gametes is actually between two newly exposed surfaces: in the spermatozoon, the surface was formerly the interior of the acrosomal vesicle; in the egg, it was membrane previously covered by the egg envelopes. The concept that all the events of fertilization are mediated by a fertilizin-antifertilizin reaction seems an oversimplification of events actually observed: rather, the evidence indicates that a series of specific biochemical interactions probably would be involved. Gamete membrane fusion permits sperm periacrosomal material to meet the egg cytoplasm; if an activating substance exists in the spermatozoon it probably is periacrosomal rather than acrosomal in origin. The contents of the acrosome are expended in the process of delivering the sperm plasma membrane to the egg plasma membrane. After these membranes coalesce, the sperm nucleus and other internal sperm structures move into the egg cytoplasm.  相似文献   

3.
In the previous paper the structure of the acrosomal region of the spermatozoon was described. The present paper describes the changes which this region undergoes during passage through the vitelline membrane. The material used consisted of moderately polyspermic eggs of Hydroides hexagonus, osmium-fixed usually 9 seconds after insemination. There are essentially four major changes in the acrosome during passage of the sperm head through the vitelline membrane. First, the acrosome breaks open apically by a kind of dehiscence which results in the formation of a well defined orifice. Around the lips of the orifice the edges of the plasma and acrosomal membranes are then found to be fused to form a continuous membranous sheet. Second, the walls of the acrosomal vesicle are completely everted, and this appears to be the means by which the apex of the sperm head is moved through the vitelline membrane. The lip of the orifice comes to lie deeper and deeper within the vitelline membrane. At the same time the lip itself is made up of constantly changing material as first the material of the outer zone and then that of the intermediate zone everts. One is reminded of the lip of an amphibian blastopore, which during gastrulation maintains its morphological identity as a lip but is nevertheless made up of constantly changing cells, with constantly changing outline and even constantly changing position. Third, the large acrosomal granule rapidly disappears. This disappearance is closely correlated with a corresponding disappearance of a part of the principal material of the vitelline membrane from before it, and the suggestion is made that the acrosomal granule is the source of the lysin which dissolves this part of the vitelline membrane. Fourth, in the inner zone the fifteen or so short tubular invaginations of the acrosomal membrane, present in the normal unreacted spermatozoon, lengthen considerably to become a tuft of acrosomal tubules. These tubules are the first structures of the advancing sperm head to touch the plasma membrane of the egg. It is notable that the surface of the acrosomal tubules which once faced into the closed acrosomal cavity becomes the first part of the sperm plasma membrane to meet the plasma membrane of the egg. The acrosomal tubules of Hydroides, which arise simply by lengthening of already existing shorter tubules, are considered to represent the acrosome filaments of other species.  相似文献   

4.
The intact acrosome of the Mytilus edulis spermatozoon consists of a conical vesicle, the basal side of which is deeply invaginated so that the whole vesicle forms a sheath around a very slender axial rod, about 2.7 µ long, inserted in a tube passing through the nucleus. The annular base of the acrosomal vesical is filled with a homogeneous substance; the outer wall of the vesicle is lined with a somewhat irregular layer of a particulate substance interspersed with very fine tubular elements, and its lumen is nearly filled by a strand of material which extends from the inner tip of the invagination to the apex of the acrosome. The lumen of the invagination appears empty except for the rod and a delicate sleeve-like structure which surrounds it. The plasma membrane of the sperm cell lies in immediate contact with the acrosomal membrane over its whole outer surface. In its general organization, this molluscan acrosome shows a rather close homology with that of the annelid Hydroides.  相似文献   

5.
This paper describes in some detail the structure of the acrosomal region of the spermatozoon of Hydroides as a basis for subsequent papers which will deal with the structural changes which this region undergoes during fertilization. The material was osmium-fixed and mild centrifugation was used to aggregate the spermatozoa from collection to final embedding. The studies concern also the acrosomal regions of frozen-thawed sperm prepared by a method which previously had yielded extracts with egg membrane lytic activity. The plasma membrane closely envelops four readily recognizable regions of the spermatozoon: acrosomal, nuclear, mitochondrial, and flagellar. The acrosome consists of an acrosomal vesicle which is bounded by a single continuous membrane, and its periphery is distinguishable into inner, intermediate, and outer zones. The inner and intermediate zones form a pocket into which the narrowed apex of the nucleus intrudes. Granular material adjoins the inner surface of the acrosomal membrane, and this material is characteristically different for each zone. Centrally, the acrosomal vesicle is spanned by an acrosomal granule: its base is at the inner zone and its apex at the outer zone. The apex of the acrosomal granule flares out and touches the acrosomal membrane over a limited area. In this limited area the adjoining granular material of the outer zone is lacking. The acrosomal membrane of the inner zone is invaginated into about fifteen short tubules. The acrosomal membrane of the outer zone is closely surrounded by the plasma membrane. At the apex of the acrosomal region a small apical vesicle is sandwiched between the plasma membrane and the acrosomal membrane. Numerous frozen-thawed specimens and occasional specimens not so treated show acrosomal regions at the apex of which there is a well defined opening or orifice. Around the rim or lip of this orifice plasma and acrosomal membranes may even be fused into a continuum. The evidence indicates that the apical vesicle and the parts of the plasma and acrosomal membranes which surround it constitute a lid, and the rim of this lid constitutes a natural "fracture line" or rim of dehiscence. Should fracture occur, the lid would be removed and the acrosomal vesicle would be open to the exterior.  相似文献   

6.
Summary Association of spermatozoa with blastomeres removed from the egg envelope was studied in order to investigate sperm membrane behavior under circumstances unlike those attending fertilization of normal envelope-enclosed eggs. Under the altered circumstances all parts of the surface of the sperm cell were afforded the opportunity of meeting blastomere plasma membrane. Nevertheless, in each case the spermatozoon first became activated, an acrosomal tubule formed, and it was this organelle alone which fused and established continuity with the blastomere plasma membrane. This behavior of the spermatozoon with respect to the denuded blastomere parallels the behavior of the sperm cell with respect to the envelope-enclosed egg at fertilization. Since the sperm cell behaves so similarly in two situations which are so different with respect to what the spermatozoon encounters, this behavior is considered to reflect the inherent nature of the spermatozoon, and analysis of this behavior in relation to a blastomere is considered to be valid also in relation to an egg during fertilization. It is concluded that membrane fusion, involving the acrosomal tubule of an activated spermatozoon, is the only means by which gametic union is established and that these are obligatory rather than fortuitous features of sperm-egg association in Saccoglossus. It is suggested that these features are probably obligatory also in other species which exhibit this pattern of sperm-egg association.This investigation was supported by Research Grant HD-00007 from the National Institutes of Health, United States Public Health Service.  相似文献   

7.
Processes controlling sperm-egg fusion   总被引:2,自引:0,他引:2  
Sperm interaction with the egg envelopes triggers the acrosome reaction. Indeed, sperm-egg fusion is accomplished by the fusion of the acrosomal process (or of the exposed inner acrosomal membrane in mammals) with the egg plasma membrane. Fusion must be preceded by the establishment of molecular contact between the two membranes. It is suggested that, as in the case of artificial phospholipid membranes, the two major obstacles to the establishment of molecular contact are electrostatic repulsion and the hydration barrier. It is argued that morphology of the acrosome is such as to favour the overcoming of such barriers. By analogy with the conditions governing fusion of artificial phospholipid membranes and cell fusion, it is proposed that the following processes play a role in sperm-egg fusion. The large calcium uptake accompanying the acrosome reaction may help fusion either through the known effect of calcium on fusion of phospholipid membranes or by shielding the surface charges of the acrosomal process. Fusogenic proteins at the surface of the acrosomal process are likely to play a role in the fusion of the acrosomal process with the egg plasma membrane. The activation of phospholipases in conjunction with the acrosome reaction may also be instrumental in sperm-egg fusion through the transient production of lysophosphatides. Clearance or translocation of intramembraneous proteins in the egg plasma membrane at the site of contact with the acrosomal process may also be required for fusion. Lastly it is suggested that a translocation or a conformational change of some proteins of the egg plasma membrane, which is required for fusion, may be induced by the depolarization of the egg plasma membrane that follows molecular contact with the acrosomal process.  相似文献   

8.
Ejaculated spermatozoa must undergo physiological priming as they traverse the female reproductive tract before they can bind to the egg’s extracellular coat, the zona pellucida (ZP), undergo the acrosome reaction, and fertilize the egg. The preparatory changes are the net result of a series of biochemical and functional modifications collectively referred to as capacitation. Accumulated evidence suggests that the event that initiates capacitation is the efflux of cholesterol from the sperm plasma membrane (PM). The efflux increases permeability and fluidity of the sperm PM and causes influx of Ca2+ ions that starts a signaling cascade and result in sperm capacitation. The binding of capacitated spermatozoa to ZP further elevates intrasperm Ca2+ and starts a new signaling cascade which open up Ca2+ channels in the sperm PM and outer acrosomal membrane (OAM) and cause the sperm to undergo acrosomal exocytosis. The hydrolytic action of the acrosomal enzymes released at the site of sperm-egg (zona) binding, along with the hyperactivated beat pattern of the bound spermatozoon, are important factors in directing the sperm to penetrate the ZP and fertilize the egg. The role of Ca2+-signaling in sperm capacitation and induction of the acrosome reaction (acrosomal exocytosis) has been of wide interest. However, the precise mechanism(s) of its action remains elusive. In this article, we intend to highlight data from this and other laboratories on Ca2+ signaling cascades that regulate sperm functions.  相似文献   

9.
《The Journal of cell biology》1986,102(4):1363-1371
The extracellular coat, or zona pellucida, of mammalian eggs contains species-specific receptors to which sperm bind as a prelude to fertilization. In mice, ZP3, one of only three zona pellucida glycoproteins, serves as sperm receptor. Acrosome-intact, but not acrosome-reacted, mouse sperm recognize and interact with specific O- linked oligosaccharides of ZP3 resulting in sperm-egg binding. Binding, in turn, causes sperm to undergo the acrosome reaction; a membrane fusion event that results in loss of plasma membrane at the anterior region of the head and exposure of inner acrosomal membrane with its associated acrosomal contents. Bound, acrosome-reacted sperm are able to penetrate the zona pellucida and fuse with the egg's plasma membrane (fertilization). In the present report, we examined binding of radioiodinated, purified, egg ZP3 to both acrosome intact and acrosome reacted sperm by whole-mount autoradiography. Silver grains due to bound 125I-ZP3 were found localized to the acrosomal cap region of heads of acrosome-reacted sperm. Under the same conditions, 125I-fetuin bound at only bacKground levels to heads of both acrosome-intact and - reacted sperm, and 125I-ZP2, another zona pellucida glycoprotein, bound preferentially to acrosome-reacted sperm. These results provide visual evidence that ZP3 binds preferentially and specifically to heads of acrosome intact sperm; properties expected of the mouse egg's sperm receptor.  相似文献   

10.
The fine structure of the mature sperm of the holothurian, Cucumaria miniata, and the ophiuroid, Ophiopholis aculeata, is described with particular reference to their acrosomal and centriolar satellite complexes, and compared to the sperm of other echinoderms. In Cucumaria, the acrosome is in the form of a diffuse acrosomal vesicle. It is unusual in that it apparently lacks an acrosomal membrane. A membrane separating the acrosomal vesicle from the periacrosomal material may not be equivalent to a typical inner acrosomal membrane. In Ophiopholis, the acrosome is dense, with some internal substructure, and is enclosed by a complete acrosomal membrane. In both species, the acrosome is partially surrounded by an amorphous periacrosomal mass. There is a notable absence of a subacrosomal depression and associated structures as found in other echinoderm sperm. The centriolar satellite complex (CSC) is essentially identical in both species. A reconstruction of the CSC is presented. The CSC consists of nine satellites radiating angularly from the distal centriole, each bifurcating at a dense node before inserting on a marginal ring containing circumferential microtubules. The ring is probably a cytoskeletal element. Immediately below the satellites are nine Y-shaped connectives. connecting each of the axonemal alpha doublets to the flagellar membrane.  相似文献   

11.
东方扁虾精子的超微结构   总被引:1,自引:0,他引:1  
利用电镜研究了东方扁虾(Thenus orientalis)精子的形态和结构。精子由核、膜复合物区和顶体区3部分组成。核内含非浓缩的染色质、微管及细纤维丝,外被核膜;5~6条辐射臂自核部位伸出,臂内充满微管。膜复合物区位于核与顶体之间,由许多膜片层结构及其衍生的囊泡共同组成。顶体区由顶体囊和围顶体物质组成,顶体结构复杂,由顶体帽、内顶体物质和外顶体物质等构成;围顶体物质呈细颗粒状,主要分布于顶体囊  相似文献   

12.
Exocytosis of the sperm acrosome is an obligate precursor to successful egg penetration and subsequent fertilization. In most mammals, acrosomal exocytosis occurs at a precise time, after sperm binding to the zona pellucida of the egg, and is induced by a specific component of the zona pellucida. It may be considered an example of regulated secretion with the acrosome of the sperm analogous to a single secretory vesicle. Monomeric G proteins of the rab3 subfamily, specifically rab3a, have been shown to be important regulators of exocytosis in secretory cells, and we hypothesized that these proteins may regulate acrosomal exocytosis. Using α[32P] GTP binding to Immobilon blotted mouse sperm proteins, the presence of three or more monomeric GTP binding proteins was identified with Mr = 22, 24, and 26 × 103. Alpha[32P] GTP binding could be competed by GTP and GDP, but not GMP, ATP, or ADP. Anti‐peptide antibodies specific for rab3a were used to identify the 24 kDa G protein as rab3a. Using immunocytochemistry, rab3a was localized to the head of acrosome‐intact sperm and was lost during acrosomal exocytosis. It was identified in membrane and cytosolic fractions of sperm with the predominant form being membrane‐bound, and its membrane association did not change upon capacitation. Immunogold labeling and electron microscopy demonstrated a subcellular localization in clusters to the periacrosomal membranes and cytoplasm. These data identify the presence of rab3a in acrosomal membranes of mouse sperm and suggest that rab3a plays a role in the regulation of zona pellucida ‐induced acrosomal exocytosis. Mol. Reprod. Dev. 53:413–421, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

13.
大熊猫精子获能和顶体反应过程中钙分布变化规律的研究   总被引:2,自引:2,他引:0  
李明文  张福祥 《动物学报》1995,41(4):420-424
应用焦锑酸钾原位定位法对大熊猫精子获能和顶体反应过程中进行钙定位研究,发现未获能精子的 Ca2+主要结合于顶体前区和赤道段质膜外侧和顶体内膜内侧(核膜侧);随着获能的进行,Ca2+进入精子内部并主要结合于顶体区质膜内侧和顶体外膜外侧;顶体反应的精子,Ca2+结合于顶体内膜外侧、顶体后区质膜外侧和分散存在于释放的顶体内容物中,有些顶体反应精子的顶体内膜外侧结合的Ca2+特别丰富。精子尾部的Ca2+主要分布于中段线粒体内,且其内所含Ca2+含量随着获能和顶体反应而增加。另外尾部致密纤维和轴丝处也有少量Ca2+分布。  相似文献   

14.
Suspensions of Mytilus edulis eggs were fixed with osmium tetroxide at various intervals between 1 and 10 seconds after heavy insemination, and sectioned for electron microscopy to follow the natural process of acrosome reaction in the spermatozoa around the eggs. Sperm suspensions were also fixed after the addition of 10 per cent by volume of M/3 calcium chloride. Within the first second after the acrosome is stimulated to react, an opening appears at its apex, around which the plasma and acrosomal membranes fuse to each other, and the resulting membrane complex is reflected backward, presumably by the swelling of material lining it. At the same time the other material within the now open vesicle disappears, and the rudiment of the acrosomal process, consisting of a short axial rod loosely surrounded by the invaginated part of the acrosomal membrane, is exposed at the anterior side of the sperm head. Within another second this rudiment is extended by elongation of the axial rod and expansion of the surrounding membrane. If the spermatozoon has reacted close to the egg surface, the elongation may be very slight, whereas in suspended spermatozoa the process may reach a length of 13 µ. Possible mechanisms underlying these changes are suggested.  相似文献   

15.
This, the last of a series of three papers, deals with the final events which lead to the incorporation of the spermatozoon with the egg. The material used consisted of moderately polyspermic eggs of Hydroides hexagonus, osmium-fixed at various times up to five minutes after insemination. The first direct contact of sperm head with egg proper is by means of the acrosomal tubules. These deeply indent the egg plasma membrane, and consequently at the apex of the sperm head the surfaces of the two gametes become interdigitated. But at first the sperm and egg plasma membranes maintain their identity and a cross-section through the region of interdigitation shows these two membranes as a number of sets of two closely concentric rings. The egg plasma membrane rises to form a cone which starts to project into the hole which the spermatozoon earlier had produced in the vitelline membrane by means of lysis. But the cone does not literally engulf the sperm head. Instead, where they come into contact, sperm plasma membrane and egg plasma membrane fuse to form one continuous membranous sheet. At this juncture the two gametes have in effect become mutually incorporated and have formed a single fertilized cell with one continuous bounding membrane. At this time, at least, the membrane is a mosaic of mostly egg plasma membrane and a patch of sperm plasma membrane. The evidence indicates that the fusion of the two membranes results from vesiculation of the sperm and egg plasma membranes in the region at which they come to adjoin. Once this fusion of membranes is accomplished, the egg cytoplasm intrudes between the now common membrane and the internal sperm structures, such as the nucleus, and even extends into the flagellum; finally these sperm structures come to lie in the main body of the egg. The vesiculation suggested above appears possibly to resemble pinocytosis, with the difference that the vesicles are formed from the plasma membranes of two cells. At no time, however, is the sperm as a whole engulfed and brought to the interior of the egg within a large vesicle.  相似文献   

16.
Cytochalasin B inhibits the penetration of sperm nuclei into Urechis eggs without inhibiting sperm-induced egg activation. The acrosome reaction appears normal, and plasma membranes of the acrosomal tubule and egg become closely apposed. It is uncertain whether or not the drug blocks fusion of these membranes; however, sperm penetration cone formation is inhibited.  相似文献   

17.
We have examined the relationship between sperm adhesion and fertilization in the cross species insemination of Arbacia punctulata eggs by Strongylocentrotus purpuratus sperm. As previously reported (Kinsey et al., 1980) the addition of S. purpuratus egg jelly results in induction of the acrosome reaction in sperm and significant numbers of S. purpuratus sperm adhere to A. punctulata eggs. However, in the absence of S. purpuratus egg jelly, S. purpuratus sperm fail to bind to A. punctulata eggs. Although at least 200 S. purpuratus sperm bind to an A. punctulata egg in the presence of S. purpuratus jelly, less than 8% of the eggs are fertilized. The adhesion of S. purpuratus sperm meets the same functional criteria as homologous A. punctulata sperm-egg adhesion. Electron microscopy shows that S. purpuratus sperm that have undergone the acrosome reaction adhere to A. punctulata eggs by their bindin-coated acrosomal process in a manner that is morphologically identical to that observed with homologous A. punctulata sperm. We have also compared the ability of S. purpuratus and A. punctulata sperm to fuse and fertilize with A. punctulata eggs after removal of the vitelline layer. Using high levels of sperm of either species, heterologous as well as homologous fertilization is readily detectable. Under these conditions, where stable binding is not demonstrable, there is no difference in the ability of S. purpuratus and A. punctulata sperm to fertilize A. punctulata eggs. These observations suggest that the failure of S. purpuratus sperm to fertilize A. punctulata eggs under normal conditions may be due to their inability to penetrate the vitelline layer so that they can fuse with the egg plasma membrane. In relation to the possible mechanism of vitelline layer penetration, we have also investigated the mode of action of chymostatin, an inhibitor of chymotrypsin that has been reported to inhibit fertilization of sea urchin eggs (Hoshi et al., 1979). Our findings suggest that the fertilization inhibitory activity of chymostatin is not related to its antichymotrypsin activity. Rather, it appears that this inhibition is due to the induction of an abnormal acrosome reaction in sperm that precludes formation of the acrosome process.  相似文献   

18.
Using gametes from the sea urchins Arbacia punctulata and Strongylocentrotus purpuratus, we have evaluated the role of the acrosome reaction and the sperm-egg binding process in the block to interspecific fertilization among echinoids. The results indicate that sperm preinduced to undergo the acrosomal reaction by two different methods still bind to homologous eggs in a species specific manner. These results, taken in conjunction with an earlier study on species specificity of jelly coat induction of the acrosomal reaction (SeGall and Lennarz 1978), indicate that both the acrosome reaction and the sperm binding process contribute to the species specificity of fertilization in S. purpuratus and A. punctulata.  相似文献   

19.
Zonadhesin is the only sperm protein known to bind in a species-specific manner to the zona pellucida. The zonadhesin precursor is a mosaic protein with a predicted transmembrane segment and large extracellular region composed of cell adhesion, mucin, and tandem von Willebrand D domains. Because the precursor possesses a predicted transmembrane segment and localizes to the anterior head, the mature protein was presumed to be a sperm surface zona pellucida-binding protein. In this study of hamster spermatozoa, we demonstrate that zonadhesin does not localize to the sperm surface but is instead a constituent of the acrosomal matrix. Immunoelectron microscopy revealed that distinct targeting pathways during spermiogenesis and sperm maturation in the epididymis result in trafficking of zonadhesin to the acrosomal matrix. In round spermatids, zonadhesin localized specifically to the acrosomal membrane, where it appeared to be evenly distributed between the outer and inner membrane domains. Subsequent redistribution of zonadhesin resulted in its elimination from the inner acrosomal membrane and restriction to the outer acrosomal membrane of the apical and principal segments and the contents of the posterior acrosome. During sperm maturation in the epididymis, zonadhesin dissociated from the outer acrosomal membrane and became incorporated into the forming acrosomal matrix. These data suggest an important structural role for zonadhesin in assembly of the acrosomal matrix and further support the view that the species specificity of zona pellucida adhesion is mediated by egg-binding proteins contained within the acrosome rather than on the periacrosomal plasma membrane.  相似文献   

20.
Summary Fine structural changes in the egg and sperm are described during gamete interaction in Oikopleura dioica, an appendicularian tunicate. The unfertilized egg has a vitelline layer 80 nm thick and a perivitelline space about 5 m wide. In the peripheral cytoplasm are a few cortical granules 0.6×0.7 m in diameter and areas rich in parallel cisternae of rough endoplasmic reticulum alternating with areas rich in long mitochondria. In the deeper cytoplasm the predominant organelles are multivesicular bodies. From 25 s to 60 s after insemination, the egg transiently elongates, although with no obvious cytoplasmic rearrangement, and the egg surface becomes bumpy. During this interval sperm enter the egg, and the cortical granules undergo exocytosis. After expulsion into the perivitelline space, the cortical granule contents do not appear to change their shape or blend with the vitelline layer, which neither elevates further nor loses its ability to bind sperm. On encountering the egg, the sperm undergoes an acrosome reaction involving exocytosis of the acrosome and production of an acrosomal tubule. The acrosomal contents bind the sperm to the vitelline layer, and the posterior portion of the acrosomal membrane and the anterior portion of the nuclear envelope evaginate together to form an acrosomal tubule, which fuses with the egg plasma membrane to form a fertilization cone. By 45 s after insemination, the sperm nucleus, centriole, mitochondrion and at least the anterior portion of the axoneme are within the fertilization cone. By 60 s sperm entry is complete. In having eggs with a cortical reaction and sperm with an acrosome reaction, O. dioica resembles echinoderms and enteropneusts and differs markedly from ascidian tunicates, which lack both these features. The relatively unmodified pattern of gamete interaction in O. dioica in comparison with the highly modified pattern in ascidians is difficult to reconcile with the neoteny theory that appendicularians have evolved via ascidian ancestors. The present results are more consistent with the idea that an appendicularian-like ancestor gave rise to ascidians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号