首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The steroidogenic activities of ACTH, alpha-MSH, beta-MSH as well as analogs of the hormones have been compared in rat and rabbit adrenocortical cells. ACTH is equally active in both species and the melanotropins have very low steroidogenic potency in either species. The steroidogenic potencies of the peptide analogs are strikingly similar in the two species, suggesting that the structural requirements for eliciting steroidogenesis are the same in rat and rabbit adrenocortical cells. The analog NPS-ACTH has low, comparable steroidogenic activity in both species. NPS-ACTH is a potent antagonist of ACTH-induced cAMP production in rat adrenocortical cells but acts as a weak partial agonist in rabbit adrenocortical cells. These results suggest that steroidogenesis may be mediated by receptors different from those involved in the cAMP response observed at supraphysiological concentrations of ACTH.  相似文献   

2.
3.
The present in vitro experiment was designed to test whether 48 h of pretreatment with glucocorticoids, cortisol, or dexamethasone (DEX), would affect basal and corticotrophin (ACTH) stimulated (24 h) cortisol secretion from primary cultures of pig adrenocortical cells. Cells were divided into six groups: control pretreatment with or without ACTH challenge, cortisol pretreatment with or without ACTH challenge, and DEX pretreatment with or without ACTH. The culture medium and cells were collected at the end of treatment. Cortisol concentration in medium was measured by radioimmunoassay, and protein content of glucocorticoid receptor (GR) and key regulatory factors for steroidogenesis, including melanocortin type 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage cytochrome P450 (P450scc), were detected by Western blot analysis. The results showed that glucocorticoid pretreatment did not affect cortisol secretion under basal condition without ACTH challenge, but significantly enhanced ACTH-stimulated cortisol secretion. Furthermore, the protein content of GR, MC2R, StAR, and P450scc was all increased in groups pretreated with glucocorticoids. These results indicate that adrenocortical cells pretreated with glucocorticoids display higher steroidogenic capacity under ACTH challenge, through the upregulation of GR and other steroidogenic regulatory factors.  相似文献   

4.
5.
6.
Cordycepin, a pure compound of Cordyceps sinensis (CS), is known as an adenosine analog. We have found that CS stimulated Leydig cell steroidogenesis. Here we investigated the in vivo and in vitro effects of cordycepin in primary mouse Leydig cell steroidogenesis. The results indicate that cordycepin increased the plasma testosterone concentration. Cordycepin also stimulated in vitro mouse Leydig cell testosterone production in dose- and time-dependent manners. We further observed that cordycepin regulated the mRNA expression of the A1, A2a, A2b, and A3 adenosine receptors in the mouse Leydig cells, and that antagonists of A1, A2a, and A3 suppressed testosterone production 20-50% testosterone production. Furthermore, Rp-cAMPS (cAMP antagonist) and Protein Kinase A (PKA) inhibitors (H89 and PKI) significantly decreased cordycepin-induced testosterone production, indicating that the PKA-cAMP signal pathway was activated by cordycepin through adenosine receptors. Moreover, cordycepin induced StAR protein expression, and H89 suppressed cordycepin-induced steroidogenic acute regulatory (StAR) protein expression. Conclusively, cordycepin associated with adenosine receptors to activate cAMP-PKA-StAR pathway and steroidogenesis in the mouse Leydig cells.  相似文献   

7.
Lindane, the gamma isomer of hexachlorocyclohexane (HCH), is one of the oldest synthetic pesticides still in use worldwide. Numerous reports have shown that this pesticide adversely affects reproductive function in animals. Although the pathogenesis of reproductive dysfunction is not yet fully understood, recent reports indicate that lindane can directly inhibit adrenal and gonadal steroidogenesis. Because Leydig cells play a pivotal role in male reproductive function through the production of testosterone, the mouse MA-10 Leydig tumor cell line was used to assess the potential effects of gamma-HCH and its isomers, alpha-HCH and delta-HCH, on steroid production, steroidogenic enzyme expression and activity, and steroidogenic acute regulatory (StAR) protein expression. StAR mediates the rate-limiting and acutely regulated step in hormone-stimulated steroidogenesis, the intramitochondrial transfer of cholesterol to the P450(scc) enzyme. Our studies demonstrate that alpha-, delta-, and gamma-HCH inhibited dibutyryl ([Bu](2)) cAMP-stimulated progesterone production in MA-10 cells in a dosage-dependent manner without affecting general protein synthesis; and protein kinase A or steroidogenic enzyme expression, activity, or both. In contrast, each of these isomers dramatically reduced (Bu)(2)cAMP-stimulated StAR protein levels. Therefore, our results are consistent with the hypothesis that alpha-, delta-, and gamma-HCH inhibited steroidogenesis by reducing StAR protein expression, an action that may contribute to the pathogenesis of lindane-induced reproductive dysfunction.  相似文献   

8.
We have demonstrated that dehydroepiandrosterone (DHEA) acts directly on rat zona fasciculata-reticularis (ZFR) cells to diminish corticosterone secretion by an inhibition of post-cAMP pathway, and decreases functions of steroidogenic enzymes after P450(scc) as well as steroidogenic acute regulatory (StAR) protein expression. However, the mechanisms by which DHEA engages with environmental messenger signals which translate into interfering StAR protein expression are still unclear. This study explored the effects of DHEA on the phosphorylation/activation of extracellular signal-regulated kinases (ERKs). ERK activation resulted in enhancing phosphorylation of steroidogenic factor-1 (SF-1) and increased StAR protein expression. ZFR cells were incubated in the presence or absence of adrenocorticotropin (ACTH), forskolin (FSK), 25-OH-cholesterol, U0126, and H89 at 37 degrees C. The concentration of corticosterone released into the media was measured by radioimmunoassay (RIA). The cells were used to extract protein for Western blot analysis of ERKs or StAR protein expression or immunoprecipitation of SF-1 analysis. The results suggested that (1) ERK pathway of rat ZFR cells might be PKA dependent, (2) ERK activity was required for SF-1 phosphorylation to upregulate steroidogenesis in rat ZFR cells, and (3) DHEA did not affect ERK phosphorylation, however, it attenuated forskolin-stimulated SF-1 phosphorylation to affect StAR protein expression.  相似文献   

9.
10.
Li LA  Xia D  Wei S  Hartung J  Zhao RQ 《Steroids》2008,73(8):806-814
Our previous study demonstrated significant difference in the basal plasma cortisol levels between Erhualian (EHL) and Pietrain (PIE) pigs, implicating fundamental breed difference in adrenocortical function. The objectives of the present study were therefore to characterize the expression pattern of proteins involved in adrenal ACTH signaling and, including melanocortin type 2 receptor (MC2R), cAMP response element binding protein (CREB) and phosphorylated CREB (pCREB), steroidogenic acute regulatory protein (StAR), as well as that of the key enzymes involved in steroidogenesis in EHL and PIE pigs, in association with the plasma corticotrophin (ACTH) and cortisol levels. The plasma concentrations of the substrates for adrenal steroidogenesis, cholesterol and low-density lipoprotein (LDL) cholesterol, did not differ between breeds. Plasma concentration of ACTH and the adrenal contents of MC2R mRNA and protein were similar in two breeds of pigs, whereas the basal plasma concentrations of cortisol in EHL pigs were 1.5 folds higher than that in PIE pigs. The higher basal plasma cortisol levels in EHL pigs were found to be accompanied with the higher expression of ACTH post-receptor signaling components, cAMP, pCREB and StAR, as well as the higher expression of cholesterol side-chain cleavage cytochrome P450 (P450scc), 17alpha-hydroxylase cytochrome P450 (P450(17alpha)), 21-hydroxylase cytochrome P450 (P450c21) and 11beta-hydroxylase cytochrome P450 (P450(11beta)). These results indicated that the enhanced cAMP/PKA/pCREB-signaling system and augmented expression of StAR and steroidogenic enzymes are major attributes to the higher basal plasma cortisol concentrations in pigs.  相似文献   

11.
12.
13.
Both angiotensin II and adrenocorticotropic hormone (ACTH) are well known to play a crucial role on the regulation of aldosterone production in adrenal glomerulosa cells. Recent observations suggest that the steroidogenic action of ACTH is mediated via the cAMP messenger system, whereas angiotensin II acts mainly through the phosphoinositide pathway. However, there have been no reports concerning the interaction between the cAMP messenger system activated by ACTH and the Ca2+ messenger system induced by angiotensin II. Both ACTH and angiotensin II simultaneously act on adrenal cells for regulating steroidogenesis under physiological conditions. Thus the present experiments were performed to examine the effect of ACTH on the action of angiotensin II by measuring angiotensin II receptor activity, cytosolic Ca2+ movement, and aldosterone production. The major findings of the present study are that short-term exposure to a high dose of ACTH (10(-7) M) inhibited 125I-angiotensin II binding to bovine adrenal glomerulosa cells, decreased the initial spike phase of [Ca2+]i induced by angiotensin II, and inhibition of angiotensin II-induced aldosterone production. Low dose of ACTH (10(-10) M), which did not increase cAMP formation, did not affect angiotensin II receptor activity. These studies have shown that angiotensin II receptors of bovine adrenal glomerulosa cells can be down-regulated by 1 mM dibutyryl cyclic AMP, as well as by effectors which are able to activate cAMP formation (10(-7) M ACTH and 10(-5) M forskolin). The rapid decrease in angiotensin II receptors induced by 10(-7)M ACTH was associated with a decreased steroidogenic responsiveness and a decreased rise in the [Ca2+]i response induced by angiotensin II. These studies show that the cAMP-dependent processes activated by ACTH have the capacity to interfere with signal transduction mechanisms initiated by receptors for angiotensin II.  相似文献   

14.
15.
Steroid hormones regulate essential physiological processes, and inadequate levels are associated with various pathological conditions. In testosterone-producing Leydig cells, steroidogenesis is strongly stimulated by luteinizing hormone (LH) via its receptor leading to increased cyclic AMP (cAMP) production and expression of the steroidogenic acute regulatory (STAR) protein, which is essential for the initiation of steroidogenesis. Steroidogenesis then passively decreases with the degradation of cAMP into AMP by phosphodiesterases. In this study, we show that AMP-activated protein kinase (AMPK) is activated following cAMP-to-AMP breakdown in MA-10 and MLTC-1 Leydig cells. Activated AMPK then actively inhibits cAMP-induced steroidogenesis by repressing the expression of key regulators of steroidogenesis, including Star and Nr4a1. Similar results were obtained in Y-1 adrenal cells and in the constitutively steroidogenic R2C cells. We have also determined that maximum AMPK activation following stimulation of steroidogenesis in MA-10 Leydig cells occurs when steroid hormone production has reached a plateau. Our data identify AMPK as a molecular rheostat that actively represses steroid hormone biosynthesis to preserve cellular energy homeostasis and prevent excess steroid production.  相似文献   

16.
17.
The ERK signaling cascade inhibits gonadotropin-stimulated steroidogenesis   总被引:11,自引:0,他引:11  
The response of granulosa cells to luteinizing hormone (LH) and follicle-stimulating hormone (FSH) is mediated mainly by cAMP/protein kinase A (PKA) signaling. Notably, the activity of the extracellular signal-regulated kinase (ERK) signaling cascade is elevated in response to these stimuli as well. We studied the involvement of the ERK cascade in LH- and FSH-induced steroidogenesis in two granulosa-derived cell lines, rLHR-4 and rFSHR-17, respectively. We found that stimulation of these cells with the appropriate gonadotropin induced ERK activation as well as progesterone production downstream of PKA. Inhibition of ERK activity enhanced gonadotropin-stimulated progesterone production, which was correlated with increased expression of the steroidogenic acute regulatory protein (StAR), a key regulator of progesterone synthesis. Therefore, it is likely that gonadotropin-stimulated progesterone formation is regulated by a pathway that includes PKA and StAR, and this process is down-regulated by ERK, due to attenuation of StAR expression. Our results suggest that activation of PKA signaling by gonadotropins not only induces steroidogenesis but also activates down-regulation machinery involving the ERK cascade. The activation of ERK by gonadotropins as well as by other agents may be a key mechanism for the modulation of gonadotropin-induced steroidogenesis.  相似文献   

18.
19.
20.
Testosterone levels in men decrease with age; this decline has been linked to various diseases and can shorten life expectancy. Geranylgeraniol (GGOH) is an isoprenoid found in plants that plays an important role in several biological processes; however, its role in steroidogenesis is unknown. Here, we report that GGOH enhances the production of testosterone and its precursor progesterone in testis-derived I-10 tumor cells. GGOH induced protein kinase A (PKA) activity and increased cAMP levels and was found to regulate cAMP/PKA signaling by activating adenylate cyclase without altering phosphodiesterase activity. GGOH also stimulated mRNA and protein levels of steroidogenic acute regulatory protein, a downstream effector in the cAMP/PKA pathway. These results demonstrate that GGOH enhances steroidogenesis in testis-derived cells by modulating cAMP/PKA signaling. Our findings have potential applications for the development of therapeutics that increase testosterone levels in aging men.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号