首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The cephalochordate amphioxus (Branchiostoma floridae) has recently been placed as the most basal of all the chordates, which makes it an ideal organism for studying the molecular basis of the evolutionary transition from invertebrates to vertebrates. The biogenic amine, dopamine regulates many aspects of motor control in both vertebrates and invertebrates, and in both cases, its receptors can be divided into two main groups (D1 and D2) based on sequence similarity, ligand affinity and effector coupling. A bioinformatic study shows that amphioxus has at least three dopamine D1-like receptor sequences. We have recently characterized one of these receptors, AmphiD1/β, which was found to have high levels of sequence similarity to both vertebrate D1 receptors and to β-adrenergic receptors, but functionally appeared to be a vertebrate-type dopamine D1 receptor. Here, we report on the cloning of two further dopamine D1 receptors (AmphiAmR1 and AmphiAmR2) from adult amphioxus cDNA libraries and their pharmacological characterisation subsequent to their expression in cell lines. AmphiAmR1 shows closer structural similarities to vertebrate D1-like receptors but shows some pharmacological similarities to invertebrate “DOP1” dopamine D1-like receptors. In contrast, AmphiAmR2 shows closer structural and pharmacological similarities to invertebrate “INDR”-like dopamine D1-like receptors.  相似文献   

2.
Advancements in tick neurobiology may impact the development of acaricides to control those species that transmit human and animal diseases. Here, we report the first cloning and pharmacological characterization of two neurotransmitter binding G protein-coupled receptors in the Lyme disease (blacklegged) tick, Ixodes scapularis. The genes IscaGPRdop1 and IscaGPRdop2 were identified in the I. scapularis genome assembly and predicted as orthologs of previously characterized D1-like dopamine receptors in the fruit fly Drosophila melanogaster and honeybee Apis mellifera. Heterologous expression in HEK 293 cells demonstrated that each receptor functioned as a D1-like dopamine receptor because significant increases in levels of intracellular cyclic adenosine monophosphate (cAMP) were detected following dopamine treatment. Importantly, the receptors were distinct in their pharmacological properties regarding concentration-dependent response to dopamine, constitutive activity, and response to other biogenic amines. Exposure to a variety of dopamine receptor agonists and antagonists further demonstrated a D1-like pharmacology of these dopamine receptors and highlighted their differential activities in vitro.  相似文献   

3.
Nucleus accumbens (nAcb), a major site of action of drugs of abuse and dopamine (DA) signalling in MSNs (medium spiny neurons), is critically involved in mediating behavioural responses of drug addiction. Most studies have evaluated the effects of DA on MSN firing properties but thus far, the effects of DA on a cellular circuit involving glutamatergic afferents to the nAcb have remained rather elusive. In this study we attempted to characterize the effects of dopamine (DA) on evoked glutamatergic excitatory postsynaptic currents (EPSCs) in nAcb medium spiny (MS) neurons in 1 to 21 day-old rat pups. The EPSCs evoked by local nAcb stimuli displayed both AMPA/KA and NMDA receptor-mediated components. The addition of DA to the superfusing medium produced a marked decrease of both components of the EPSCs that did not change during the postnatal period studied. Pharmacologically isolated AMPA/KA receptor-mediated response was inhibited on average by 40% whereas the isolated NMDA receptor-mediated EPSC was decreased by 90%. The effect of DA on evoked EPSCs were mimicked by the D1-like receptor agonist SKF 38393 and antagonized by the D1-like receptor antagonist SCH 23390 whereas D2-like receptor agonist or antagonist respectively failed to mimic or to block the action of DA. DA did not change the membrane input conductance of MS neurons or the characteristics of EPSCs produced by the local administration of glutamate in the presence of tetrodotoxin. In contrast, DA altered the paired-pulse ratio of evoked EPSCs. The present results show that the activation D1-like dopaminergic receptors modulate glutamatergic neurotransmission by preferentially inhibiting NMDA receptor-mediated EPSC through presynaptic mechanisms.  相似文献   

4.
Current understanding of the functional roles of individual dopamine D1-like [D1, D5] and D2-like [D2L/S, D3, D4] receptor subtypes remains incomplete. In particular, the lack of pharmacological agonists and antagonists able to distinguish between D1 and D5 receptors means that any differential roles in the regulation of behavior are poorly understood. Mutant mice with targeted gene deletion (“knockout”) of individual dopamine receptor subtypes offer an important alternative approach to resolving these functional roles. In congenic D1 mutants examined ethologically, progressive increases in specific topographies of behavior over wildtypes were considerably greater than those in D1 mutants on a mixed genetic background; D1 knockout appears to influence the neuronal substrate(s) of habituation to disrupt sculpture of the changing topography of behavior from initial exploration through to quiescence. Similarly, the D1 receptor appears to regulate specific topographies of orofacial movement in the mouse as these are “sculpted” in a time-dependent manner. Although the well-recognized role of the D1-like family in regulating several aspects of behavioral topography has been assumed to involve primarily D1 receptors, this presumption may require modification to accommodate a subtle but not negligible role for their D5 counterparts as evidenced in the phenotype of congenic D5 mutants.  相似文献   

5.
Ascorbate, the reduced form of vitamin C, is highly concentrated in the central nervous system (CNS), including the retina, where it plays important physiological functions. In the CNS, the plasma membrane transporter sodium vitamin C co-transporter 2 (SVCT2) is responsible for ascorbate transport in neurons. The neurotransmitter dopamine (DA), acting through D1- and D2-like receptor subfamilies and classically coupled to adenylyl cyclase, is known to modulate synaptic transmission in the retina. Here, we reveal that DA controls the release of ascorbate from retinal neurons. Using primary retinal cultures, we show that this DA effect is dose-dependent, occurring by the reversal of the SVCT2, and could be elicited by brief and repetitive pulses of DA. The DA effect in inducing ascorbate release occurs by the activation of D1R and is independent of PKA. Moreover, the exchange protein directly activated by cAMP type 2 (EPAC2) is present in retinal neurons and its specific knockdown using shRNAs abrogates the D1R-induced ascorbate release. Confirming the physiological relevance of this pathway, activation of D1R or EPAC2 also triggered ascorbate release ex vivo in acute preparations of the intact retina. Overall, DA plays pivotal roles in regulating ascorbate homeostasis through an unanticipated signaling pathway involving D1R/adenylyl cyclase/cAMP/EPAC2, thereby suggesting that vitamin C might fine-tune dopaminergic neurotransmission in the retina.  相似文献   

6.
High-voltage spindles (HVSs) have been reported to appear spontaneously and widely in the cortical–basal ganglia networks of rats. Our previous study showed that dopamine depletion can significantly increase the power and coherence of HVSs in the globus pallidus (GP) and motor cortex of freely moving rats. However, it is unclear whether dopamine regulates HVS activity by acting on dopamine D1-like receptors or D2-like receptors. We employed local-field potential and electrocorticogram methods to simultaneously record the oscillatory activities in the GP and primary motor cortex (M1) in freely moving rats following systemic administration of dopamine receptor antagonists or saline. The results showed that the dopamine D2-like receptor antagonists, raclopride and haloperidol, significantly increased the number and duration of HVSs, and the relative power associated with HVS activity in the GP and M1 cortex. Coherence values for HVS activity between the GP and M1 cortex area were also significantly increased by dopamine D2-like receptor antagonists. On the contrary, the selective dopamine D1-like receptor antagonist, SCH23390, had no significant effect on the number, duration, or relative power of HVSs, or HVS-related coherence between M1 and GP. In conclusion, dopamine D2-like receptors, but not D1-like receptors, were involved in HVS regulation. This supports the important role of dopamine D2-like receptors in the regulation of HVSs. An siRNA knock-down experiment on the striatum confirmed our conclusion.  相似文献   

7.
Although multiple roles of dopamine through D1-like (D1 and D5) and D2-like (D2, D3, and D4) receptors are initiated primarily through stimulation or inhibition of adenylyl cyclase via Gs/olf or Gi/o, respectively, there have been many reports indicating diverse signaling mechanisms that involve alternative G protein coupling. In this study, dopamine-induced Gαq activation in rat brain membranes was investigated. Agonist-induced Gαq activation was assessed by increase in guanosine-5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding to Gαq determined by [35S]GTPγS binding/immunoprecipitation assay in rat brain membranes. Dopamine-stimulated Gαq functionality was highest in cortex as compared to hippocampus or striatum. In cerebral cortical membranes, this effect was mimicked by benzazepine derivatives with agonist properties at dopamine D1-like receptors, that is, SKF83959, SKF83822, R(+)-SKF81297, R(+)-SKF38393, and SKF82958, but not by the compounds with dopamine D2-like receptor agonist properties except for aripiprazole. Against expectation, stimulatory effects were also induced by SKF83566, R(+)-SCH23390, and pergolide. The pharmacological profiling by using a series of antagonists indicated that dopamine-induced response was mediated through dopamine D1-like receptor, which was distinct from the receptor involved in 5-HT-induced response (5-HT2A receptor). Conversely, the responses induced by SKF83566, R(+)-SCH23390, and pergolide were most likely mediated by 5-HT2A receptor, but not by dopamine D1-like receptor. Caution should be paid when interpreting the experimental data, especially in behavioral pharmacological research, in which SKF83566 or R(+)-SCH23390 is used as a standard selective dopamine D1-like receptor antagonist. Also, possible clinical implications of the agonistic effects of pergolide on 5-HT2A receptor has been mentioned.  相似文献   

8.
D3 receptor, a member of dopamine (DA) D2-like receptor family, which belongs to class A of G-protein coupled receptors (GPCRs), has been reported to play a critical role in neuropsychiatric disorders. Recently, the crystal structure of human dopamine D3 receptor was reported, which facilitates structure-based drug discovery of D3R significantly. We dock D3R-selective compounds into the crystal structure of D3R and homology structure of D2R. Then we perform 20?ns molecular dynamics (MD) of the receptor with selective compounds bound in explicit lipid and water. Our docking and MD results indicate the important residues related to the selectivity of D3R. Specifically, residue Thr7.39 in D3R may contribute to the high selectivity of R-22 with D3R. Meanwhile, the 4-carbon linker and phenylpiperazine of R-22 improve the binding affinity and the selectivity with D3R. We also dock the agonists, including dopamine, into D3R and perform MD. Our molecular dynamics results of D3R with agonist bound show strong conformational changes from TM5, TM6, and TM7, outward movement of intracellular part of TM6, fluctuation of “ionic lock” motif and conformational change of Tyr7.53, which is consistent with recent crystal structures of active GPCRs and illustrates the dynamical process during activation. Our results reveal the mechanism of selectivity and activation for D3R, which is important for developing high selective antagonists and agonists for D3R.  相似文献   

9.
Abnormalities in dopamine production and receptor function have been described in human essential hypertension and rodent models of genetic hypertension. All of the five dopamine receptor genes (D1, D2, D3, D4, and D5) expressed in mammals and some of their regulators are in loci linked to hypertension in humans and in rodents. Under normal conditions, D1-like receptors (D1 and D5) inhibit sodium transport in the kidney and the intestine. However, in the Dahl salt-sensitive and spontaneously hypertensive rats, and humans with essential hypertension, the D1-like receptor-mediated inhibition of sodium transport is impaired because of an uncoupling of the D1-like receptor from its G protein/effector complex. The uncoupling is genetic, and receptor-, organ-, and nephron segment-specific. In human essential hypertension, the uncoupling of the D1 receptor from its G protein/effector complex is caused by an agonist-independent serine phosphorylation/desensitization by constitutively active variants of the G protein-coupled receptor kinase type 4. The D5 receptor is also important in blood pressure regulation. Disruption of the D5 or the D1 receptor gene in mice increases blood pressure. However, unlike the D1 receptor, the hypertension in D5 receptor null mice is caused by increased activity of the sympathetic nervous system, apparently due to activation of oxytocin, V1 vasopressin, and non-N-methyl D-aspartate receptors in the central nervous system. The cause of the activation of these receptors remains to be determined.  相似文献   

10.
G protein‐coupled receptors (GPCR) exhibit the ability to form receptor complexes that include molecularly different GPCR (ie, GPCR heteromers), which endow them with singular functional and pharmacological characteristics. The relative expression of GPCR heteromers remains a matter of intense debate. Recent studies support that adenosine A2A receptors (A2AR) and dopamine D2 receptors (D2R) predominantly form A2AR‐D2R heteromers in the striatum. The aim of the present study was evaluating the behavioral effects of pharmacological manipulation and genetic blockade of A2AR and D2R within the frame of such a predominant striatal heteromeric population. First, in order to avoid possible strain‐related differences, a new D2R‐deficient mouse with the same genetic background (CD‐1) than the A2AR knock‐out mouse was generated. Locomotor activity, pre‐pulse inhibition (PPI) and drug‐induced catalepsy were then evaluated in wild‐type, A2AR and D2R knock‐out mice, with and without the concomitant administration of either the D2R agonist sumanirole or the A2AR antagonist SCH442416. SCH442416‐mediated locomotor effects were demonstrated to be dependent on D2R signaling. Similarly, a significant dependence on A2AR signaling was observed for PPI and for haloperidol‐induced catalepsy. The results could be explained by the existence of one main population of striatal postsynaptic A2AR‐D2R heteromers, which may constitute a relevant target for the treatment of Parkinson's disease and other neuropsychiatric disorders.  相似文献   

11.
We aimed to evaluate the response of dopaminergic system in acute stress (AS) and chronic unpredictable stress (CUS) by measuring dopamine (DA) levels, its receptor densities in the frontal cortex, striatum, hippocampus, amygdala and orbito-frontal cortex regions of rat brain, and investigated the corresponding behavioral locomotor changes. Involvement of D1 receptor was also examined during AS and CUS using A 68930, a D1 selective agonist. Rats were exposed to AS (single immobilization for 150 min) and CUS (two different stressors for 7 days). AS significantly decreased the DA levels in the striatum and hippocampus, and A 68930 pretreatment significantly reverted these changes. However, in the frontal cortex significantly increased DA levels were remain unchanged following A 68930. CUS led to a decrease of DA levels in the frontal cortex, striatum and hippocampus, which were normalized by A 68930. Saturation radioligand binding assays revealed a significant decrease in the number of D1-like receptors in the frontal cortex during CUS, which were further decreased by A 68930 pretreatment. However, in the striatum and hippocampus, A 68930 pretreatment reduced the CUS induced increase in the number of D1-like receptors. No significant changes were observed in the amygdala and orbito-frontal cortex during AS and CUS, while D2-like receptors were unchanged in all the brain regions studied. Locomotor activity was significantly decreased in both the stress models, A 68930 pretreatment significantly increased stereotypic counts and horizontal activity. Thus, present investigation provide insights into the differential regional response of dopaminergic system during AS and CUS. Further, neurochemical and behavioral effects of D1 agonist pretreatment suggest specific modulatory role of D1 receptor under such stressful episodes.  相似文献   

12.
Functional selectivity (or biased agonism) is a property exhibited by some G protein-coupled receptor (GPCR) ligands, which results in the modulation of a subset of a receptor’s signaling capabilities and more precise control over complex biological processes. The dopamine D2 receptor (D2R) exhibits pleiotropic responses to the biogenic amine dopamine (DA) to mediate complex central nervous system functions through activation of G proteins and β-arrestins. D2R is a prominent therapeutic target for psychological and neurological disorders in which DA biology is dysregulated and targeting D2R with functionally selective drugs could provide a means by which pharmacotherapies could be developed. However, factors that determine GPCR functional selectivity in vivo may be multiple with receptors, ligands and transducers contributing to the process. We have recently described a mutagenesis approach to engineer biased D2R mutants in which G protein-dependent ([Gprot]D2R) and β-arrestin-dependent signaling ([βarr]D2R) were successfully separated (Peterson, et al. PNAS, 2015). Here, permutations of these mutants were used to identify critical determinants of the D2R signaling complex that impart signaling bias in response to the natural or synthetic ligands. Critical residues identified in generating [Gprot]D2R and [βarr]D2R conferred control of partial agonism at G protein and/or β-arrestin activity. Another set of mutations that result in G protein bias was identified that demonstrated that full agonists can impart unique activation patterns, and provided further credence to the concept of ligand texture. Finally, the contributions and interplay between different transducers indicated that G proteins are not aberrantly activated, and that receptor kinase and β-arrestin activities are inextricably linked. These data provide a thorough elucidation of the feasibility and malleability of D2R functional selectivity and point to means by which novel in vivo therapies could be modeled.  相似文献   

13.
Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two pathways such that D1 reward seeking pathway dominates. Here, we provide an explanation at the cellular and biochemical level how cocaine may achieve this. Exploring the effect of cocaine on dopamine D2 receptors function, we present evidence of σ1 receptor molecular and functional interaction with dopamine D2 receptors. Using biophysical, biochemical, and cell biology approaches, we discovered that D2 receptors (the long isoform of the D2 receptor) can complex with σ1 receptors, a result that is specific to D2 receptors, as D3 and D4 receptors did not form heteromers. We demonstrate that the σ1-D2 receptor heteromers consist of higher order oligomers, are found in mouse striatum and that cocaine, by binding to σ1 -D2 receptor heteromers, inhibits downstream signaling in both cultured cells and in mouse striatum. In contrast, in striatum from σ1 knockout animals these complexes are not found and this inhibition is not seen. Taken together, these data illuminate the mechanism by which the initial exposure to cocaine can inhibit signaling via D2 receptor containing neurons, destabilizing the delicate signaling balance influencing drug seeking that emanates from the D1 and D2 receptor containing neurons in the brain.  相似文献   

14.

Background

Dopamine signaling is mediated by Gs protein-coupled “D1-like” receptors (D1 and D5) and Gi-coupled “D2-like” receptors (D2-4). In asthmatic patients, inhaled dopamine induces bronchodilation. Although the Gi-coupled dopamine D2 receptor is expressed and sensitizes adenylyl cyclase activity in airway smooth muscle (ASM) cells, the Gs-coupled dopamine D1-like receptor subtypes have never been identified on these cells. Activation of Gs-coupled receptors stimulates cyclic AMP (cAMP) production through the stimulation of adenylyl cyclase, which promotes ASM relaxation. We questioned whether the dopamine D1-like receptor is expressed on ASM, and modulates its function through Gs-coupling.

Methods

The mRNA and protein expression of dopamine D1-like receptor subtypes in both native human and guinea pig ASM tissue and cultured human ASM (HASM) cells was measured. To characterize the stimulation of cAMP through the dopamine D1 receptor, HASM cells were treated with dopamine or the dopamine D1-like receptor agonists (A68930 or SKF38393) before cAMP measurements. To evaluate whether the activation of dopamine D1 receptor induces ASM relaxation, guinea pig tracheal rings suspended under isometric tension in organ baths were treated with cumulatively increasing concentrations of dopamine or A68930, following an acetylcholine-induced contraction with or without the cAMP-dependent protein kinase (PKA) inhibitor Rp-cAMPS, the large-conductance calcium-activated potassium (BKCa) channel blocker iberiotoxin, or the exchange proteins directly activated by cAMP (Epac) antagonist NSC45576.

Results

Messenger RNA encoding the dopamine D1 and D5 receptors were detected in native human ASM tissue and cultured HASM cells. Immunoblots confirmed the protein expression of the dopamine D1 receptor in both native human and guinea pig ASM tissue and cultured HASM cells. The dopamine D1 receptor was also immunohistochemically localized to both human and guinea pig ASM. The dopamine D1-like receptor agonists stimulated cAMP production in HASM cells, which was reversed by the selective dopamine D1-like receptor antagonists SCH23390 or SCH39166. A68930 relaxed acetylcholine-contracted guinea pig tracheal rings, which was attenuated by Rp-cAMPS but not by iberiotoxin or NSC45576.

Conclusions

These results demonstrate that the dopamine D1 receptors are expressed on ASM and regulate smooth muscle force via cAMP activation of PKA, and offer a novel target for therapeutic relaxation of ASM.  相似文献   

15.
The effect of kindling on dopaminergic (DA) neurotransmission was assessed by measuring dopamine D1- and D2-receptor binding in the dorsal and ventral striatum of rats either 2 hours (short-term) or 3–4 weeks (long-term) after the last kindled seizure. Kindling did not have any significant long-term effect on DA D2-receptor Kd or Bmax values in the dorsal or ventral striatum or on DA D1-receptor parameters in the dorsal striatum. The short-term effect of kindled seizures was to abolish the asymmetry in DA D2-receptor density observed in the dorsal striatum of control rats. DA D1-receptor density was also increased in the dorsal striatum contralateral to the kindled amygdala of short-term rats. The short-term effects support the notion that limbic seizures can modify the lateral imbalance of DA activity in the striatum.  相似文献   

16.
Compounds that target D2-like dopamine receptors (DRs) are currently used as therapeutics for several neuropsychiatric disorders including schizophrenia (antagonists) and Parkinson's disease (agonists). However, as the D2R and D3R subtypes are highly homologous, creating compounds with sufficient subtype-selectivity as well as drug-like properties for therapeutic use has proved challenging. This review summarizes the progress that has been made in developing D2R- or D3R-selective antagonists and agonists, and also describes the experimental conditions that need to be considered when determining the selectivity of a given compound, as apparent selectivity can vary widely depending on assay conditions. Future advances in this field may take advantage of currently available structural data to target alternative secondary binding sites through creating bivalent or bitopic chemical structures. Alternatively, the use of high-throughput screening techniques to identify novel scaffolds that might bind to the D2R or D3R in areas other than the highly conserved orthosteric site, such as allosteric sites, followed by iterative medicinal chemistry will likely lead to exceptionally selective compounds in the future. More selective compounds will provide a better understanding of the normal and pathological functioning of each receptor subtype, as well as offer the potential for improved therapeutics.  相似文献   

17.
Five subtypes of dopamine receptor exist in two subfamilies: two D1-like (D1 and D5) and three D2-like (D2, D3 and D4). We produced novel monoclonal antibodies against all three D2-like receptors and used them to localize receptors in Ntera-2 (NT-2) cells, the human neuronal precursor cell line. Most of the immunostaining for all three receptors colocalized with mannose-6-phosphate receptor, a marker for late endosomes formed by internalization of the plasma membrane. This result was obtained with antibodies against three different epitopes on the D3 receptor, to rule out the possibility of cross-reaction with another protein, and controls without primary antibody or in the presence of competitor antigen were completely negative. In rat cerebral cortex and hippocampus, some of the dopamine receptor staining was found in similar structures in neuronal cell cytoplasm. Only some of the neurons were positive for dopamine receptors and the pattern was consistent with previously-reported patterns of innervation by dopamine-producing neurons. Endosomal dopamine receptors may provide a useful method for identifying cell bodies of dopamine-responsive neurons to complement methods that detect only active receptors in the neuronal cell membrane.  相似文献   

18.
The disrupted‐in‐schizophrenia 1 (DISC1) protein has been implicated in a range of biological mechanisms underlying chronic mental disorders such as schizophrenia. Schizophrenia is associated with abnormal striatal dopamine signalling, and all antipsychotic drugs block striatal dopamine 2/3 receptors (D2/3Rs). Importantly, the DISC1 protein directly interacts and forms a protein complex with the dopamine D2 receptor (D2R) that inhibits agonist‐induced D2R internalisation. Moreover, animal studies have found large striatal increases in the proportion of D2R receptors in a high affinity state (D2highR) in DISC1 rodent models. Here, we investigated the relationship between the three most common polymorphisms altering the amino‐acid sequence of the DISC1 protein (Ser704Cys (rs821616), Leu607Phe (rs6675281) and Arg264Gln (rs3738401)) and striatal D2/3R availability in 41 healthy human volunteers, using [11C]‐(+)‐PHNO positron emission tomography. We found no association between DISC1 polymorphisms and D2/3R availability in the striatum and D2R availability in the caudate and putamen. Therefore, despite a direct interaction between DISC1 and the D2R, none of its main functional polymorphisms impact striatal D2/3R binding potential, suggesting DISC1 variants act through other mechanisms.  相似文献   

19.
Homodimers of dopamine D2-like receptors are suggested to be of particular importance in the pathophysiology of schizophrenia and, thus, serve as promising targets for the discovery of atypical antipsychotics. This study describes the development of a series of novel bivalent molecules with a pharmacophore derived from the dopamine receptor antagonist haloperidol. These dimers were investigated in comparison to their monomeric analogues for their D2long, D2short, D3, and D4 receptor binding and the ability to bridge two neighboring receptor protomers. Radioligand binding studies provided diagnostic insights when Hill slopes close to two for the bivalent ligand 13 incorporating 22 spacer atoms and a comparative analysis with monovalent control ligands indicated a bivalent binding mode with a simultaneous occupancy of two neighboring binding sites.  相似文献   

20.
The Ca2+ sensor calmodulin (CaM) regulates numerous proteins involved in G protein-coupled receptor (GPCR) signaling. CaM binds directly to some GPCRs, including the dopamine D2 receptor. We confirmed that the third intracellular loop of the D2 receptor is a direct contact point for CaM binding using coimmunoprecipitation and a polyHis pull-down assay, and we determined that the D2-like receptor agonist 7-OH-DPAT increased the colocalization of the D2 receptor and endogenous CaM in both 293 cells and in primary neostriatal cultures. The N-terminal three or four residues of D2-IC3 were required for the binding of CaM; mutation of three of these residues in the full-length receptor (I210C/K211C/I212C) decreased the coprecipitation of the D2 receptor and CaM and also significantly decreased D2 receptor signaling, without altering the coupling of the receptor to G proteins. Taken together, these findings suggest that binding of CaM to the dopamine D2 receptor enhances D2 receptor signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号