首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有8条查询结果,搜索用时 12 毫秒
1
1.
Advancements in tick neurobiology may impact the development of acaricides to control those species that transmit human and animal diseases. Here, we report the first cloning and pharmacological characterization of two neurotransmitter binding G protein-coupled receptors in the Lyme disease (blacklegged) tick, Ixodes scapularis. The genes IscaGPRdop1 and IscaGPRdop2 were identified in the I. scapularis genome assembly and predicted as orthologs of previously characterized D1-like dopamine receptors in the fruit fly Drosophila melanogaster and honeybee Apis mellifera. Heterologous expression in HEK 293 cells demonstrated that each receptor functioned as a D1-like dopamine receptor because significant increases in levels of intracellular cyclic adenosine monophosphate (cAMP) were detected following dopamine treatment. Importantly, the receptors were distinct in their pharmacological properties regarding concentration-dependent response to dopamine, constitutive activity, and response to other biogenic amines. Exposure to a variety of dopamine receptor agonists and antagonists further demonstrated a D1-like pharmacology of these dopamine receptors and highlighted their differential activities in vitro.  相似文献   
2.
Several members of the ATP-binding cassette (ABC) transporter superfamily, including P-glycoprotein and the half-transporter ABCG2, can confer multidrug resistance to cancer cells in culture by functioning as ATP-dependent efflux pumps. ABCG2 variants harboring a mutation at arginine 482 have been cloned from several drug-resistant cell lines, and these variants differ in their substrate transport phenotype. In this study, we changed the wild-type arginine 482 in human ABCG2 to each one of the 19 other standard amino acids and expressed each one transiently in HeLa cells. Using the 5D3 antibody that recognizes a cell surface epitope of ABCG2, we observed that all the mutants were expressed at the cell surface. However, the mutant ABCG2 proteins differed markedly in transport activity. All of the variants were capable of transporting one or more of the substrates used in this study, with the exception of the R482K mutant, which is completely devoid of transport ability. Six of the mutants (R482G, R482H, R482K, R482P, R482T, and R482Y) and the wild-type protein (R482wt) were selected for studies of basal and stimulated ATPase activity and photoaffinity labeling with the substrate analog [125I]iodoarylazidoprazosin. Whereas these seven ABCG2 variants differed markedly in ATPase activity, all were able to specifically bind the substrate analog [125I]iodoarylazidoprazosin. These data suggest that residue 482 plays an important role in substrate transport and ATP turnover, but that the nature of this amino acid may not be important for substrate recognition and binding.  相似文献   
3.

Background  

C. elegans TGF-β-like Sma/Mab signaling pathway regulates both body size and sensory ray patterning. Most of the components in this pathway were initially identified by genetic screens based on the small body phenotype, and many of these mutants display sensory ray patterning defect. At the cellular level, little is known about how and where these components work although ray structural cell has been implicated as one of the targets. Based on the specific ray patterning abnormality, we aim to identify by RNAi approach additional components that function specifically in the ray lineage to elucidate the regulatory role of TGF-β signaling in ray differentiation.  相似文献   
4.
Ticks transmit a wide variety of disease causing pathogens to humans and animals. Considering the global health impact of tick-borne diseases, there is a pressing need to develop new methods for vector control. We are exploring arthropod dopamine receptors as novel targets for insecticide/acaricide development because of their integral roles in neurobiology. Herein, we developed a screening assay for dopamine receptor antagonists to further characterize the pharmacological properties of the two D1-like dopamine receptors (Isdop1 and Isdop2) identified in the Lyme disease vector, Ixodes scapularis, and develop a screening assay for receptor antagonists. A cell-based, cyclic AMP luciferase reporter assay platform was implemented to screen the LOPAC1280 small molecule library for Isdop2 receptor antagonists, representing the first reported chemical library screen for any tick G protein-coupled receptor. Screening resulted in the identification of 85 “hit” compounds with antagonist activity at the Isdop2 receptor. Eight of these chemistries were selected for confirmation assays using a direct measurement of cAMP, and the effects on both Isdop1 and Isdop2 were studied for comparison. Each of these eight compounds showed antagonistic activity at both Isdop1 and Isdop2, although differences were observed regarding their relative potencies. Furthermore, comparison of the pharmacological properties of the tick dopamine receptors with that of the AaDOP2 receptor from the yellow fever mosquito and the human dopamine D1 receptor (hD1) revealed species-specific pharmacological profiles of these receptors. Compounds influencing dopaminergic functioning, such as the dopamine receptor antagonists discovered here, may provide lead chemistries for discovery of novel acaricides useful for vector control.  相似文献   
5.
Directional transport of the phytohormone auxin is required for the establishment and maintenance of plant polarity, but the underlying molecular mechanisms have not been fully elucidated. Plant homologs of human multiple drug resistance/P-glycoproteins (MDR/PGPs) have been implicated in auxin transport, as defects in MDR1 (AtPGP19) and AtPGP1 result in reductions of growth and auxin transport in Arabidopsis (atpgp1, atpgp19), maize (brachytic2) and sorghum (dwarf3). Here we examine the localization, activity, substrate specificity and inhibitor sensitivity of AtPGP1. AtPGP1 exhibits non-polar plasma membrane localization at the shoot and root apices, as well as polar localization above the root apex. Protoplasts from Arabidopsis pgp1 leaf mesophyll cells exhibit reduced efflux of natural and synthetic auxins with reduced sensitivity to auxin efflux inhibitors. Expression of AtPGP1 in yeast and in the standard mammalian expression system used to analyze human MDR-type proteins results in enhanced efflux of indole-3-acetic acid (IAA) and the synthetic auxin 1-naphthalene acetic acid (1-NAA), but not the inactive auxin 2-NAA. AtPGP1-mediated efflux is sensitive to auxin efflux and ABC transporter inhibitors. As is seen in planta, AtPGP1 also appears to mediate some efflux of IAA oxidative breakdown products associated with apical sites of high auxin accumulation. However, unlike what is seen in planta, some additional transport of the benzoic acid is observed in yeast and mammalian cells expressing AtPGP1, suggesting that other factors present in plant tissues confer enhanced auxin specificity to PGP-mediated transport.  相似文献   
6.
Stem cells in vivo are housed within a functional microenvironment termed the “stem cell niche.” As the niche components can modulate stem cell behaviors like proliferation, migration and differentiation, evaluating these components would be important to determine the most optimal platform for their maintenance or differentiation. In this review, we have discussed methods and technologies that have aided in the development of high throughput screening assays for stem cell research, including enabling technologies such as the well-established multiwell/microwell plates and robotic spotting, and emerging technologies like microfluidics, micro-contact printing and lithography. We also discuss the studies that utilized high throughput screening platform to investigate stem cell response to extracellular matrix, topography, biomaterials and stiffness gradients in the stem cell niche. The combination of the aforementioned techniques could lay the foundation for new perspectives in further development of high throughput technology and stem cell research.  相似文献   
7.

Background

Many neglected tropical infectious diseases affecting humans are transmitted by arthropods such as mosquitoes and ticks. New mode-of-action chemistries are urgently sought to enhance vector management practices in countries where arthropod-borne diseases are endemic, especially where vector populations have acquired widespread resistance to insecticides.

Methodology/Principal Findings

We describe a “genome-to-lead” approach for insecticide discovery that incorporates the first reported chemical screen of a G protein-coupled receptor (GPCR) mined from a mosquito genome. A combination of molecular and pharmacological studies was used to functionally characterize two dopamine receptors (AaDOP1 and AaDOP2) from the yellow fever mosquito, Aedes aegypti. Sequence analyses indicated that these receptors are orthologous to arthropod D1-like (Gαs-coupled) receptors, but share less than 55% amino acid identity in conserved domains with mammalian dopamine receptors. Heterologous expression of AaDOP1 and AaDOP2 in HEK293 cells revealed dose-dependent responses to dopamine (EC50: AaDOP1 = 3.1±1.1 nM; AaDOP2 = 240±16 nM). Interestingly, only AaDOP1 exhibited sensitivity to epinephrine (EC50 = 5.8±1.5 nM) and norepinephrine (EC50 = 760±180 nM), while neither receptor was activated by other biogenic amines tested. Differential responses were observed between these receptors regarding their sensitivity to dopamine agonists and antagonists, level of maximal stimulation, and constitutive activity. Subsequently, a chemical library screen was implemented to discover lead chemistries active at AaDOP2. Fifty-one compounds were identified as “hits,” and follow-up validation assays confirmed the antagonistic effect of selected compounds at AaDOP2. In vitro comparison studies between AaDOP2 and the human D1 dopamine receptor (hD1) revealed markedly different pharmacological profiles and identified amitriptyline and doxepin as AaDOP2-selective compounds. In subsequent Ae. aegypti larval bioassays, significant mortality was observed for amitriptyline (93%) and doxepin (72%), confirming these chemistries as “leads” for insecticide discovery.

Conclusions/Significance

This research provides a “proof-of-concept” for a novel approach toward insecticide discovery, in which genome sequence data are utilized for functional characterization and chemical compound screening of GPCRs. We provide a pipeline useful for future prioritization, pharmacological characterization, and expanded chemical screening of additional GPCRs in disease-vector arthropods. The differential molecular and pharmacological properties of the mosquito dopamine receptors highlight the potential for the identification of target-specific chemistries for vector-borne disease management, and we report the first study to identify dopamine receptor antagonists with in vivo toxicity toward mosquitoes.  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号