首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
随着全球变化对生物多样性的影响不断加剧, 生物多样性与生态系统功能之间相互关系(BEF)的研究显得极为重要。过去的20多年, BEF的研究大多集中在对物种多样性与单一或少数生态系统功能之间关系的探讨, 但生态系统最为重要的价值是同时维持多种服务和功能的能力, 基于此, 该文首次在国内引入近年来不断完善的生态系统多功能性(multifunctionality)的概念, 并对目前主流的评价方法进行了改进, 从而对内蒙古三种利用方式(刈割、围封、放牧)下的草地群落进行了多功能性评价, 并探讨了多功能性与物种多样性之间的关系。结果显示本研究改进的方法和目前主流方法评价得出的多功能性指数在样方和样地尺度上都有很高的相关性(R2 = 0.6956, p < 0.0001; R2 = 0.9231, p < 0.0001), 表明该文作者改进后的方法是可靠的。重度放牧的草地群落物种多样性水平最低, 绝大多数土壤功能指标较差, 表现出退化特征; 7年的围封和刈割群落均有较高的物种多样性水平和改善的土壤功能指标; 三者的多功能性指数为刈割(0.2178) >围封(0.0704) >放牧(-0.8031)。植被样方主要沿水肥梯度分布; 多样性指数中, 均匀度指数(Pielou index)和丰富度指数(Margelf index)对多功能性的影响作用最大, 均为样方尺度(R2 = 0.1871, p < 0.0001; R2 = 0.1601, p < 0.0001)小于样地尺度(R2 = 0.5921, p = 0.0093; R2 = 0.7499, p = 0.0007), 有尺度依赖性; 多功能性在样方和样地尺度上均与物种均匀度呈线性正相关关系, 而与物种丰富度呈单峰曲线关系。该文研究结果表明, 相对于重度放牧和围封, 刈割更有利于维持该地区生态系统的多功能性; 物种丰富度适中且物种分布均匀的生态系统可能有更好的多功能性。  相似文献   

2.
《植物生态学报》2016,40(8):735
Aims Over the past twenty years, most biodiversity and ecosystem functioning (BEF) research has focused on the effects of species diversity on single or just a few ecosystem functions. However, ecosystems are primarily valued for their ability to maintain multiple functions and services simultaneously (i.e. multifunctionality here- after). This paper first introduced the constantly perfected concept of “multifunctionality”, and then tried to make some modifications to the current mainstream quantitative method in order to evaluate the multifunctionality of grassland communities with the management of clipping, enclosure and grazing in Inner Mongolia, investigating the relationship between the multifunctionality and species diversity. Methods In free grazing grassland, four sites were set and each site was divided into two parts to conduct enclosure and clipping management respectively. After seven years, 15 quadrats (1 m × 1 m) were established for each type of management in each site (total 60 quadrats for each type) using the regular arrangement method; as a control, we also established 20 quadrats (two sites) in grazing grassland. For each quadrat, we carried out plants census and collected soil mixture sample, measuring 16 soil variables, and then calculated the biodiversity indices and multifunctionality index (M-index) by means of factor analysis. Important findings The results showed that M-indexes by the two evaluation methods were strongly correlated at both quadrat and site scale, suggesting that our modified method was reliable. Over-grazed communities had the lowest biodiversity indices and their most soil indicators were also low, showing obvious degradation features. Enclosure and clipping communities (seven years) had higher biodiversity and better soil indicators. The rank of M-indexes was clipping community (0.2178) > enclosure community (0.0704) > grazing community (-0.8031). The vegetation was distributed mainly along the gradients of water and fertility. Among the biodiversity indices, evenness (Pielou) index and richness (Margelf) index were most strongly correlated with multifunctionality, and their explanatory power (R2) for M-index were higher at site scale (R2 = 0.5921, p = 0.0093; R2 = 0.7499, p = 0.0007) than at quadrat scale (R2 = 0.1871, p < 0.0001; R2 = 0.1601, p < 0.0001), indicating study scale played an important role in the determinants of multifunctionality. At both quadrat and site scales, M-indexes is a linear positive function with species evenness and a hump-shaped function of species richness. Therefore, in contrast to enclosure, clipping was more conducive to maintain the ecosystem multifunctionality in this region, and the ecosystem with moderate specie richness, where these species are evenly distributed might have better multifunctionality.  相似文献   

3.
The accelerating rate of change in biodiversity patterns, mediated by ever increasing human pressures and global warming, demands a better understanding of the relationship between the structure of biological communities and ecosystem functioning (BEF). Recent investigations suggest that the functional structure of communities, i.e. the composition and diversity of functional traits, is the main driver of ecological processes. However, the predictive power of BEF research is still low, the integration of all components of functional community structure as predictors is still lacking, and the multifunctionality of ecosystems (i.e. rates of multiple processes) must be considered. Here, using a multiple-processes framework from grassland biodiversity experiments, we show that functional identity of species and functional divergence among species, rather than species diversity per se, together promote the level of ecosystem multifunctionality with a predictive power of 80%. Our results suggest that primary productivity and decomposition rates, two key ecosystem processes upon which the global carbon cycle depends, are primarily sustained by specialist species, i.e. those that hold specialized combinations of traits and perform particular functions. Contrary to studies focusing on single ecosystem functions and considering species richness as the sole measure of biodiversity, we found a linear and non-saturating effect of the functional structure of communities on ecosystem multifunctionality. Thus, sustaining multiple ecological processes would require focusing on trait dominance and on the degree of community specialization, even in species-rich assemblages.  相似文献   

4.
The research of a generation of ecologists was catalysed by the recognition that the number and identity of species in communities influences the functioning of ecosystems. The relationship between biodiversity and ecosystem functioning (BEF) is most often examined by controlling species richness and randomising community composition. In natural systems, biodiversity changes are often part of a bigger community assembly dynamic. Therefore, focusing on community assembly and the functioning of ecosystems (CAFE), by integrating both species richness and composition through species gains, losses and changes in abundance, will better reveal how community changes affect ecosystem function. We synthesise the BEF and CAFE perspectives using an ecological application of the Price equation, which partitions the contributions of richness and composition to function. Using empirical examples, we show how the CAFE approach reveals important contributions of composition to function. These examples show how changes in species richness and composition driven by environmental perturbations can work in concert or antagonistically to influence ecosystem function. Considering how communities change in an integrative fashion, rather than focusing on one axis of community structure at a time, will improve our ability to anticipate and predict changes in ecosystem function.  相似文献   

5.
青藏高原高寒草地生物多样性与生态系统功能的关系   总被引:7,自引:0,他引:7  
生物多样性和生态系统功能(BEF)之间的关系是目前陆地生态系统生态学研究的热点, 对于生态系统的高效利用与管理意义重大, 而且对于退化生态系统功能的恢复及生物多样性的保护有重要的指导作用。高寒草地是青藏高原生态系统的主体, 近年来, 在气候变化与人为干扰等因素的驱动下, 高寒草地生态系统功能严重衰退。为此, 本文在综述物种多样性和生态系统功能及其相互关系研究进展的基础上, 首先从地下生态学过程研究、全球变化对生态系统多功能性的影响等方面解析了目前关于草地生物多样性和生态系统功能研究中存在的问题。继而, 从不同草地类型、草地退化程度、放牧、模拟气候变化、刈割、施肥、封育和补播等干扰利用方式对高寒草地物种多样性与生态系统功能的影响进行了全面的评述。并指出了高寒草地BEF研究中存在的不足, 今后应基于物种功能多样性开展高寒草地BEF研究, 全面且综合地考虑非生物因子(养分资源、外界干扰、环境波动等)对生物多样性与生态系统功能之间关系的影响, 关注尺度效应和要素耦合在全球气候变化对高寒草地BEF研究中的作用。最后, 以高寒草地BEF研究进展和结论为支撑依据, 综合提出了高寒草地资源利用和生物多样性保护的措施与建议: 加强放牧管理, 保护生物多样性; 治理退化草地, 维持生物多样性功能; 加强创新保护理念, 增强生态系统功能。  相似文献   

6.
Biodiversity and ecosystem functioning in naturally assembled communities   总被引:1,自引:0,他引:1  
Approximately 25 years ago, ecologists became increasingly interested in the question of whether ongoing biodiversity loss matters for the functioning of ecosystems. As such, a new ecological subfield on Biodiversity and Ecosystem Functioning (BEF) was born. This subfield was initially dominated by theoretical studies and by experiments in which biodiversity was manipulated, and responses of ecosystem functions such as biomass production, decomposition rates, carbon sequestration, trophic interactions and pollination were assessed. More recently, an increasing number of studies have investigated BEF relationships in non‐manipulated ecosystems, but reviews synthesizing our knowledge on the importance of real‐world biodiversity are still largely missing. I performed a systematic review in order to assess how biodiversity drives ecosystem functioning in both terrestrial and aquatic, naturally assembled communities, and on how important biodiversity is compared to other factors, including other aspects of community composition and abiotic conditions. The outcomes of 258 published studies, which reported 726 BEF relationships, revealed that in many cases, biodiversity promotes average biomass production and its temporal stability, and pollination success. For decomposition rates and ecosystem multifunctionality, positive effects of biodiversity outnumbered negative effects, but neutral relationships were even more common. Similarly, negative effects of prey biodiversity on pathogen and herbivore damage outnumbered positive effects, but were less common than neutral relationships. Finally, there was no evidence that biodiversity is related to soil carbon storage. Most BEF studies focused on the effects of taxonomic diversity, however, metrics of functional diversity were generally stronger predictors of ecosystem functioning. Furthermore, in most studies, abiotic factors and functional composition (e.g. the presence of a certain functional group) were stronger drivers of ecosystem functioning than biodiversity per se. While experiments suggest that positive biodiversity effects become stronger at larger spatial scales, in naturally assembled communities this idea is too poorly studied to draw general conclusions. In summary, a high biodiversity in naturally assembled communities positively drives various ecosystem functions. At the same time, the strength and direction of these effects vary highly among studies, and factors other than biodiversity can be even more important in driving ecosystem functioning. Thus, to promote those ecosystem functions that underpin human well‐being, conservation should not only promote biodiversity per se, but also the abiotic conditions favouring species with suitable trait combinations.  相似文献   

7.
Species diversity affects the functioning of ecosystems, including the efficiency by which communities capture limited resources, produce biomass, recycle and retain biologically essential nutrients. These ecological functions ultimately support the ecosystem services upon which humanity depends. Despite hundreds of experimental tests of the effect of biodiversity on ecosystem function (BEF), it remains unclear whether diversity effects are sufficiently general that we can use a single relationship to quantitatively predict how changes in species richness alter an ecosystem function across trophic levels, ecosystems and ecological conditions. Our objective here is to determine whether a general relationship exists between biodiversity and standing biomass. We used hierarchical mixed effects models, based on a power function between species richness and biomass production (Y = a × Sb), and a database of 374 published experiments to estimate the BEF relationship (the change in biomass with the addition of species), and its associated uncertainty, in the context of environmental factors. We found that the mean relationship (b = 0.26, 95% CI: 0.16, 0.37) characterized the vast majority of observations, was robust to differences in experimental design, and was independent of the range of species richness levels considered. However, the richness–biomass relationship varied by trophic level and among ecosystems; in aquatic systems b was nearly twice as large for consumers (herbivores and detritivores) compared to primary producers; in terrestrial ecosystems, b for detritivores was negative but depended on few studies. We estimated changes in biomass expected for a range of changes in species richness, highlighting that species loss has greater implications than species gains, skewing a distribution of biomass change relative to observed species richness change. When biomass provides a good proxy for processes that underpin ecosystem services, this relationship could be used as a step in modeling the production of ecosystem services and their dependence on biodiversity.  相似文献   

8.
 人们担心生物多样性的空前丧失会危及到生态系统的服务功能,因此有关生物多样性-生态系统生产力这一古老命题的讨论成为当今生态学的热点议题之一。20世纪90年代以David Tilman和Shahid Naeem为代表的生态学家利用大规模的受控实验,对物种多样性与生态系统功能的诸多方面进行  相似文献   

9.
生物多样性与生态系统多功能性: 进展与展望   总被引:4,自引:0,他引:4  
全球变化和人类活动引起的生物多样性丧失将会对生态系统功能产生诸多不利影响, 如生产力下降、养分循环失衡等。因此, 始于20世纪90年代的生物多样性与生态系统功能(biodiversity and ecosystem functioning, BEF)研究一直是生态学界关注的热点。然而, 随着研究的深入, 人们逐步认识到生态系统并非仅仅提供单个生态系统功能, 而是能同时提供多个功能, 这一特性被称之为“生态系统多功能性” (ecosystem multifunctionality, EMF)。尽管有此认识, 但直到2007年, 研究者才开始定量描述生物多样性与生态系统多功能性(biodiversity and ecosystem multifunctionality, BEMF)的关系。目前, BEMF研究已成为生态学研究的一个重要议题, 但仍存在很多问题和争议, 如缺少公认的多功能性测度标准、生态系统不同功能之间的权衡问题等。本文概述了BEMF研究的发展历程、常用的量化方法、EMF的维持机制和不同研究视角下BEMF的关系。针对现有研究中的不足, 本文还总结了需要进一步深入研究的地方, 特别强调了优化EMF测度方法和研究不同维度生物多样性与EMF间关系的重要性, 以期对未来的BEMF研究有所帮助。  相似文献   

10.
In a recent Forum paper, Wardle (Journal of Vegetation Science, 2016) questions the value of biodiversity–ecosystem function (BEF) experiments with respect to their implications for biodiversity changes in real world communities. The main criticism is that the previous focus of BEF experiments on random species assemblages within each level of diversity has ‘limited the understanding of how natural communities respond to biodiversity loss.’ He concludes that a broader spectrum of approaches considering both non‐random gains and losses of diversity is essential to advance this field of research. Wardle's paper is timely because of recent observations of frequent local and regional biodiversity changes across ecosystems. While we appreciate that new and complementary experimental approaches are required for advancing the field, we question criticisms regarding the validity of BEF experiments. Therefore, we respond by briefly reiterating previous arguments emphasizing the reasoning behind random species composition in BEF experiments. We describe how BEF experiments have identified important mechanisms that play a role in real world ecosystems, advancing our understanding of ecosystem responses to species gains and losses. We discuss recent examples where theory derived from BEF experiments enriched our understanding of the consequences of biodiversity changes in real world ecosystems and where comprehensive analyses and integrative modelling approaches confirmed patterns found in BEF experiments. Finally, we provide some promising directions in BEF research.  相似文献   

11.
Tests of the biodiversity and ecosystem functioning (BEF) relationship have focused little attention on the importance of interactions between species diversity and other attributes of ecological communities such as community biomass. Moreover, BEF research has been mainly derived from studies measuring a single ecosystem process that often represents resource consumption within a given habitat. Focus on single processes has prevented us from exploring the characteristics of ecosystem processes that can be critical in helping us to identify how novel pathways throughout BEF mechanisms may operate. Here, we investigated whether and how the effects of biodiversity mediated by non-trophic interactions among benthic bioturbator species vary according to community biomass and ecosystem processes. We hypothesized that (1) bioturbator biomass and species richness interact to affect the rates of benthic nutrient regeneration [dissolved inorganic nitrogen (DIN) and total dissolved phosphorus (TDP)] and consequently bacterioplankton production (BP) and that (2) the complementarity effects of diversity will be stronger on BP than on nutrient regeneration because the former represents a more integrative process that can be mediated by multivariate nutrient complementarity. We show that the effects of bioturbator diversity on nutrient regeneration increased BP via multivariate nutrient complementarity. Consistent with our prediction, the complementarity effects were significantly stronger on BP than on DIN and TDP. The effects of the biomass-species richness interaction on complementarity varied among the individual processes, but the aggregated measures of complementarity over all ecosystem processes were significantly higher at the highest community biomass level. Our results suggest that the complementarity effects of biodiversity can be stronger on more integrative ecosystem processes, which integrate subsidiary “simpler” processes, via multivariate complementarity. In addition, reductions in community biomass may decrease the strength of interspecific interactions so that the enhanced effects of biodiversity on ecosystem processes can disappear well before species become extinct.  相似文献   

12.
羌塘高寒草地物种多样性与生态系统多功能关系格局   总被引:2,自引:0,他引:2  
传统的生物多样性-生态系统功能研究大多侧重于单一生态系统功能与物种多样性的关系,忽略了生态系统的重要价值在于其能够同时提供多种功能或服务,即生态系统的多功能性。基于藏北羌塘高寒草地样带调查数据,选取植被地上生物量、地下生物量、土壤全氮、硝态氮及铵态氮含量、土壤全磷含量、土壤有机碳储量等7个与植物生长、养分循环、土壤有机碳蓄积相关的参数来表征生态系统多功能性。采用上述参数转换为Z分数后的平均值计算多功能性指数(M)。分析了不同生物多样性指数与生态系统多功能指数的关系以及年降水量和年均温度对物种多样性和生态系统多功能性指数的影响。结果表明,物种丰富度指数与生态系统多功能性之间呈极显著的正相关关系,Shannon-wiener和Simpson物种多样性指数也与多功能性指数间呈显著的正相关,但多功能性指数与Pielou均匀度指数没有表现出明显的相关关系。物种丰富度与表征植物生长、养分循环以及土壤有机碳蓄积的生态系统功能指数间也均呈极显著的正相关关系。降水格局显著影响羌塘高原物种丰富度和生态系统多功能指数,二者均随年降雨量的增加而显著增加,但物种多样性指数并未与年降水量呈现显著相关关系。研究强调了群落物种丰富度即群落物种数量对维持生态系统多功能性的重要意义,这意味着由于人类活动导致的物种丧失可能会给藏北高寒草地生态系统多功能和生态服务带来更为严重的后果。就退化草地恢复或草地可持续管理而言,在藏北羌塘地区,本地植物种的物种丰富度恢复和维持应作为重要目标之一。  相似文献   

13.
Evidence is growing that evolutionary dynamics can impact biodiversity–ecosystem functioning (BEF) relationships. However the nature of such impacts remains poorly understood. Here we use a modelling approach to compare random communities, with no trait evolutionary fine‐tuning, and co‐adapted communities, where traits have co‐evolved, in terms of emerging biodiversity–productivity, biodiversity–stability and biodiversity–invasion relationships. Community adaptation impacted most BEF relationships, sometimes inverting the slope of the relationship compared to random communities. Biodiversity–productivity relationships were generally less positive among co‐adapted communities, with reduced contribution of sampling effects. The effect of community‐adaptation, though modest regarding invasion resistance, was striking regarding invasion tolerance: co‐adapted communities could remain very tolerant to invasions even at high diversity. BEF relationships are thus contingent on the history of ecosystems and their degree of community adaptation. Short‐term experiments and observations following recent changes may not be safely extrapolated into the future, once eco‐evolutionary feedbacks have taken place.  相似文献   

14.
Most ecosystems provide multiple services, thus the impact of biodiversity losses on ecosystem functions may be considerably underestimated by studies that only address single functions. We propose a multivariate modelling framework for quantifying the relationship between biodiversity and multiple ecosystem functions (multifunctionality). Our framework consolidates the strengths of previous approaches to analysing ecosystem multifunctionality and contributes several advances. It simultaneously assesses the drivers of multifunctionality, such as species relative abundances, richness, evenness and other manipulated treatments. It also tests the relative importance of these drivers across functions, incorporates correlations among functions and identifies conditions where all functions perform well and where trade‐offs occur among functions. We illustrate our framework using data from three ecosystem functions (sown biomass, weed suppression and nitrogen yield) in a four‐species grassland experiment. We found high variability in performance across the functions in monocultures, but as community diversity increased, performance increased and variability across functions decreased.  相似文献   

15.
Grazing effects on arid and semi‐arid grasslands can be constrained by aridity. Plant functional groups (PFGs) are the most basic component of community structure (CS) and biodiversity & ecosystem function (BEF). They have been suggested as identity‐dependent in quantifying the response to grazing intensity and drought severity. Here, we examine how the relationships among PFGs, CS, BEF, and grazing intensity are driven by climatic drought. We conducted a manipulative experiment with three grazing intensities in 2012 (nondrought year) and 2013 (drought year). We classified 62 herbaceous plants into four functional groups based on their life forms. We used the relative species abundance of PFGs to quantify the effects of grazing and drought, and to explore the mechanisms for the pathway correlations using structural equation models (SEM) among PFGs, CS, and BEF directly or indirectly. Grazers consistently favored the perennial forbs (e.g., palatable or nutritious plants), decreasing the plants’ relative abundance by 23%–38%. Drought decreased the relative abundance of ephemeral plants by 42 ± 13%; and increased perennial forbs by 20 ± 7% and graminoids by 80 ± 31%. SEM confirmed that annuals and biennials had negative correlations with the other three PFGs, with perennial bunchgrasses facilitated by perennial rhizome grass. Moreover, the contributions of grazing to community structure (i.e., canopy height) were 1.6–6.1 times those from drought, whereas drought effect on community species richness was 3.6 times of the grazing treatment. Lastly, the interactive effects of grazing and drought on BEF were greater than either alone; particularly, drought escalated grazing damage on primary production. Synthesis. The responses of PFGs, CS, and BEF to grazing and drought were identity‐dependent, suggesting that grazing and drought regulation of plant functional groups might be a way to shape ecosystem structure and function in grasslands.  相似文献   

16.
The biodiversity–ecosystem functioning (BEF) relationship is central in community ecology. Its drivers in competitive systems (sampling effect and functional complementarity) are intuitive and elegant, but we lack an integrative understanding of these drivers in complex ecosystems. Because networks encompass two key components of the BEF relationship (species richness and biomass flow), they provide a key to identify these drivers, assuming that we have a meaningful measure of functional complementarity. In a network, diversity can be defined by species richness, the number of trophic levels, but perhaps more importantly, the diversity of interactions. In this paper, we define the concept of trophic complementarity (TC), which emerges through exploitative and apparent competition processes, and study its contribution to ecosystem functioning. Using a model of trophic community dynamics, we show that TC predicts various measures of ecosystem functioning, and generate a range of testable predictions. We find that, in addition to the number of species, the structure of their interactions needs to be accounted for to predict ecosystem productivity.  相似文献   

17.
Stefan Trogisch  Andreas Schuldt  Jürgen Bauhus  Juliet A. Blum  Sabine Both  François Buscot  Nadia Castro‐Izaguirre  Douglas Chesters  Walter Durka  David Eichenberg  Alexandra Erfmeier  Markus Fischer  Christian Geißler  Markus S. Germany  Philipp Goebes  Jessica Gutknecht  Christoph Zacharias Hahn  Sylvia Haider  Werner Härdtle  Jin‐Sheng He  Andy Hector  Lydia Hönig  Yuanyuan Huang  Alexandra‐Maria Klein  Peter Kühn  Matthias Kunz  Katrin N. Leppert  Ying Li  Xiaojuan Liu  Pascal A. Niklaus  Zhiqin Pei  Katherina A. Pietsch  Ricarda Prinz  Tobias Proß  Michael Scherer‐Lorenzen  Karsten Schmidt  Thomas Scholten  Steffen Seitz  Zhengshan Song  Michael Staab  Goddert von Oheimb  Christina Weißbecker  Erik Welk  Christian Wirth  Tesfaye Wubet  Bo Yang  Xuefei Yang  Chao‐Dong Zhu  Bernhard Schmid  Keping Ma  Helge Bruelheide 《Ecology and evolution》2017,7(24):10652-10674
Biodiversity–ecosystem functioning (BEF) research has extended its scope from communities that are short‐lived or reshape their structure annually to structurally complex forest ecosystems. The establishment of tree diversity experiments poses specific methodological challenges for assessing the multiple functions provided by forest ecosystems. In particular, methodological inconsistencies and nonstandardized protocols impede the analysis of multifunctionality within, and comparability across the increasing number of tree diversity experiments. By providing an overview on key methods currently applied in one of the largest forest biodiversity experiments, we show how methods differing in scale and simplicity can be combined to retrieve consistent data allowing novel insights into forest ecosystem functioning. Furthermore, we discuss and develop recommendations for the integration and transferability of diverse methodical approaches to present and future forest biodiversity experiments. We identified four principles that should guide basic decisions concerning method selection for tree diversity experiments and forest BEF research: (1) method selection should be directed toward maximizing data density to increase the number of measured variables in each plot. (2) Methods should cover all relevant scales of the experiment to consider scale dependencies of biodiversity effects. (3) The same variable should be evaluated with the same method across space and time for adequate larger‐scale and longer‐time data analysis and to reduce errors due to changing measurement protocols. (4) Standardized, practical and rapid methods for assessing biodiversity and ecosystem functions should be promoted to increase comparability among forest BEF experiments. We demonstrate that currently available methods provide us with a sophisticated toolbox to improve a synergistic understanding of forest multifunctionality. However, these methods require further adjustment to the specific requirements of structurally complex and long‐lived forest ecosystems. By applying methods connecting relevant scales, trophic levels, and above‐ and belowground ecosystem compartments, knowledge gain from large tree diversity experiments can be optimized.  相似文献   

18.
A rich body of knowledge links biodiversity to ecosystem functioning (BEF), but it is primarily focused on small scales. We review the current theory and identify six expectations for scale dependence in the BEF relationship: (1) a nonlinear change in the slope of the BEF relationship with spatial scale; (2) a scale‐dependent relationship between ecosystem stability and spatial extent; (3) coexistence within and among sites will result in a positive BEF relationship at larger scales; (4) temporal autocorrelation in environmental variability affects species turnover and thus the change in BEF slope with scale; (5) connectivity in metacommunities generates nonlinear BEF and stability relationships by affecting population  synchrony at local and regional scales; (6) spatial scaling in food web structure and diversity will generate scale dependence in ecosystem functioning. We suggest directions for synthesis that combine approaches in metaecosystem and metacommunity ecology and integrate cross‐scale feedbacks. Tests of this theory may combine remote sensing with a generation of networked experiments that assess effects at multiple scales. We also show how anthropogenic land cover change may alter the scaling of the BEF relationship. New research on the role of scale in BEF will guide policy linking the goals of managing biodiversity and ecosystems.  相似文献   

19.
20.
李珊  刘晓娟  马克平 《广西植物》2023,43(8):1524-1536
生物多样性与生态系统功能的关系(BEF)及其内在机制是当前生物多样性研究领域的热点问题。长期以来,以草地生态系统为主的BEF研究积累了大量研究成果,而基于森林生态系统的相关研究则相对较少。亚热带森林生物多样性与生态系统功能实验研究基地(BEF-China)是目前包含树种最多、涉及多样性水平最高的大型森林控制实验样地。该文总结了基于BEF-China平台的研究进展,特别是生物多样性对生态系统生产力、养分循环以及多营养级相互作用关系等方面的影响,并提出了未来BEF-China的研究应注重高通量测序和遥感等新兴技术的应用,在生物多样性的多维度、生态系统的多种组分与多种功能以及BEF研究的多种尺度等交叉方向上持续开展深入研究。针对BEF-China研究成果的梳理有助于理解驱动亚热带森林生物多样性与生态系统功能关系的内在机理,为生物多样性保护和生态修复提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号