首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the genetic factors underlying constitutive and adaptive root growth under different water-supply conditions, a double haploid (DH) population, derived from a cross between lowland rice variety IR64 and upland rice variety Azucena, with 284 molecular markers was used in cylindrical pot experiments. Several QTLs for seminal root length (SRL), adventitious root number (ARN) and total root dry weight (RW) respectively, under both flooding and upland conditions were detected. Two identical QTLs for SRL and RW were found under flooding and upland conditions. The relative parameters defined as the ratio of parameters under the two water-supply conditions were also used for QTL analysis. A comparative analysis among different genetic populations was performed for the QTLs for root traits and several consistent QTLs for root traits across genetic backgrounds were detected. Candidate genes for cell expansion and elongation were used for comparative mapping with the detected QTLs. Four cell wall-related expressed sequence tags (ESTs) for OsEXP2, OsEXP4, EXT and Xet were mapped on the intervals carrying the QTLs for root traits.  相似文献   

2.
为了研究不同水分条件下组成型根系性状和适应性根系性状的遗传机制,利用由IR64/Azucena发展的双单倍体(DH)群体分析了淹水和干旱条件下水稻幼苗种子根长(SRL)、不定根数(ARN)、总根干重(RW)及其对应的相对参数(干旱和淹水条件下根系性状的比值)的QTLs。淹水与干旱条件下检测到一个共同的种子根长QTL和一个共同的总根干重QTL。同时对前人发表的遗传群体定位的根系性状QTLs进行比较分析,检测到几个共同的根系性状QTLs。对与细胞伸长、分裂相关的候选基因进行了定位,其中4个细胞壁相关的ESTs(OsEXP2,OsEXP4,EXT和Xet)被定位在与不同水分条件下检测出的根系性状QTLs的相同区间。  相似文献   

3.
The variation of seedling characteristics under different water supply conditions is strongly associated with drought resistance in rice (Oryza sativa L.) and a better elucidation of its genetics is helpful for improving rice drought resistance. Ninety-six doubled-haploid (DH)rice lines of an indica and japonica cross were grown in both flooding and upland conditions and QTLs for morphological traits at seedling stage were examined using 208 restriction fragment length polymorphism (RFLP) and 76 microsatellite (SSR) markers. A total of 32 putative QTLs were associated with the four seedling traits: average of three adventitious root lengths (ARL), shoot height (SH), shoot biomass (SW), and root to shoot dry weight ratio (RSR). Five QTLs detected were the same under control and upland conditions. The ratio between the mean value of the seedling trait under upland and flooding conditions was used for assessing drought tolerance. A total of six QTLs for drought tolerance were detected. Comparative analysis was performed for the QTLs detected in this case and those reported from two other populations with the same upland rice variety Azucena as parent. Several identical QTLs for seedling elongation across the three populations with the positive alleles from the upland rice Azucena were detected, which suggests that the alleles of Azucena might be involved in water stress-accelerated elongation of rice under different genetic backgrounds. Five cell wall-related candidate genes for OsEXP1, OsEXP2, OsEXP4, EXT, and EGase were mapped on the intervals carrying the QTLs for seedling traits.  相似文献   

4.
A marker-assisted back-crossing (MABC) breeding programme was conducted to improve the root morphological traits, and thereby drought tolerance, of the Indian upland rice variety, Kalinga III. This variety, the recurrent parent in the MABC, had not previously been used for quantitative trait locus (QTL) mapping. The donor parent was Azucena, an upland japonica variety from Philippines. Five segments on different chromosomes were targeted for introgression; four segments carried QTLs for improved root morphological traits (root length and thickness) and the fifth carried a recessive QTL for aroma. Some selection was made at non-target regions for recurrent parent alleles. We describe the selection made in three backcross (BC) generations and two further crosses between BC3 lines to pyramid (stack) all five target segments. Pyramids with four root QTLs were obtained in eight generations, completed in 6 years using 3,000 marker assays in a total of 323 lines. Twenty-two near-isogenic lines (NILs) were evaluated for root traits in five field experiments in Bangalore, India. The target segment on chromosome 9 (RM242-RM201) significantly increased root length under both irrigated and drought stress treatments, confirming that this root length QTL from Azucena functions in a novel genetic background. No significant effects on root length were found at the other four targets. Azucena alleles at the locus RM248 (below the target root QTL on chromosome 7) delayed flowering. Selection for the recurrent parent allele at this locus produced early-flowering NILs that were suited for upland environments in eastern India.  相似文献   

5.
To identify the genetic background of seminal root length under different water-supply conditions, a recombinant inbred (RI) population consisting of 150 lines, derived from a cross between an indica lowland rice, IR1552, and a tropical japonica upland rice, Azucena, was used in both solution culture (lowland condition) and paper culture (upland condition). Quantitative trait loci (QTLs) and epistatic loci for seminal root length were analyzed using 103 restriction fragment length polymorphism (RFLP) markers and 104 amplified fragment length polymorphism (AFLP) markers mapped on 12 chromosomes based on the RI population. One QTL for seminal root length in solution culture (SRLS) and one for seminal root length in paper culture (SRLP) were detected on chromosomes 8 and 1, and about 11% and 10% of total phenotypic variation were explained, respectively. The QTL for SRLP on chromosome 1 was very similar with the QTL for the longest nodal root referred to in a previous report; this QTL may be phenotypically selectable in a breeding program using paper culture. Five pairs of epistatic loci for SRLS were detected, but only one for SRLP, which accounted for about 60% and 20% of the total variation in SRLS and SRLP, respectively. The results indicate that epistasis is a major genetic basis for seminal root length, and there is a different genetic system responsible for seminal root growth under different water supply conditions. Received: 26 May 2000 / Accepted: 19 October 2000  相似文献   

6.
Nitrogen (N) loss is a worldwide problem in crop production. Apart from reasonable N fertilizer application, breeding N efficient cultivars provides an alternative way. Root architecture is an important factor determining N acquisition. However, little is known about the molecular genetic basis for root growth in relation to N supply. In the present study, an F8 maize (Zea may L.) recombinant inbred (RI) population consisting of 94 lines was used to identify the QTLs for root traits under different nitrate levels. The lateral root length (LRL), axial root length (ARL), maximal axial root length (MARL), axial root number (ARN) and average axial root length (AARL) were evaluated under low N (LN) and high N (HN) conditions in a hydroponics system. A total of 17 QTLs were detected among which 14 loci are located on the same chromosome region as published QTLs for root traits. A major QTL on chromosome 1 (between bnlg1025 and umc2029) for the AARL under LN could explain 43.7% of the phenotypic variation. This QTL co-localizes with previously reported QTLs that associate with root traits, grain yield, and N uptake. Our results indicate that longer axial roots are important for efficient N acquisition and the major QTL for AARL may be used as a marker in breeding N efficient maize genotypes.  相似文献   

7.
Fang  Ping  Wu  Ping 《Plant and Soil》2001,236(2):237-242
Quantitative trait loci (QTLs) for plant height in rice were mapped onto the molecular marker linkage map of a double-haploid (DH) population derived from a cross between IR64 and Azucena under low and high N levels, in both nutrient solution and soil culture experiments. Two QTLs, one on chromosome 1 and the other on chromosome 8, were detected at high N levels in soil and/or nutrient solution culture experiments. A total of 8 QTLs were identified at low N level in the soil and/or nutrient solution culture experiments, which located on chromosomes 1, 2, 3, 4, 5 and 6, respectively. The QTL flanked by the molecular markers RZ730 RZ801 on chromosome 1 was identified in all experimental conditions. This position corresponds to sd-1, a semi-dwarfing gene. The QTLs on chromosomes 2, 3, 4, 5 and 6 were only detected at low N level and the QTL on chromosome 8 was only detected at high N level in the nutrient solution culture experiment. Based on the differing responses to low N stress between two parents and the QTL×N-level interaction observed in this study, it is suggested that the expression of several QTLs associated with plant height could be induced by low N stress.  相似文献   

8.
To investigate the genetic background for aluminum (Al) tolerance in rice, a recombinant inbred (RI) population, derived from a cross between an Al-sensitive lowland indica rice variety IR1552 and an Al-tolerant upland japonica rice variety Azucena, was used in culture solution. A molecular linkage map, together with 104 amplified fragment length polymorphism (AFLP) markers and 103 restriction fragment length polymorphism (RFLP) markers, was constructed to map quantitative trait loci (QTLs) and epistatic loci for Al tolerance based on the segregation for relative root length (RRL) in the population. RRL was measured after stress for 2 and 4 weeks at a concentration of 1mM of Al3+ and a control with a pH 4.0, respectively. Two QTLs were detected at both the 2nd and the 4th weeks on chromosomes 1 and 12 from unconditional mapping, while the QTL on chromosome 1 was only detected at the 2nd stress week from conditional mapping. The effect of the QTL on chromosome 12 was increased with an increase of the stress period from 2 to 4 weeks. The QTL on chromosome 1 was expressed only at the earlier stress, but its contribution to tolerance was prolonged during growth. At least one different QTL was detected at the different stress periods. Mean comparisons between marker genotypic classes indicated that the positive alleles at the QTLs were from the Al-tolerant upland rice Azucena. An important heterozygous non-allelic interaction on Al tolerance was found. The results indicated that tolerance in the younger seedlings was predominantly controlled by an additive effect, while an epistatic effect was more important to the tolerance in older seedlings; additionally the detected QTLs may be multiple allelic loci for Al tolerance and phosphorus-uptake efficiency, or for Al and Fe2+ tolerance. Received: 29 July 1999 / Accepted: 13 October 1999  相似文献   

9.
Localizing genes that contribute to drought avoidance in a quantitative way should enable the exploitation of these genes in breeding through marker-assisted selection, and may lead to the discovery of gene identity and function. Between 110 and 176 F6 recombinant inbred lines from a mapping population derived from a cross of upland rice varieties Bala and Azucena have been evaluated for indicators of drought avoidance in sites in the Philippines and West Africa over two dry seasons. A molecular map with 102 RFLP, 34 AFLP and six microsatellite markers has been used to map (by composite interval mapping) quantitative trait loci (QTLs) for the visual scores of leaf rolling and leaf drying and leaf relative water content. QTLs were mapped for each site and across sites. A total of 17 regions were identified which contained QTLs with a LOD score greater than 3.2. For leaf rolling, Bala was the parent contributing the majority of positive alleles whilst for the other traits, Bala and Azucena contributed more evenly. Six of the 17 regions influenced more than one trait, explaining the phenotypic correlations between traits that were observed. Three QTLs appeared to be specific to the Philippines experiments. One QTL had opposing effects in the Philippines and West Africa. QTLs for relative water content were detected on chromosome 8, congruent with an osmotic adjustment QTL identified in another population. Only three of the QTLs identified here have not been reliably identified in the two other populations that have been screened for drought avoidance. By using several populations assessed for drought avoidance in different sites, the distribution and utility of QTLs for drought avoidance in rice is being elucidated.  相似文献   

10.
Mapping quantitative trait loci for seedling vigor in rice using RFLPs   总被引:13,自引:0,他引:13  
Improving seedling vigor is an important objective of modern rice (Oryza saliva L.) breeding programs. The purpose of this study was to identify and map quantitative trait loci (QTL) underlying seedling vigor-related traits using restriction fragment length polymorphisms (RFLPs). An F2 population of 204 plants was developed from a cross between a low-vigor japonica cultivar Labelle (LBL) and a high-vigor indica cultivar Black Gora (BG). A linkage map was constructed of 117 markers spanning 1496 Haldane cM and encompassing the 12 rice chromosomes with an average marker spacing of 14 cM. The length of the shoots, roots, coleoptile and mesocotyl were measured on F3 families in slantboard tests conducted at two temperatures (18° and 25°C). By means of interval analysis, 13 QTLs, each accounting for 7% to 38% of the phenotypic variance, were identified and mapped in the two temperature regimes at a log-likelihood (LOD) threshold of 2.5. Four QTLs controlled shoot length, 2 each controlled root and coleoptile lengths and 5 influenced mesocotyl length. Single-point analysis confirmed the presence of these QTLs and detected additional loci for shoot, root and coleoptile lengths, these latter usually accounting for less than 5% of the phenotypic variation. Only 3 QTLs detected both by interval and singlepoint analyses were expressed under both temperature regimes. Additive, dominant and overdominant modes of gene action were observed. Contrary to what was predicted from parental phenotype, the low-vigor LBL contributed 46% of the positive alleles for shoot, root and coleoptile lengths. Positive alleles from the high-vigor parent BG were identified for increased root, coleoptile and mesocotyl lengths. However, BG contributed alleles with only minor effects for shoot length, the most important determinant of seedling vigor in water-seeded rice, suggesting that it would not be an ideal donor parent for introducing faster shoot growth alleles into temperate japonica cultivars.  相似文献   

11.
Drought resistance of rice is a complex trait and is mainly determined by mechanisms of drought avoidance and drought tolerance. The present study was conducted to characterize the genetic basis of drought resistance at reproductive stage in field by analyzing the QTLs for drought response index (DRI, normalized by potential yield and flowering time), relative yield, relative spikelet fertility, and four traits of plant water status and their relationships with root traits using a recombinant inbred population derived from a cross between an indica rice and upland rice. A total of 39 QTLs for these traits were detected with individual QTL explained 5.1–32.1% of phenotypic variation. Only two QTLs for plant water status were commonly detected in two environments, suggesting different mechanisms might exist in two types of soil conditions. DRI has no correlation with potential yield and flowering time under control, suggesting that it can be used as a good drought resistance index in field conditions. The co-location of QTLs for canopy temperature and delaying in flowering time suggested a usefulness of these two traits as indexes in drought resistance screening. Correlation and QTL congruence between root traits and putative drought tolerance traits revealed that drought avoidance (via thick and deep root traits) was the main genetic basis of drought resistance in sandy soil condition, while drought tolerance may play more role in the genetic basis of drought resistance in paddy soil condition. Therefore, both drought mechanisms and soil textures must be considered in the improvement of drought resistance at reproductive stage in rice.  相似文献   

12.
不同供水条件下水稻幼苗根系形成的遗传分析   总被引:1,自引:0,他引:1  
利用分子标记图谱对溶液培养与旱作培养(纸培养)下的水稻(Oryza sativa L.)幼苗的种子根与最长不定根长,不定根数,总根干重,根冠比等性状进行了基因定位与遗传分析。4种参数共检测到6个数量性状位点(quantitative trait loci,QTLs)与22对上位性互作位点,其中溶液培养中的最长不定根长,总根干重和旱作培养中的总根干重检测到的QTLs位点对总变异的贡献率分别为20%,23%和13%左右;旱作培养中的最长不定根长,不定根数,根冠比和溶液培养中的根冠比仅检测到上位性位点,对表型变异的贡献率在12%-61%之间,溶液培养与旱作条件下没有一个或一对检测到的QTL或互作位点完全相同,提示溶液培养和旱作条件下影响幼苗根系生长的遗传机制差异,上位性作用对旱作培养条件下的根生长具重要影响。  相似文献   

13.
To genetically dissect drought resistance associated with japonica upland rice, we evaluated a doubled haploid (DH) population from a cross between two japonica cultivars for seven root traits under three different growing conditions (upland, lowland and upland in PVC pipe). The traits included basal root thickness (BRT), total root number (RN), maximum root length (MRL), root fresh weight (RFW), root dry weight (RDW), ratio of root fresh weight to shoot fresh weight (RFW/SFW) and ratio of root dry weight to shoot dry weight (RDW/SDW). The BRT was significantly correlated with the index of drought resistance, which was defined as the ratio of yield under the stress of the upland condition to that under the normal lowland condition. A complete genetic linkage map with 165 molecular markers covering 1,535 cM was constructed. Seven additive quantitative trait loci (QTLs) and 15 pairs of epistatic loci for BRT and RN were identified under upland and lowland conditions, and 12 additive QTLs and 17 pairs of epistatic QTLs for BRT, RN, MRL, RFW, RFW/SFW and RDW/SDW were identified under the PVC pipe condition. Four additive QTLs and one pair of epistatic QTLs controlling IDR were also found. These QTLs individually explained up to 25.6% of the phenotypic variance. QTL × environment (Q × E) interactions were detected for all root traits, and the contributions of these interactions ranged from 1.1% to 19.9%. Five co-localized QTLs controlling RFW and RDW, RFW/SFW, RDW/SDW and IDR, BRT and RN, RN, MRL and IDR were found. Four types of QTLs governing BRT and RN were classified by their detection in the upland and lowland conditions. Some common QTLs for root traits across different backgrounds were also revealed. These co-localized QTLs and common QTLs will facilitate marker-assisted selection for root traits in rice breeding programs.  相似文献   

14.
Molecular markers were used to map and characterize quantitative trait loci (QTLs) for several characters of agronomic and biological importance in an interspecific backcross of tomato. The parents of the cross were an elite processing inbred Lycopersicon esculentum cv M82-1-7 and the closely related red-fruited wild species L. pimpinellifolium (LA1589). A total of 257 BC1 plants were grown under field conditions in Ithaca, New York and scored for 19 quantitative traits. A genetic linkage map was constructed for the same population using 115 RFLP, 3 RAPD and 2 morphological markers that spanned 1,279 cM of the tomato genome with an average interval length of 10.7 cM. A minimum of 54 putatively significant QTLs (P<0.001; LOD> 2.4) were detected for all characters with a range of 1–7 QTLs detected per character. Of the total 54 QTLs 11% had alleles with effects opposite to those predicted by the parental phenotypes. The percentage of phenotypic variation associated with single QTLs ranged from 4% to 47%. Multilocus analysis showed that the cumulative action of all QTLs detected for each trait accounted for 12–59% of the phenotypic variation. The difference in fruit weight was controlled largely by a single major QTL (fw2.2). Digenic epistasis was not evident. Several regions of the genome (including the region near sp on chromosome 6) showed effects on more than one trait. Implications for variety improvement and inferences about the domestication of the cultivated tomato are discussed.  相似文献   

15.
To understand the genetic background of root growth of rice (Oryza sativa L.) seedlings under different water supply conditions, quantitative trait loci (QTLs) and epistatic effect on seminal root length, maximum adventitious root length, adventitious root number, total root dry weight and ratio of root to shoot were detected using molecular map including 103 restriction fragment length polymorphism (RFLP) markers and 104 amplified fragment length polymorphism (AFLP) markers mapped on a recombinant inbred line (RIL) population with 150 lines derived from a cross between an lowland rice IR1552 and an upland rice Azucena in both solution culture (lowland condition) and paper culture (upland condition). Six QTLs and twenty-two pairs of epistatic loci for the four parameters were detected. Three QTLs detected for maximum adventitious root length in solution culture (MARLS), total root dry weight in both solution culture and paper culture (TRDWS and TRDWP) accounted for about 20%, 23% and 13% of the total variations, respectively. Only epistatic loci were found for maximum adventitious root length and adventitious root number in paper culture (MARLP and ARNP), and for ratio of root to shoot in both paper and solution culture (R/SP and R/SS), which accounted for about 12%-61% of the total variations in the parameters, respectively. No identical QTL or epistatic loci were found for the parameters in both solution and paper culture. The results indicate that there is a different genetic system responsible to root growth of rice seedlings under lowland and upland conditions and epistasis might be the major genetic basis for MARLP, ARNP, R/SP and R/SS.  相似文献   

16.
QTL analysis of potato tuberization   总被引:9,自引:1,他引:8  
Quantitative trait loci (QTLs) affecting tuberization were detected in reciprocal backcrosses between Solanum tuberosum and S. berthaultii. Linkage analyses were performed between traits and RFLP alleles segregating from both the hybrid and the recurrent parent using a set of framework markers from the potato map. Eleven distinct loci on seven chromosomes were associated with variation in tuberization. Most of the loci had small effects, but a QTL explaining 27% of the variance was found on chromosome 5. More QTLs were detected while following alleles segregating from the recurrent S. tuberosum parent used to make the backcross than were detected by following alleles segregating from the hybrid parent. More than half of the alleles favoring tuberization were at least partly dominant. Tuberization was favored by an allele from S. berthaultii at 3 of the 5 QTLs detected by segregation from the hybrid parent. The additive effects of the QTLs for tuberization explained up to 53% of the phenotypic variance, and inclusion of epistatic effects increased this figure to 60%. The most common form of epistasis was that in which presence of an allele at each of 2 loci favoring tuberization was no more effective than the presence of a favorable allele at 1 of the 2 loci. The QTLs detected for tuberization traits are discussed in relationship to those previously detected for trichome-mediated insect resistance derived from the unadapted wild species.Paper number 54 of the Department of Fruit and Vegetable Science, Cornell University  相似文献   

17.
QTL analysis of potato tuber dormancy   总被引:5,自引:1,他引:4  
The potential loss of chemical sprout inhibitors because of public concern over the use of pesticides underscores the desirability of breeding for long dormancy of potato (Solanum tuberosum L.) tubers. Quantitative trait locus (QTL) analyses were performed in reciprocal backcrosses between S. tuberosum and S. berthaultii toward defining the complexity of dormancy. S. berthaultii is a wild Bolivian species characterized by a short-day requirement for tuberization, long tuber dormancy, and resistance to several insect pests. RFLP alleles segregating from the recurrent parents as well as from the interspecific hybrid were monitored in two segregating progenies. We detected QTLs on nine chromosomes that affected tuber dormancy, either alone or through epistatic interactions. Alleles from the wild parent promoted dormancy, with the largest effect at a QTL on chromosome 2. Long dormancy appeared to be recessive in the backcross to S. berthaultii (BCB). In BCB the additive effects of dormancy QTLs accounted for 48% of the measured phenotypic variance, and adding epistatic effects to the model explained only 4% more. In contrast, additive effects explained only 16% of the variance in the backcross to S. tuberosum (BCT), and an additional 24% was explained by the inclusion of epistatic effects. In BCB variation at all QTLs detected was associated with RFLP alleles segregating from the hybrid parent; in BCT all QTLs except for two found through epistasis were detected through RFLP alleles segregating from the recurrent parent. At least three dormancy QTLs mapped to markers previously found to be associated with tuberization in these crosses.Paper number 55 of the Department of Fruit and Vegetable Science, Cornell University  相似文献   

18.
19.
Drought is a major abiotic stress of upland rice, and good root growth has been associated with drought avoidance. We report on the genetic mapping of root growth traits in an F2 population derived from two drought-resistant rice varieties, ‘Bala’ and ‘Azucena’. Restriction fragment length polymorphism (RFLP) between the parents was 32%, and a molecular map with 71 marker loci and 17 linkage groups covering 1280 cM was produced. Quantitative trait loci (QTLs) for eight root growth characteristics were mapped using phenotype data obtained in a hydroponic screen previously described in a companion paper. Using a significance threshold of LOD 2.4, we observed one QTL for maximum root length after 28 days growth on chromosome 11. It had a LOD score of 6.9, explained nearly 30% of the variation and appeared to be largely additive in effect. QTLs for maximum root length after 3, 7, 14 and 21 days of growth were also revealed. Some root-length QTLs, including that on chromosome 11, varied greatly with developmental stage. One QTL for root volume and two QTLs for adventitious root thickness were detected. No QTLs were detected for the length of cells in the mature (fully expanded) zone of adventitious root tips. The results obtained are discussed in the context of previous reports on mapping root growth parameters in rice.  相似文献   

20.
A backcross population, derived from the cross (S. tuberosumxS. spegazzinii)xS. tuberosum was used to map QTLs involved in nematode resistance, tuber yield and root development. Complete linkage maps were available for the interspecific hybrid parent as well as the S. tuberosum parent, and interval mapping for all traits was performed for both. Additionally, the intra- and inter-locus interactions of the QTLs were examined. The Gro1.2 locus, involved in resistance to G. rostochiensis pathotype Ro1, that was previously mapped in the S. tuberosumxS. spegazzinii F1 population, was located more precisely on chromosome 10. A new resistance locus, Gro1.4, also conferring resistance to G. rostochiensis pathotype Ro1, was found on chromosome 3. Different alleles of this locus originating from both parents contributed to the resistant phenotype, indicating multiallelism at this locus. No interlocus interactions were observed between these two resistance loci. For resistance to G. pallida no QTLs were detected. One minor QTL involved in tuber yield was located on chromosome 4. Two QTLs involved in root development and having large effects were mapped on chromosomes 2 and 6 and an epistatic interaction was found between these two loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号