首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
近自然化改造作为森林新增碳汇的最有希望的选择之一,将如何通过改变林分结构影响林分生物量和生产力进而影响林分固碳能力和潜力目前尚不清楚,因此,了解近自然化改造对人工林生物量及其分配的影响,对人工林生态系统碳管理具有重要意义。以马尾松近自然化改造林(P(CN))、马尾松未改造纯林(P(CK))、杉木近自然改造林(C(CN))和杉木未改造纯林(C(CK))4种人工林为研究对象,采用样方调查和生物量实测的方法,分析4种林分生物量差异,旨在揭示近自然化改造对马尾松和杉木人工林生物量及其分配的影响。结果表明:马尾松杉木人工林近自然化改造通过调整林分结构显著提升马尾松和杉木人工林生物量和生产力,8a后马尾松和杉木林分生物量分别增加46.71%和37.24%。乔木层生物量在林分生物量总量中占主导地位(95.48%-98.82%),并对林分生态系统总生物量变化起决定性作用。林分生物量和生产力的增加主要因为近自然化改造改变了林分群落结构,进而提高了乔木层生产力。研究结果表明,合理的经营措施不仅可以改善林分结构,提升林分生产力,并可为增强植被固碳能力创造有利条件。  相似文献   

2.
设置模拟氮沉降的控制试验,以NH4NO3作为外加氮源,设计CK(0kg N hm-2·a-1)、LN(50 kg N hm-2·a-1)、MN(100 kg N hm-2·a-1)、HN(150 kg N hm-2· a-1)4个处理,历时9个月,测定木荷(Schima superba)幼苗的光合特性、生物量和C、N、P含量及其分配格局对氮沉降的响应.结果表明:(1)木荷幼苗的最大净光合速率和光饱和点随着氮处理水平增加呈先增加后减小的特点,在中氮处理下极显著增加(P<0.01).氮处理降低了幼苗的光补偿点和暗呼吸速率,光补偿点在低氮处理下显著降低(P<0.05),暗呼吸速率在低中氮处理下极显著降低(P<0.01),高氮处理下显著降低(P<0.05).未见氮处理对表观量子效率产生显著影响.(2)氮处理促进了木荷的全株生物量以及各部分生物量的增长.随着氮处理水平的增加,叶重比呈升高的趋势,而根重比和根冠比呈降低的趋势,在高氮处理下叶重比的增加和根重比、根冠比的降低都达到了显著水平(P<0.05).(3)氮沉降促进各器官N含量的增加,在高氮处理下根和茎中N含量极显著增加(P<0.01),叶中N含量显著增加(P<0.05).而各器官C含量随着氮沉降程度的增加呈先增加后降低的趋势,在中氮处理下根和茎中C含量极显著增加(P<0.01),叶中C含量显著增加(P<0.05).但各器官P含量变化趋势各不相同,随着氮的增加,根中P含量是呈先增加后降低的趋势,而茎和叶中P含量是呈降低的趋势.氮沉降一定程度上降低了木荷各器官的C/N比值而增加了N/P比值.  相似文献   

3.
苦竹(Pleioblastus amarus)是优质笋材兼用竹种,分布广。为探究界面区苦竹分株秆形及地上构件生物量分配格局的变化特征,解析苦竹对异质生境适应机制,该研究选取了相邻的苦竹林和苦竹-杉木(Cunninghamia lanceolata)混交林两种林分类型,分别测定了苦竹林和混交林中心区及界面区不同龄级立竹秆形和秆、枝、叶的生物量,分析立竹秆形及地上构件生物量积累、分配、异速生长关系的差异。结果表明:(1)界面区1 a立竹生物量积累及分配差异增大,其中苦竹林界面区各构件相对生物量和叶生物量分配比例提高,而混交林界面区各构件相对生物量和叶生物量分配比例降低; 2 a立竹生物量积累及分配比例的差异缩小,界面区两边2 a立竹各构件相对生物量和生物量分配比例均无明显差异。(2)界面区立竹秆形特征及1 a立竹各构件生物量异速生长关系均无明显变化,而苦竹林界面区2 a立竹秆的增长速率提高,枝、叶的增长速率降低。综上认为,苦竹通过权衡资源分配关系,明显改变界面区立竹秆形及生物量分配格局,以提高克隆分株对异质环境的适合度。  相似文献   

4.
为研究氮沉降对植物养分平衡的影响,对1a生杉木(Cunninghamia lanceolata(Lamb.)Hook.)幼苗进行了室内模拟试验。以NH4NO3作为外加氮源,设计了N0(0 g N m-2?a-1)、N1(6 g N m-2?a-1)、N2(12 g N m-2?a-1)、N3(24 g N m-2?a-1)和N4(48g N m-2?a-1)等5种氮沉降水平,每处理重复6次。通过1a的试验发现,杉木幼苗叶、茎、粗根和细根中的N、K、Mg含量随氮处理水平的增加而上升,但Ca在各器官中的含量则呈下降趋势;中低氮(N1,N2)对叶、茎和粗根中P的含量表现为促进作用,而高氮(N3,N4)则表现为抑制作用。幼苗各器官中的N与其他养分元素的比值随氮处理水平的增加而普遍升高,但粗根中的N/K、N/Mg则表现为下降。与对照(N0)相比,在N1、N2、N3、N4处理中,幼苗对外加氮素的表观利用率分别为60.7%、57.9%、43.3%和27.9%,随氮处理水平增加,利用率呈明显下降趋势。随着氮处理水平的增加,幼苗体内的氮分配到叶和细根中的比例增加,而分配到茎和粗根中的比例下降。因此,氮沉降明显增加了杉木幼苗各器官的氮含量,影响了幼苗的养分平衡。  相似文献   

5.
南亚热带红锥、杉木纯林与混交林碳贮量比较   总被引:2,自引:0,他引:2  
造林再造林作为新增碳汇的一种有效途径,受到国际社会的广泛关注。如何通过改变林分树种组成,优化造林模式提高人工林生态系统碳贮量已成为国内外学者关注的重点。通过样方调查和生物量实测相结合的方法,对南亚热带26年生红锥纯林(PCH)、杉木纯林(PCL)及红锥×杉木混交林(MCC)生态系统各组分碳含量、碳贮量及其分配特征进行了比较研究。结果表明:杉木、红锥各器官平均碳含量分别为492.1—545.7 g/kg和486.7—524.1 g/kg。相同树种不同器官以及不同树种的相同器官间碳含量差异显著(P0.05)。红锥各器官碳含量的平均值(521.3 g/kg)高于杉木(504.7 g/kg)。不同林分间地被物碳含量大小顺序为PCHMCCPCL;不同树种之间的土壤碳含量差异显著(P0.05),0—100 cm土壤平均碳含量为PCLMCCPCH。生态系统碳贮量大小顺序为PCL(169.49 t/hm2)MCC(141.18 t/hm2)PCL(129.20 t/hm2),相同组分不同林分以及相同林分的不同组分碳贮量均存在显著差异(P0.05)。造林模式对人工林碳贮量及其分配规律有显著影响,营建混交林有利于红锥生物量和土壤碳的累积,而营建纯林有利于杉木人工林生物量碳的吸收,也有利于土壤碳的固定。因而,混交林的固碳功能未必高于纯林,在选择碳汇林的造林模式时,应以充分考虑不同树种的固碳特性。  相似文献   

6.
We investigated the potential role of a nitrogen-fixing legume in facilitating invasion by an alien grass, Pennisetum setaceum (fountain grass) into native Heteropogon contortus grasslands in Hawai'i. Both grasses are C4 perennials. Many formerly extensive Heteropogon grasslands have been reduced to remnants surrounded by Pennisetum . An inconspicuous annual legume, Chamaecrista nictitans (partridge pea), was commonly associated with Pennisetum stands but was found at higher densities in Pennisetum-Heteropogon mixtures. In the field, we also found higher exchangeable soil nitrogen beneath Chamaecrista-Pennisetum-Heteropogon mixtures than beneath neighboring pure Heteropogon stands. We then used greenhouse experiments to test the hypothesis that increased nitrogen facilitates Pennisetum 's invasion of established Heteropogon . Under low nitrogen conditions, Pennisetum seedlings planted beneath established Heteropogon plants grew very little (<0.3 g biomass after 16 weeks), and their growth was not affected by high or low water treatments. In contrast, under high nitrogen conditions, in both low and high water treatments, Pennisetum seedlings grew rapidly, averaging 60 fold the biomass of seedlings in the low nitrogen treatment and exceeding the biomass of the established Heteropogon plants under which they were planted. We also compared Pennisetum - Heteropogon seedling competition in the presence and absence of live Chamaecrista . The growth of Pennisetum was not directly facilitated by live Chamaecrista in the greenhouse pots, but the Chamaecrista did not increase available soil nitrogen until after it had died. Our results suggest that increases in soil nitrogen, like those associated with an inconspicuous alien legume, can facilitate an alien grass' invasion of a native grassland.  相似文献   

7.
We experimentally determined the effects of water depth on seed germination and seedling growth and morphology, and we documented the transition from submerged to emergent plants in the white water lily, Nymphaea odorata. Seeds of N. odorata were germinated at 30, 60, and 90 cm water depth in outdoor mesocosms and percent germination and morphology measured after a month. The presence of self-seeded seedlings in pots at the same 3 water levels was also recorded over two years. To examine juvenile growth, seeds planted in soil were placed at the same mesocosm depths; germination and growth were monitored for three months, when the plants were harvested for morphological and biomass measurements. N. odorata germinated equally well in 30, 60 and 90 cm water; seedlings grew as submerged aquatics. After one month, seedlings in 90 cm water had less biomass than those in 30 cm (1.1 vs. 3.3 mg and 1.0 vs. 1.8 mg for different seed sources, respectively) and allocated relatively more biomass to shoots (97.5 vs. 67.8% and 73.1 vs. 58.0%, respectively). Seedlings in 60 cm water were intermediate. After 3 months of submerged growth, plant biomass remained less in 90 vs. 60 and 30 cm water (22.5 vs. 36.4 and 33.3 mg, respectively). Plants in 90 and 60 cm water had greater biomass allocation to shoots than plants in 30 cm water (85.7 and 72.6% vs. 64.4%, respectively) and produced larger laminae on longer petioles (lamina length = 33.3 vs. 25.2 mm in 90 vs. 30 cm; petiole length = 99.0 vs. 36.0 mm, respectively). After about 3 months, submerged plants produced floating leaves that had 39% shorter laminae but 267% to 1988% longer petioles than submerged leaves on the same plant. Lamina length to width allometric relations of submerged leaves were >1 at all water levels, distinguishing them from the equal allometry of adult floating leaves. The switch from production of submerged to emergent leaves resembles submergence-escape growth in other aquatics, but because the seedlings have been submerged throughout their life, submergence itself cannot be the stimulus to produce emergent leaves in these totally immersed plants. Our data show that N. odorata plants can establish from seeds in up to 90 cm water and that seedlings grow as submerged aquatics until they switch abruptly to production of floating leaves.  相似文献   

8.
Plant fitness is enhanced by resource allocation to seed number (offspring number) or weight (offspring survival). Besides, there is a well known trade-off in resource allocation between both traits. Symbiotic interactions can influence plant resource allocation to reproduction, yet little research has been performed in this direction. We studied the consequences of a grass–fungus symbiosis on the trade-off between seed number and weight, using Lolium multiflorum and the endophyte Neotyphodium occultans as our study system. In ecological terms, we experimentally removed N. occultans from L. multiflorum plants, and compared reproductive allocation to seed number and weight in endophyte-symbiotic vs. non-symbiotic plants at different levels of nutrient availability (small pots vs. large pots). In evolutionary terms, we compared reproductive allocation between symbiotic vs. non-symbiotic plants for different host genotypes. All plants showed a negative association between seed number and weight, once standardized for total reproductive biomass. Under high nutrient availability, endophyte-symbiotic plants showed higher seed weight than non-symbiotic plants for any seed number. However, no differences were observed under low nutrient availability. Endophyte influence also varied according to L. multiflorum genotype; specifically, endophyte-symbiotic plants showed a lower slope in the relationship between seed number and weight than non-symbiotic plants for the ‘Marshall’ genotype but no endophyte influence was found for the “Pampean” genotype. The results implied a higher plasticity in seed weight and lower plasticity in seed number for symbiotic plants. Indeed, endophyte-symbiotic plants showed an overall lower slope in the association between seed number and total reproductive biomass than non-symbiotic plants. Our results suggest that N. occultans induces heavier seeds in L. multiflorum plants under environmental conditions favorable to plant growth or for certain plant genotypes. We propose that symbiotic interactions may influence the evolution of seed number and weight trade-off.  相似文献   

9.
连栽杉木林林下植被生物量动态格局   总被引:8,自引:5,他引:3  
杨超  田大伦  胡曰利  闫文德  方晰  梁小翠 《生态学报》2011,31(10):2737-2747
用空间一致时间连续的定位研究方法,在湖南会同杉木林生态系统国家野外科学观测研究站试验基地的第2集水区,对连栽杉木林林下植被生物量进行了12 a的监测,研究了林下植被种类的变化、生物量动态特征、生物量的组成与分布变化格局。结果表明:连栽杉木林在14a生长发育过程中,林下植物种类呈现波动性的减少趋势,其中木本植物物种数下降率为40.0%,草本植物物种数下降率为47.1%。林下植被生物量由杉木林3年生29.48 t/hm2下降至14年生的2.53 t/hm2,其中木本植物生物量由7.07 t/hm2,下降至1.25 t/hm2,下降了82.3%;草本植物由22.41 t/hm2,下降至1.28 t/hm2,下降了94.3%。在此期间,木本与草本植物生物量的高低均出现波动现象。3年生杉木林下木本植物以乔木树种生物量6068.97 kg/hm2最高,占总生物量85.88%,藤本植物生物量736.97 kg/hm2为次,占10.44%,灌木植物生物量259.87 kg/hm2最低,仅占3.68%。14年生杉木林下木本植物以灌木植物生物量881.87 kg/hm2为首,占总生物量70.73%,藤本植物生物量247.07 kg/hm2为次,占19.82%,乔木树种生物量117.87 kg/hm2最少,只占9.45%。3年生杉木林下草本植物以蕨类植物生物量8391.44 kg/hm2最高,占总生物量的37.44%,过路黄生物量36.77 kg/hm2最低,仅占0.16%。杉木14年生时,以芒生物量573.00 kg/hm2最大,占总生物量44.78%,金毛耳草生物量2.93 kg/hm2最小,仅占0.23%。研究结果,可为研究杉木林养分循环、碳平衡、维护和提高林地地力及可持续经营管理提供科学依据。  相似文献   

10.
高成杰  唐国勇  李昆  谢青海 《生态学报》2013,33(6):1964-1972
以元谋干热河谷10年生印楝和大叶相思为研究对象,采用分层挖掘法对印楝纯林、大叶相思纯林及印楝×大叶相思混交林根系生物量及其分布特征进行研究.结果表明:印楝×大叶相思混交林根系总生物量为2.707 t/hm2,介于印楝纯林(2.264t/hm2)和大叶相思纯林(3.405 t/hm2)之间.混交林内主根总生物量为1.057 t/hm2,为印楝纯林和大叶相思纯林的69.9%和69.7%,而除粗根外,混交林内其它径级的侧根(中根、小根和细根)生物量均介于印楝纯林和大叶相思纯林之间,分别为印楝纯林的228.7%、120.1%、450.0%,为大叶相思纯林的71.3%、65.8%和48.8%.干热河谷印楝和大叶相思人工林根系在土壤表层分布比例大,尤其足0-0.2 m土层内,其根系生物量占根系总生物量的63.6%-76.3%.根系垂直累积生物量与土壤深度可用二次方程拟合,拟合方程的二阶导数表明,垂直方向上,印楝纯林根系分布较混交林均匀,而混交林较大叶相思纯林均匀.  相似文献   

11.
The basidiomycete fungus Piriformospora indica colonizes roots of a broad range of mono- and dicotyledonous plants. It confers enhanced growth, improves resistance against biotic and tolerance to abiotic stress, and enhances grain yield in barley. To analyze mechanisms underlying P. indica-induced improved grain yield in a crop plant, the influence of different soil nutrient levels and enhanced biotic stress were tested under outdoor conditions. Higher grain yield was induced by the fungus independent of different phosphate and nitrogen fertilization levels. In plants challenged with the root rot-causing fungus Fusarium graminearum, P. indica was able to induce a similar magnitude of yield increase as in unchallenged plants. In contrast to the arbuscular mycorrhiza fungus Glomus mosseae, total phosphate contents of host plant roots and shoots were not significantly affected by P. indica. On the other hand, barley plants colonised with the endophyte developed faster, and were characterized by a higher photosynthetic activity at low light intensities. Together with the increased root formation early in development these factors contribute to faster development of ears as well as the production of more tillers per plant. The results indicate that the positive effect of P. indica on grain yield is due to accelerated growth of barley plants early in development, while improved phosphate supply—a central mechanism of host plant fortification by arbuscular mycorrhizal fungi—was not observed in the P. indica-barley symbiosis.  相似文献   

12.
Summary Centaurea maculosa seedlings were grown in pots to study the effects of root herbivory by Agapeta zoegana L. (Lep.: Cochylidae) and Cyphocleonus achates Fahr. (Col.: Curculionidae), grass competition and nitrogen shortage (each present or absent), using a full factorial design. The aims of the study were to analyse the impact of root herbivory on plant growth, resource allocation and physiological processes, and to test if these plant responses to herbivory were influenced by plant competition and nitrogen availability. The two root herbivores differed markedly in their impact on plant growth. While feeding by the moth A. zoegana in the root cortex had no effect on shoot and root mass, feeding by the weevil C. achates in the central vascular tissue greatly reduced shoot mass, but not root mass, leading to a reduced shoot/root ratio. The absence of significant effects of the two herbivores on root biomass, despite considerable consumption, indicates that compensatory root growth occurred. Competition with grass affected plant growth more than herbivory and nutrient status, resulting in reduced shoot and root growth, and number of leaves. Nitrogen shortage did not affect plant growth directly but greatly influenced the compensatory capacity of Centaurea maculosa to root herbivory. Under high nitrogen conditions, shoot biomass of plants infested by the weevil was reduced by 30% compared with uninfested plants. However, under poor nitrogen conditions a 63% reduction was observed compared with corresponding controls. Root herbivory was the most important stress factor affecting plant physiology. Besides a relative increase in biomass allocation to the roots, infested plants also showed a significant increase in nitrogen concentration in the roots and a concomitant reduction in leaf nitrogen concentration, reflecting a redirection of the nitrogen to the stronger sink. The level of fructans was greatly reduced in the roots after herbivore feeding. This is thought to be a consequence of their mobilisation to support compensatory root growth. A preliminary model linking the effects of these root herbivores to the physiological processes of C. maculosa is presented.  相似文献   

13.
苗圃科学施氮(N)作为提高苗木N贮存水平与质量的核心手段,能否提高干旱立地苗木造林效果仍存在争议;N贮存水平与干旱如何协同作用影响叶片光合N分配及苗木生物量积累尚不明确。阐明上述问题,能够为干旱立地下的森林植被恢复以及造林苗木科学精准施N提供科学依据。选择栓皮栎(Quercus variabilis Blume)为研究对象,对一年生苗木设置2个苗圃木质化期N加载水平(0、24 mg N/株),翌年春苗木移栽后设置2个灌溉水平(85%、40%田间持水量),取样测定苗木生物量、叶片N、叶绿素与脯氨酸水平、以及气体交换参数,计算光合N分配及光合N利用效率(PNUE)。结果表明,叶片发育完成后,干旱抑制N向光合系统分配,但N加载处理提高了干旱下的光合N含量,从而在一定程度上抵消干旱对生物量积累的抑制;无N加载苗木则向光合系统投入更少的N,而提高脯氨酸水平,生物量积累受抑制更为显著。无N加载苗木在遭受干旱后将N向羧化组分分配,而N加载苗木遭遇干旱后则显著抑制叶片将N向羧化系统以及电子传递系统分配,捕光组分N的分配则不受植物体内N贮存或外部水分状况的影响,栓皮栎苗木通过调整不同功能组分光合N含量和...  相似文献   

14.
The endophytic fungus Piriformospora indica colonizes the roots of many plant species including Arabidopsis and promotes their performance, biomass, and seed production as well as resistance against biotic and abiotic stress. Imbalances in the symbiotic interaction such as uncontrolled fungal growth result in the loss of benefits for the plants and activation of defense responses against the microbe. We exposed Arabidopsis seedlings to a dense hyphal lawn of P. indica. The seedlings continue to grow, accumulate normal amounts of chlorophyll, and the photosynthetic parameters demonstrate that they perform well. In spite of high fungal doses around the roots, the fungal material inside the roots was not significantly higher when compared with roots that live in a beneficial symbiosis with P. indica. Fifteen defense- and stress-related genes including PR2, PR3, PAL2, and ERF1 are only moderately upregulated in the roots on the fungal lawn, and the seedlings did not accumulate H2O2/radical oxygen species. However, accumulation of anthocyanin in P. indica-exposed seedlings indicates stress symptoms. Furthermore, the jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile) levels were increased in the roots, and consequently PDF1.2 and a newly characterized gene for a 2-oxoglurate and Fe2+-dependent oxygenase were upregulated more than 7-fold on the dense fungal lawn, in a JAR1- and EIN3-dependent manner. We conclude that growth of A. thaliana seedlings on high fungal doses of P. indica has little effect on the overall performance of the plants although elevated JA and JA-Ile levels in the roots induce a mild stress or defense response.  相似文献   

15.
K. Makoto  Y. Tamai  Y. S. Kim  T. Koike 《Plant and Soil》2010,327(1-2):143-152
Charcoal produced by fire on the soil surface mixes into the soil over time and is heterogeneously distributed within the soil profile in post-fire forests. To determine how different patterns of vertical distribution of charcoal and ectomycorrhizal formation affect the growth of Larix gmelinii (Gmelin larch) in post-fire forests, we conducted a model experiment in the pots. In this study, pots with a layer of charcoal in the middle of the soil profile promoted growth of the root system of the seedlings significantly more than did pots with no charcoal or with charcoal scattered throughout the soil. Along with the development of the root system, above-ground biomass and total biomass were also increased. Furthermore, in addition to the positive effects of charcoal in the soil, there were also strong positive effects on the growth of seedlings from ectomycorrhizal root formation. As a result, the largest above-ground biomass and total biomass were found for seedlings grown in layered charcoal with ectomycorrhizae. Furthermore, the highest phosphorus concentration in needles was also found for seedlings grown in layered charcoal with ectomycorrhizae. This is attributable to the frequent contact of roots with charcoal in the middle layer of the soil and the utilisation of phosphate by ectomycorrhizae. This suggests that buried and layered charcoal occurring in patches in post-fire stands may provide a suitable habitat for the growth of Gmelin larch seedlings.  相似文献   

16.
Piriformospora indica association has been reported to increase biotic as well as abiotic stress tolerance of its host plants. We analyzed the beneficial effect of P. indica association on rice seedlings during high salt stress conditions (200 and 300 mM NaCl). The growth parameters of rice seedlings such as root and shoot lengths or fresh and dry weights were found to be enhanced in P. indica-inoculated rice seedlings as compared with non-inoculated control seedlings, irrespective of whether they are exposed to salt stress or not. However, salt-stressed seedlings performed much better in the presence of the fungus compared with non-inoculated control seedlings. The photosynthetic pigment content [chlorophyll (Chl) a, Chl b, and carotenoids] was significantly higher in P. indica-inoculated rice seedlings under high salt stress conditions as compared with salt-treated non-inoculated rice seedlings, in which these pigments were found to be decreased. Proline accumulation was also observed during P. indica colonization, which may help the inoculated plants to become salt tolerant. Taken together, P. indica rescues growth diminution of rice seedlings under salt stress.  相似文献   

17.
 Nitrogen deposition and intentional forest fertilisation with nitrogen are known to affect the species composition of ectomycorrhizal fungal communities. To learn more about the mechanisms responsible for these effects, the relations between fungal growth, nitrogen uptake and nitrogen availability were studied in ectomycorrhizal fungi in axenic cultures and in symbiosis with pine seedlings. Effects of different levels of inorganic nitrogen (NH4) on the mycelial growth of four isolates of Paxillus involutus and two isolates of Suillus bovinus were assessed. With pine seedlings, fungal uptake of 15N-labelled NH4 was studied in short-term incubation experiments (72 h) in microcosms and in long-term incubation experiments (3 months) in pot cultures. For P. involutus growing in symbiosis with pine seedlings, isolates with higher NH4 uptake were affected more negatively at high levels of nitrogen availability than isolates with lower uptake. More NH4 was allocated to shoots of seedlings colonised by a high-uptake isolate, indicating transfer of a larger fraction of assimilated NH4 to the host than with isolates showing lower NH4 uptake rates. Thus low rates of N uptake and N transfer to the host may enable EM fungi avoid stress induced by elevated levels of nitrogen. Seedlings colonised by S. bovinus transferred a larger fraction of the 15N label to the shoots than seedlings colonised by P. involutus. Seedling shoot growth probably constituted a greater carbon sink in pot cultures than in microcosms, since the mycelial growth of P. involutus was more sensitive to high NH4 in pots. There was no homology in mycelial growth rate between pure culture and growth in symbiosis, but N uptake in pure culture corresponded to that during growth in symbiosis. No relationship was found between deposition of antropogenic nitrogen at the sites of origin of the P. involutus isolates and their mycelial growth or uptake of inorganic nitrogen. Accepted: 18 September 1998  相似文献   

18.
A new fungal endophyte, Scolecobasidium humicola, was identified as a common dark septate endophytic fungal (DSE) species under both natural and agricultural conditions. This fungus was found to grow endophylically in the roots of tomato seedlings. Light microscopy of cross-sections of colonized tomato roots showed that the intercellular, pigmented hyphae of the fungus were mostly limited to the epidermal layer and formed outer mantle-like structures. Two isolates of S. humicola, H2-2 and F1-3, have shown the ability to increase plant biomass with an organic nitrogen source. This finding is the first report of S. humicola as an endophyte and could help to improve plant growth with organic nitrogen sources.  相似文献   

19.
为了探讨珍稀树种对短期氮素添加的响应,该文研究了氮素添加(0、0.1、0.2、0.4和0.6g·kg~(-1)土)对观光木、棱角山矾和半枫荷幼苗生长和生物量分配的影响。结果表明:3个树种幼苗对外源氮素添加的反应不同,施氮显著促进观光木幼苗株高、基径、冠幅以及全株生物量和各部分生物量的增加,中低氮促进半枫荷幼苗的生长,但高氮抑制其生长;少量施氮对棱角山矾幼苗的形态和生物量参数没有产生显著影响,中量施氮抑制其生长。氮素营养的改变显著影响3种植物幼苗的生物量分配,观光木幼苗的根生物量比和根冠比均随施氮量的增加而显著降低;除高氮处理外,半枫荷幼苗的根生物量比和根冠比均随供氮量的增加而显著升高;棱角山矾的根生物量比和根冠比均随供氮量的增加而显著升高,可能与施氮抑制其茎叶的生长有关。总的来看,观光木幼苗更能耐受高氮条件,半枫荷幼苗次之,而棱角山矾幼苗不耐高氮;但到当年生长季末,各氮处理半枫荷幼苗的株高、基径和总相对生长速率均显著大于其它两种植物。  相似文献   

20.
In this study the influence of nitrogen nutrition on the patterns of carbon distribution was investigated with Urtica dioica. The nettles were grown in sand culture at 3 levels of NO?3, namely 3 (low), 15 (medium) and 22 (high) mM. These levels encompassed a range within which nitrogen did not affect total biomass production. The ratio of root: shoot biomass of the low nitrogen plants was, however, significantly higher than that of the nettles grown at medium and high N supply. Carbon allocation from one leaf of each pair of leaves was examined after a 14CO2-pulse and a subsequent 14C distribution period of one night. Only the youngest two leaf pairs did not export assimilates. Carbon (14C) export to the shoot apex and to the roots, as measured at the individual nodes responded to the nitrogen status: At medium and high nitrogen supply the 3rd, 4th and 5th leaf pairs exported to the shoot apex, while lower leaves exported to the root. At low nitrogen supply only the 3rd leaf exported towards the shoot apex. The results illustrate the plastic response of carbon distribution patterns to the nitrogen supply, even when net photosynthesis, carbon export from the source leaves and biomass production were not affected by the nitrogen supply to the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号